
Cost-Effective Traceability Links for Architecture-Level
Software Understanding: A Controlled Experiment

Muhammad Atif Javed, Srdjan Stevanetic and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
muhammad.atif.javed|srdjan.stevanetic|uwe.zdun@univie.ac.at

ABSTRACT
An important architectural challenge is to recover traceabil-
ity links between the software architecture and artifacts pro-
duced in the other activities of the development process,
such as requirements, detailed design, architectural knowl-
edge, and implementation. This is challenging because, on
the one hand, it is desirable to recover traceability links of
a high quality and at the right quantity for aiding the soft-
ware architect or developer, but, on the other hand, the
costs and efforts spent for recovering should be as low as
possible. The literature suggests manual, semi-automatic,
and automatic recovery methods, each of which exhibits dif-
ferent impacts on costs as well as quantity and quality of
the recovered links. To date, however, none of the published
empirical studies have comparatively examined the automa-
tion alternatives of traceability link recovery. This paper
reports on a controlled experiment that was conducted to
investigate how well typical results produced by the three
automation alternatives support human software developers
in architecture-level understanding of the software system.
The results provide statistical evidence that a focus on auto-
mated information retrieval (IR) based traceability recovery
methods significantly reduces the quantity and quality of the
elements retrieved by the software developers, whereas no
significant differences between manual and semi-automatic
traceability link recovery were found.

CCS Concepts
•Software and its engineering → Software architec-
tures; Documentation; Empirical software valida-
tion;

Keywords
Traceability, Software architecture, Automation alternatives,
Empirical Software Engineering, Controlled experiment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASWEC ’15, September 28 – October 01, 2015, Adelaide, SA, Australia
c© 2015 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

1. INTRODUCTION
Manual traceability recovery requires human effort for

identification of traceability links, in which a quantity of
100% correct and also 100% actually correct links is achiev-
able. Semi-automatic traceability recovery involves auto-
matic methods together with human activities, in which
in most of the cases a quantity of 10–35% correct links is
achievable at actually correct link levels of 80–100% [2][4].
Automatic traceability recovery is based on automatic meth-
ods (without human involvement), in which in most of the
cases a quantity of 90% correct links is achievable at actually
correct link levels of 5–30% [12][14]. So far, however, none
of the published empirical studies have compared these au-
tomation alternatives for the recovery of traceability links.

The goal of this paper is to perform a pair-wise compari-
son of the automation alternatives of traceability link recov-
ery in terms of their impact (low or high) on quantity and
quality of retrieved elements during architecture-level un-
derstanding of the software system. Specifically, we intend
to answer the following research question: Are the quan-
tity and quality of retrieved elements achievable with semi-
automatic traceability link recovery (i.e., low quantity but
high quality links) better than those achievable with auto-
matic traceability link recovery (i.e., high quantity but low
quality links) and reasonably close to results achievable with
manual traceability link recovery (i.e., the entire links)? To
answer the research question, we conducted a controlled ex-
periment at the University of Vienna, Austria, in January
2015. The experiment was announced as a practical ses-
sion on software architecture understanding. In total, 74
students of the Information and Software Technology course
took part.

The participants were asked to perform eight activities
aimed at gaining an architecture-level understanding of the
Apache Wink Version 1.4.0, a framework for the develop-
ment and consumption of REpresentational State Transfer
(REST) based web services. In the experiment, the partici-
pants were assigned to three balanced groups, referred to as
manual, semi-automatic and automatic groups. Each of the
groups received a set of traceability links created by either a
manual, semi-automatic and automatic, respectively, and we
checked that the quantity and quality of recovered links in
the groups were representative for manual, semi-automatic
and automatic traceability tools (based on the data reported
in the literature). The data from the experiment was anal-
ysed, and the quantity and quality of retrieved elements by
the different groups were compared. The results of the ex-
periment demonstrate that automatic traceability recovery

significantly reduces the quantity and quality of retrieved
elements, whereas no significant differences between manual
and semi-automatic traceability recovery were found.

