(c) Springer 2015
published at ICSOC 2015, pp. pp 269-284
available at http://link.springer.com/chapter/10.1007%2F978-3-662-48616-0_17

Mining and Querying Process Change
Information based on Change Trees

Georg Kaes and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science, Austria
{georg.kaes, stefanie.rinderle-ma}@univie.ac.at

Abstract Analyzing process change logs provides valuable information
about the evolution of process instances. This information can be used
to support responsible users in planning and executing future changes.
Change mining results in a change process, which represents the depen-
dencies between process changes mined from the change log. However,
when it comes to highly adaptive process settings, multiple limitations
of the change process representation can be found, i.e., based on change
processes it is not possible to provide answers to important analysis
questions such as ‘How many instances have evolved in a similar way?’
or ‘Which changes have occurred following a particular change?’. In this
paper, change trees and n-gram change trees are introduced to serve as a
basis to analyze changes in highly adaptive process instances. Moreover,
algorithms for discovering change trees and n-gram change trees from
change logs are presented. The applicability of the approach is evaluated
based on a systematic comparison with change mining, a proof-of-concept
implementation and by analyzing real-world data.

1 Introduction

Process change and evolution is a key concern in many application domains
such as care [1], manufacturing [1, 2], logistics [3], and health care [4]. The man-
agement of change information in business processes is a relevant challenge for
flexible process aware information systems (PAIS) [4]. Change logs are a central
asset to log, manage and understand how a process (instance) evolves over time
[5]. Approaches such as [6,7] advocate the exploitation of knowledge on previ-
ous changes for supporting users in applying future changes. Whereas [6] ana-
lyzes user annotations, [7] presents change mining to discover change processes
from change logs. The resulting change processes visualize possible orderings of
changes and contain information about possible dependencies between changes.
However, as it will be shown, change processes are not suitable for answering
the following analysis questions:

Q1: Which process instances have evolved in a similar way?
Q2: Which process instances have evolved in a similar way after a certain change
sequence?

(c) Springer 2015
published at ICSOC 2015, pp. pp 269-284
available at http://link.springer.com/chapter/10.1007%2F978-3-662-48616-0_17

Both questions are relevant in practical settings. Analyzing which process
instances have evolved in a similar way can be used as a starting point for pre-
dicting changes which may become necessary in the future. In the care domain,
for example, Q1 can be used to analyze patients’ treatment histories in order
to predict future changes. Imagine two patients which have received the same
treatments over a course of time, whereby the first patient’s treatment plan is
already further developed than the treatment plan of the second patient. When
the question arises which changes may be necessary for the second patient’s
treatment plan in the future, the change information from the first patient’s
treatment plan can be used as a starting point.

Q2 provides more focus by asking for, e.g., the development of a treatment
after a certain therapy was applied. This information can be used as a basis
for analyzing what usually happens after a certain set of changes has been ap-
plied. Imagine a therapy in the nursing home setting which requires the nurses to
conduct multiple other therapies afterwards, maybe because of possible compli-
cations. The question of interest is now, how many treatment plans have evolved
in which way after this certain therapy has been conducted. This information
can be used to further enhance the planning and conduction of therapies.

The question is how change information of process instances can be repre-
sented such that Q1 and Q2 can be sufficiently analyzed. As both Q1 and Q2
refer to the process instance level and as we assume that changes might be ap-
plied multiple times (think, for example, of steps such as physical therapy that
might become necessary multiple times), a suitable representation must meet
the following requirements:

R1: ability to deal with multiple occurrences of (change) instances (Q1, Q2)
R2: ability to deal with multiple occurrences of changes (Q1, Q2)
R3: ability to detect change sequences that follow a certain change pattern (Q2)

Existing approaches such as change mining do not fully meet these require-
ments. Hence, this paper introduces two new representations for information
stored in change logs'. At first, the change tree is defined in Section 3 as a
basis to meet requirements R1 and R2. In addition to the formal definition an
algorithm is presented that mines change trees from change logs. Section 4 in-
troduces the n-gram change tree as a further development of the change tree
meeting requirement R3. Based on representing change sequences as n-grams
the n-gram change tree offers a projection on those parts of the change instances
that evolved after the occurrence of the n-gram. It is shown how n-gram change
trees can be constructed from change logs. The feasibility of the change tree
and n-gram change tree is evaluated in several ways. Section 5 systematically
compares change tree and n-gram change tree to other representations such as
change processes and graphs. A proof-of-concept implementation as well as an
application of the concepts to a real-world data set from the BPI 2014 challenge
is presented in Sect. 6. Section 7 discusses related approaches and Section 8
concludes the paper and gives an overview over future work.

! Fundamental definitions of changes and change logs are presented in Section 2.