The rest of this paper is organized as follows: Section 2
discusses the related work. Section 3 describes the design
of the controlled experiment including the introduction of
variables and hypotheses. Section 4 presents the hypotheses
tested and the analysis of the results of the study. Section 5
discusses threats to validity. Section 6 concludes the study
and discusses future work.

2. RELATED WORK
A few empirical studies have been performed to evaluate

the added value of traceability links. In our earlier work
[6][5][7], we analysed the support provided by manual trace-
ability. Our findings show that the use of traceability links
significantly increases the correctness of the answers of the
participants, whereas no conclusive evidence concerning the
influence of the experience of the participants was observed.
The results also demonstrate that using traceability links
leads to slight difference in the quantity and quality of re-
covered elements for a larger software system.

Cuddeback et al. [1] and Dekhtyar et al. [3] investigate
the usefulness of information retrieval (IR) based traceabil-
ity recovery tools. Cuddeback et al. findings show that the
participants failed to finalize the correct traceability links,
while the participants provided with the lower recall and pre-
cision of traceability links make significant improvements.
In addition, regardless of size and accuracy of the initial
traceability links, the participants tend to guess the correct
number of traceability links. Dekhtyar et al. performed
two more follow-up experiments. The results demonstrate
that the accuracy of initial traceability links and time spent
had significant interaction with the final traceability links,
whereas no significant differences with regard to the tool
used, effort applied in searching for missing links and trace-
ability experience were observed.

The contribution of this study is novel for three main rea-
sons. First, none of the published empirical studies have
examined the added value of semi-automatic traceability re-
covery. Second, there exist no comparative evidence on how
well each automation alternative supports the quantity and
quality of retrieved elements. Third, the earlier works on
human analyst effort and performance are based on require-
ment traceability links, while this experiment investigates
the support provided by architecture traceability links.

3. DESIGN OF THE EXPERIMENT
For the study design, the guidelines for controlled experi-

ments by Kitchenham et al. [8] and Wohlin et al. [13] were
used. The former guidelines were primarily used in the plan-
ning phase of our experiment, while the latter was used as a
reference for the analysis and interpretation of the results.

3.1 Goal, hypotheses, parameters, and vari-
ables

The goal of the experiment is to empirically investigate
in how far the use of different automation alternatives for
traceability link recovery supports architecture-level under-
standing of the software system. The experiment goal led to
the following null hypotheses and corresponding alternative
hypotheses:

H01: Traceability links produced by an automated method
lead to a higher quantity of correctly retrieved ele-
ments during architecture-level understanding of the soft-
ware system than traceability links produced by the manual
and semi-automatic methods.
H1: Traceability links produced by an automated method
lead to a lower quantity of correctly retrieved ele-
ments during architecture-level understanding of the soft-
ware system than traceability links produced by the manual
and semi-automatic methods.

H02: Traceability links produced by an automated method
lead to a lower quantity of incorrectly retrieved ele-
ments during architecture-level understanding of the soft-
ware system than traceability links produced by the manual
and semi-automatic methods.
H2: Traceability links produced by an automated method
lead to a higher quantity of incorrectly retrieved el-
ements during architecture-level understanding of the soft-
ware system than traceability links produced by the manual
and semi-automatic methods.

H03: Traceability links produced by an automated method
lead to a higher overall quality of retrieved elements
during architecture-level understanding of the software sys-
tem than traceability links produced by the manual and
semi-automatic methods.
H3: Traceability links produced by an automated method
lead to a lower overall quality of retrieved elements
during architecture-level understanding of the software sys-
tem than traceability links produced by the manual and
semi-automatic methods.

3.1.1 Dependent and independent variables
Nine dependent and five independent variables were ob-

served during the experiment. The quantity of correctly and
incorrectly retrieved elements, and their overall quality for
the manual, semi-automatic and automatic traceability link
recovery are dependent variables. They were calculated by
using the standard information retrieval metrics, in partic-
ular, recall, precision, and f-measure, respectively. Recall
is the percentage of correct matches retrieved by an experi-
ment subject, while precision is the percentage of retrieved
matches that are actually correct. Because recall and pre-
cision measure two different concepts, it can be difficult to
balance between them. Therefore, f-measure, a standard
combination of recall and precision, defined as their har-
monic mean, is used to measure the overall quality of re-
trieved elements from the experiments’ participants.

The independent variables relate to the personal infor-
mation (programming experience, architecture experience,
affiliation), group affiliation (manual group, semi-automatic
group or automatic group) and time spent in the experiment.
These variables could have an influence on the dependent
variables, which is eliminated by balancing the characteris-
tics between the manual group, semi-automatic group and
the automatic group.

3.2 Experiment Design
To test the hypotheses, we conducted a controlled experi-

ment at the University of Vienna, Austria. The experiment
was conducted as practical session on software architecture
understanding.

0

2

4

6

8

10

12

14

 Manual Group Semi-automatic Group Automatic Group

0
-1

Y
ea

rs

1
-3

Y
ea

rs

3
-7

-Y
ea

rs

7
+

Y
ea

rs 0
-1

Y
ea

rs 1
-3

Y
ea

rs

3
-7

-Y
ea

rs

7
+

Y
ea

rs 0
-1

Y
ea

rs

1
-3

Y
ea

rs

3
-7

-Y
ea

rs

7
+

Y
ea

rs

(a) Programming Experience

0

2

4

6

8

10

12

14

 Manual Group Semi-automatic Group Automatic Group

0
-1

Y
ea

rs

1
-3

Y
ea

rs

3
-7

-Y
ea

rs

7
+

Y
ea

rs

0
-1

Y
ea

rs

1
-3

Y
ea

rs

3
-7

-Y
ea

rs

7
+

Y
ea

rs

0
-1

Y
ea

rs 1
-3

Y
ea

rs

3
-7

-Y
ea

rs

7
+

Y
ea

rs

(b) Architecture Experience

0

2

4

6

8

10

12

14

Manual Group Semi-automatic Group Automatic Group

In
d

u
st

ry A
ca

d
em

ia

O
th

er

In
d

u
st

ry

A
ca

d
em

ia

O
th

er

In
d

u
st

ry

A
ca

d
em

ia

O
th

er

(c) Affiliation

Figure 1: Distribution of Participants

3.2.1 Participants
The participants in the experiment were 74 students of

the Information and Software Technology course held at
University of Vienna. Twenty-five individual students took
part in the manual and semi-automatic groups, while the
other twenty-four students have participated in the auto-
matic group.

3.2.2 Objects
The software system to be architecturally understood by

participants was the Apache Wink1 Version 1.4.0. It is a
framework for the development and consumption of REST
based web services.

3.2.3 Blocking
To be able to explicitly analyse the influence of automa-

tion alternatives on the quantity and quality of retrieved
elements, the participants (also referred to as human ana-
lysts) were randomly assigned to the three balanced groups.
Figure 1 shows the distribution of the participants based
on their previous experience and affiliation, as assigned to
the manual group, semi-automatic group and the automatic
group. The Sub-figures (a) and (b) show the previous ex-
perience of the participants concerning programming and
software architecture, while Sub-figure (c) shows the affili-
ation of the participants. Note that the overall experiences
and affiliations are rather well balanced in the experiment.

3.2.4 Instrumentation
The instruments discussed in the following paragraphs

were used to carry out the experiment.

Documentation about the Apache Wink Version 1.4.0:
The documentation describes the high-level conceptual fea-
tures and lists technologies and frameworks used in the im-
plementation. Besides text, a UML component diagram is
used to illustrate the components, and their inter-relationships
in parts of the architecture.

Access for the manually recovered traceability links:
The participants in the manual group were provided with the
manually identified traceability links, in which a quantity of
100% correctly elements is likely achieved at an actually cor-
rect link level of 100%. The participants in the manual group
were explicitly told that they received the entire traceability
links for Apache Wink Version 1.4.0.

Access for the semi-automatically recovered trace-
ability links: The participants in the semi-automatic group

1https://wink.apache.org/

were provided with the semi-automatically generated trace-
ability links. In particular, these links were generated based
on the traceability rules, in which a quantity of 15.6% cor-
rect elements is achieved at an actually correct link level of
100%. The participants in the semi-automatic group were
explicitly told that they received the rule-based generated
links for Apache Wink Version 1.4.0 that are incomplete.
Therefore, they needed to find the remaining set of relevant
classes (e.g., by exploring the imports and source code pack-
ages of the listed classes).