Overall, change tree and n-gram change tree are novel change log represen-
tations that meet requirements R1, R2, and R3 and hence enable the in-depth
analysis of highly dynamic process applications.

2 Change Log Definitions

The following definitions of changes and change logs are based on the recommen-
dations from literature. A change A is defined according to [5] as
A = (type, subject, paramList, S)

Typical change types as summarized in the change patterns collection [8]
are INSERT, DELETE, or MOVE. Subject refers to the task or activity to be,
e.g., inserted or deleted. The paramList specifies, for example, the context of
a change. Finally, S is the (instance) schema the change is applied to. Change
A= (INSERT, A, <B, C>, S) inserts activity A between activities B and C in
instance schema S.

Making a simplification to [5], a change log is defined as

cL =< Ay,..., 4, > (1)

Assume the following change log
cL = < Ay = (INSERT, A, <Therapy Fragment C, End>, S;1),
Ay = (INSERT, A, <Therapy Fragment C, End>, S;2),
Ao = (INSERT, B, <Therapy Fragment C, End>, Si2)>.
The implicit assumption of an ordering suggests that two times an activity
A was inserted between Therapy Fragment C and End, followed by an insertion
of activity B between Therapy Fragment C and End.
An MXML-based format for change logs was proposed in the context of
change mining [9]. Listing 1.1 shows the MXML representation for cL.

Listing 1.1. Fragment for Change Log Example in MXML

<WorkflowLog ...>
<Process id="0OR’>
<Processlnstance id="1">
<AuditTrailEntry >
<Data>
<Attribute name="CHANGE. postset”>End</Attribute>
<Attribute name="CHANGE. type”>INSERT</Attribute >
<Attribute name="CHANGE. subject”>A</Attribute>
<Attribute name="CHANGE.rationale”>Therapy Fragment A required </Attribute>
<Attribute name="CHANGE. preset”>Therapy Fragment C</Attribute>
</Data>
<WorkflowModelElement >INSERT . A</WorkflowModelElement>
<EventType>complete </EventType>
<Originator >Dr. Ford</Originator>
</AuditTrailEntry >
</ProcessInstance >
<Processlnstance id="2">
<AuditTrailEntry >
<Data>
<Attribute name="CHANGE. postset”>End</Attribute>
<Attribute name="CHANGE. type”>INSERT</Attribute>
<Attribute name="CHANGE. subject”>A</Attribute>
<Attribute name="CHANGE.rationale”>Therapy Fragment A required </Attribute>
<Attribute name="CHANGE. preset”>Therapy Fragment C</Attribute>
</Data>
<WorkflowModelElement >INSERT . A</WorkflowModelElement>
<EventType>complete </EventType>
<Originator>Dr. Ford</Originator>
</AuditTrailEntry >
<AuditTrailEntry >
<Data>

<Attribute name="CHANGE. postset”>End</Attribute>
<Attribute name="CHANGE.type” >INSERT</Attribute>
<Attribute name="CHANGE.subject”>B</Attribute>
<Attribute name="CHANGE.rationale”>Therapy Fragment B required </Attribute>
<Attribute name="CHANGE. preset”>Therapy Fragment C</Attribute>

</Data>

<WorkflowModelElement >INSERT .B</WorkflowModelElement>

<EventType>complete </EventType>

<Originator >Dr. Dent</Originator>

</AuditTrailEntry >
</ProcessInstance>
</Process>
</WorkflowLog>

Comparing Equation 1 and the MXML-based representation in Listing 2,
the latter collects changes at the instance level whereas the former refers to
the schema level. In fact, change mining aggregates the instance-specific change
information into an analysis model, i.e., the change process. Figure 1 shows the
result of applying change mining to the log in Listing 2 as produced by the
Change Miner plugin of the ProM 5.2 framework?.

INSERT.B
complete
INSERT.A
complete

Figure 1. Change Process resulting from Change Mining (Using ProM 5.2)

Process Start;

For the considerations of this paper, a process instance is characterized by
the changes that have been applied to the instance3. Hence, in the following we
only refer to change instances (instances for short).

Definition 1 (Change Instance, Change Log). Let T be a set of process
instances and C be a set of changes. For each I € 1T, Sy denotes the instance
schema, i.e., the schema the instance is currently running on, and Al ... AL
reflect the changes applied to I (Sy) so far, AJI € C,j=1,...n. Assume that
Al was applied before A§ ifi<j,i,j€{1, ..., n}. Then a change instance I is
defined as follows:

I:A - AL~ = AL

A change log cL represents a collection of change instances.

For Listing 2 the change log cL with the associated change instances turns out
as follows:

I1: Al

I2: Al — AQ

2 http://www.promtools.org/doku.php?id=prom52
Le., any other information such as (instance) schema or execution state will be
considered in future work.