Access for the automatically recovered traceability
links: The participants in the automatic group were pro-
vided with links generated using a state-of-the-art informa-
tion retrieval (IR) methods based tool. These links were
generated using the Traceclipse tool [9]. Due to the fact
that the current IR-based traceability tools result in a low
precision and proliferation of traceability links, we decided
to keep the most important generated links. After deeper
exploration, it was perceived that the first 600 links (with
similarity threshold > 1.5) cover most of the important links
for Apache Wink Version 1.4.0, and those were therefore se-
lected for the experiment. The participants in the automatic
group were explicitly told that they received generated links.
Therefore, they need to study the source code as well, as
IR-based links might be misleading (i.e., incorrect or incom-
plete).

A questionnaire to be filled-in by the experiments’
participants: At the first page of the questionnaire, the
participants had to rate their programming experience, ar-
chitecture experience and affiliation, while the subsequent
pages contains the eight understanding activities. The ac-
tivities highlight many of the Apache Wink aspects at both
high-level and low-level of abstraction.

4. ANALYSIS

4.1 Quantity of correctly retrieved elements
To be able to test the first null hypothesis H01, the in-

fluence of three automation alternatives of traceability link
recovery on the quantity of correctly retrieved elements is
measured. In the analysis of the experiment, the Kruskal-
Wallis test [10] and pairwise Wilcoxon Rank-Sum test [11]
are used. First, the Kruskal-Wallis test is used to find out
whether a significant difference exists between the partici-
pant groups. Second, the corresponding post-hoc test, pair-
wise Wilcoxon Rank-Sum test, is used to perform the indi-
vidual comparisons between the participant groups.

Table 1 shows the results of the pairwise Wilcoxon ranksum
test for the manual, semi-automatic and automatic groups.

The table shows that the experiment provides strong evi-
dence that H01 can be rejected. This means that in our
experiment the links produced by an automated traceabil-
ity method lead to a lower quantity of correctly retrieved
elements during architecture-level understanding of the soft-
ware system than traceability links produced by the manual
and semi-automatic methods.

Manual Group vs. Semi-Automatic Group p-value = 0.109430

Semi-automatic Group vs. Automatic Group p-value = 0.000970

Manual Group vs. Automatic Group p-value = 0.000077

Factor Pairwise Wilcoxon Rank-Sum Test

Table 1: Post-hoc pairwise comparisons (after
Kruskal-Wallis test) for quantity of correctly se-
lected elements

4.2 Quantity of incorrectly retrieved elements
Hypothesis H02 was also evaluated with a pairwise Wilcoxon

rank-sum test after a Kruskal-Wallis test that indicated a
significant difference between the participant groups. The
results are shown in Table 2. The table shows that the ex-
periment provides strong evidence that H02 can be rejected.
This means that in our experiment the links produced by an
automated traceability method lead to a higher quantity of
incorrectly retrieved elements during architecture-level un-
derstanding of the software system than traceability links
produced by the manual and semi-automatic methods.

Manual Group vs. Semi-Automatic Group p-value = 0.4000000

Semi-automatic Group vs. Automatic Group p-value = 0.0000130

Manual Group vs. Automatic Group p-value = 0.0000099

Factor Pairwise Wilcoxon Rank-Sum Test

Table 2: Post-hoc pairwise comparisons (after
Kruskal-Wallis test) for quantity of incorrectly se-
lected elements

4.3 Overall quality of retrieved elements
The pairwise Wilcoxon rank-sum test is also used to evalu-

ate the Hypothesis H03 after a Kruskal-Wallis test that indi-
cated a significant difference between the participant groups.
The results are shown in Table 3. The table shows that the
experiment provide strong evidence that H03 can be rejected.
This means that in our experiment the links produced by
an automated traceability method lead to a lower overall
quality of retrieved elements during architecture-level un-
derstanding of the software system than traceability links
produced by the manual and semiautomatic methods.

Manual Group vs. Semi-Automatic Group p-value = 0.220000000

Semi-automatic Group vs. Automatic Group p-value = 0.000000110

Manual Group vs. Automatic Group p-value = 0.000000096

Factor Pairwise Wilcoxon Rank-Sum Test

Table 3: Post-hoc pairwise comparisons (after
Kruskal-Wallis test) for overall quality of selected
elements

5. THREADS TO VALIDITY AND LIMITA-
TIONS OF THE STUDY

Multiple levels of validity threats have to be considered
in the experiment. The internal validity refers to the cause
effect inferences between the treatment and the dependent

variables measured in an experiment. External validity con-
cerns the generalizability of the results for a larger popu-
lation. Construct validity focuses on the suitability of the
study design for the theory behind the experiment. Finally,
conclusion validity focuses on the relationship between treat-
ment and outcome and on the ability to draw conclusions
from this relationship.

Internal validity. The experiment was conducted in a
controlled environment in separate rooms under supervision
of at least one experimenter. Although, it is not possible
to completely prohibit misbehaviour or interaction among
participants, it is not very likely that misbehaviour or in-
teractions have had a big influence on the outcomes of the
experiment.

Another potential threat to validity is that the analysts
could have been biased towards a specific group. We tried to
exclude this threat to validity by not revealing the identity
of the participants or in which of the three groups they have
participated to the analysts. Hence, it is rather unlikely that
this threat occurred.

External validity. As discussed in Section 3.2, the experi-
ment was conducted with 74 students of the Information and
Software Technology course. Nevertheless, the results of our
previous study, where we compared the results from two con-
trolled experiments with students and professionals, imply
that the participants’ experience does not have a significant
influence on the external validity of results [6]. Therefore,
we conclude that it is likely the limited level of experience of
the participants in the experiment did not distort the study
results.

The instrumentation in the experiment might become un-
realistic or old-fashioned in future. The quantity and qual-
ity of recovered links in the experiment were representative
for state-of-the-art manual, semi-automatic and automatic
traceability tools in general. However, a threat to validity
remains that the measured cost-effects of the automation al-
ternatives of traceability link recovery cannot be 1:1 trans-
lated to all future tools.

Construct validity. The fact that only one software sys-
tem (the Apache Wink) is used in the experiment, introduces
the risk that the cause construct is under-represented. In
this experiment, we consider that the used system is repre-
sentative for large and medium-size object-oriented systems.
The threat, however, cannot totally be ignored.

Conclusion validity. A threat to validity might result
from the interpretation of the architecture-level software
understanding activities because answers of these activities
consists of a list of system elements. We mitigated this risk
by calculating the standard information retrieval metrics for
retrieved elements from all understanding activities. We ar-
gue that information retrieval measures allow analysts to
objectively evaluate the correctness of particular activities
rather than intuitive or ad-hoc human measures. This po-
tential threat is mitigated to large degree.

Finally, the violation of assumptions made by statistical
tests could distort the results of the experiment. Due to
the violation of the homogeneity assumption, the pairwise
Wilcoxon Rank-Sum test after a Kruskal-Wallis test is used
to test the significance of the found results. Note that the

results of these tests were interpreted as statistically signifi-
cant at α = 0.05 (i.e., the level of confidence is 95%). Thus,
this factor is not seen as a threat to validity.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we describe the results of a controlled exper-

iment that was conducted to empirically investigate in how
far the use of different automation alternatives for traceabil-
ity link recovery supports architecture-level understanding
of the software system. Three aspects were specifically taken
into consideration: the quantity of correctly and incorrectly
retrieved elements, and their overall quality. The results
from the semi-automatic group in the experiment reveal
a focus on a traceability-based assessment process, which
was mainly driven by exploring the imports and source code
packages of the main class(es). The answers of the automatic
group show a focus on finding out the correct traceability
links. It is hard for them to further explore the remaining
set of relevant links. This might stem from the fact that
automated approaches produce inaccurate and incomplete
traceability links, and tend to result in a low precision and
proliferation of traceability links that are difficult to manage
and understand. The participants of the manual group also
used traceability links to identify the high-level features in
the code classes and vice versa.

The evaluation of the experiment showed that the highest
quantity and quality of elements can be achieved using both
manual and semi-automatic traceability methods. Based on
our experiences and observations from various open-source
software systems, we have identified that the problems with
manual and automatic traceability can be mitigated and re-
solved with semi-automatic traceability approaches. For ex-
ample, the output produced by the semi-automatic methods
can be observed to discard the incorrect links and to cover
the remaining set of missing links. If cost and effects are
considered upfront, the semi-automatic traceability appears
to be more cost-effective solution than the other two alter-
natives of traceability link recovery.

As it is usual for empirical studies, replications in different
contexts, with different objects and participants, are good
ways to corroborate our findings. Replicating the exper-
iment with different objects (software systems) of varying
sizes and complexity, and different participants (seasoned
software architects and masters students) are part of our fu-
ture work agenda. Another direction for future work is to
investigate the automation alternatives of traceability links
at fine-grained level of granularity.

7. ACKNOWLEDGEMENTS
This work is supported by the Austrian Science Fund

(FWF), under project P24345-N23. We also thank to all
the participants for taking part in the experiment.

8. REFERENCES
[1] D. Cuddeback, A. Dekhtyar, and J. Hayes. Automated

requirements traceability: The study of human
analysts. In Proceedings of the 18th International
Requirements Engineering Conference, RE ’10, pages
231–240. IEEE.

[2] G. A. A. Cysneiros, F. Andrea, and Z. G.
Spanoudakis. Traceability approach for i* and uml
models. In Proceedings of the 2nd International

Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (SELMAS’03), 2003.

[3] A. Dekhtyar, O. Dekhtyar, J. Holden, J. Hayes,
D. Cuddeback, and W.-K. Kong. On human analyst
performance in assisted requirements tracing:
Statistical analysis. In Proceedings of the 19th
International Requirements Engineering Conference,
RE ’11, pages 111–120. IEEE.

[4] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher. A
value-based approach for understanding cost-benefit
trade-offs during automated software traceability. In
Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software
Engineering, TEFSE 2005, pages 2–7. ACM.

[5] M. A. Javed and U. Zdun. On the effects of
traceability links in differently sized software systems.
In Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering,
EASE 2015. ACM.

[6] M. A. Javed and U. Zdun. The supportive effect of
traceability links in architecture-level software
understanding: Two controlled experiments. In
Proceedings of the 11th Working IEEE/IFIP
Conference on Software Architecture, WICSA 2014,
pages 215–224. IEEE.

[7] M. A. Javed and U. Zdun. The supportive effect of
traceability links in change impact analysis for
evolving architectures – two controlled experiments. In
14th International Conference on Software Reuse,
ICSR 2015. Springer link.

[8] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,
P. W. Jones, D. C. Hoaglin, K. El Emam, and
J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions
on Software Engineering, 28(8):721–734, Aug. 2002.

[9] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk.
Traceclipse: An eclipse plug-in for traceability link
recovery and management. In Proceedings of the 6th
International Workshop on Traceability in Emerging
Forms of Software Engineering, TEFSE ’11, pages
24–30. ACM.

[10] W. H. Kruskal and W. A. Wallis. Use of Ranks in
One-Criterion Variance Analysis. volume 47, pages
583–621. American Statistical Association, 1952.

[11] H. Mann and D. Whitney. On a test of whether one of
two random variables is stochastically larger than the
other. volume 18, pages 50–60. Institute of
Mathematical Statistics, 1947.

[12] R. Oliveto, M. Gethers, D. Poshyvanyk, and
A. De Lucia. On the equivalence of information
retrieval methods for automated traceability link
recovery. In Proceedings of the 18th International
Conference on Program Comprehension, ICPC ’10,
pages 68–71. IEEE.

[13] C. Wohlin. Experimentation in Software Engineering:
An Introduction: An Introduction. The Kluwer
International Series in Software Engineering. Kluwer
Academic, 2000.

[14] X. Zou, R. Settimi, and J. Cleland-Huang. Improving
automated requirements trace retrieval: A study of
term-based enhancement methods. Empirical Softw.
Engg., 15(2):119–146, Apr. 2010.