3 Change Trees

In order to be able to answer Q1 and meet requirements R1 and R2 (cf. Section
1), arepresentation for change information shall represent the chronological order
of changes made to all instances in one aggregated view. Definition 2 presents
the change tree as a representation for instance change information. Intuitively
the change tree represents each of the change instances in a change log along
with the number of its occurrences along paths from the root to the leafs.

Definition 2 (Change Tree). Let cL be a change log and C be the changes
contained in cL. Then change tree T is defined as a rooted multiway tree T:=(r,V,E)
with

1. 7 := 0 is the unique root node

2.V - C x N()

3. ¥ leaf nodes v = (An) € Vin> 0

4. Y paths p from root r to node v = (A, n) € V with n > 0: p corresponds to
n change instances in cL.

To complete Def. 2, Alg. 1 sets out how new changes are added to a change
tree. Deletion or reorganization on change trees do not become necessary since
removing change A from the change tree is considered as adding a “compensat-
ing” change A'.

Algorithm 1: Adding a Change to a Change Tree

Input:
— change A (applied to instance I)
— change tree CT (which contains instance I)

Begin
currentnode = root of CT
for i = 0; i < Ilength; i++ do
L currentnode = child node where I is stored

W N R

if there is a child of currentnode containing A then
L Decrement count of currentnode

o N o o

Go to the node containing A
Increment the count of this node

9 else

10 Decrement count of currentnode

11 Create a new child node for currentnode containing A
12 Set the count of this node to 1

13 End

Let us illustrate the concept of the change tree along the example depicted in
Fig. 2. Figure 2 shows a change log (left side) and its representation as a change
tree (right side)*. Change instance I1 for example consists of two consecutive

4 For illustration reasons the change tree is annotated with the number of leafs.

applications of change A; (R2: multiple occurrence of changes). Starting from
the root node and going towards Leaf 2 in the change tree, the change instance
can be reproduced. The number Iz in Leaf 2 indicates that this change instance,
ie., Ay — Aq, occurred once in the change log. With this, the change tree offers
the possibility to count the number of multiple instance occurrences.

The Change Log

2]
]

R
b
B
]

IA;:OxI |A1:1x|IA1:0x| |Az:1x|

;
>]
H
o]
o]

Leaf 2 Leaf 5
o [
IAZ: lxl |A3: lxI IA,,: 1x|
Leaf 1 Leaf 3 Leaf 4

Figure 2. Change Log and Corresponding Change Tree

In order to illustrate how a change is added to a change tree (cf. Alg. 1)
consider Fig. 3 which depicts two scenarios based on a change instance [: A
and a given change tree (left side). In a first scenario change A; is again applied
to I such that I is updated to I : Ay — A;. As a first step [is located in the
change tree (lines 2 — 4 in Algorithm 1). As a second step we look if the currently
applied change has already been applied to some other change instance I’ with
I =T for I before applying A; the second time (lines 5-9). If such I’ exists,
the change instance is moved further up the change tree to the next level. This
is the case for I in scenario 1. Now assume in a second scenario that not A; has
been applied a second time, but Az instead. In this case, no I’ exists with I = I’
(before the new change). Thus a new branch in the change tree is created and
the change instance is moved there (change As, second and third pane).

Overall, the change tree representation covers all instances in the log as well
as maintains the number of occurrences of change instances (R1) and change
occurrences (R2). With respect to question QI as set out in the introduction,
the change tree offers the possibility to determine how many instances have
evolved in which way. This information can be important for predicting and

pla%g%%{%%r% Cs%%ggggt how a change tree can be mined from a change log.
The algorithm starts with the first set of changes which has been applied to the
process instances in the change log (line 30). For instances I1 and I2 from Fig.
2 this is Ay, for I3, 14 and I5 this is Az (the first row of changes). For each
instance in the given set of instances (for the root node this are all instances in
the change log) the change at the current position is checked. If a node containing
this change does not already exist a new node is generated. For the first iteration

T T
Step 1: Find the instance , Step 2: Apply the change | Step 3: Move the instance

,,,

Case 1

Adapting I: A, i Applying change

|A] 6><| |A2:1x||A]:3x| |A3:2x|

Resulting I: A; => Ay

77

Case 2

'
|A,:5x| |A2:1><||A1:3x| |A3:2x|3
'

Applying change

o [m o] [[m] 2]
|

Resulting I: Ay => A3

Figure 3. Adding a change to a change tree

two nodes containing A; and Ag are generated. Next we check if the change we
just created the node for is the last change for this process instance or not. If
it is, we increment the counter for this node. This means that the instance is
finished, we have reached leaf level and we have found one more instance with
the given set of changes. If it is not the last instance we add the current instance
to the set of instances for this node which will be traversed in later iterations.
The set of instances is used to generate the child nodes for our current node, and
since there is a following change, there will be a child node. Now we recursively
reuse this function to generate all child nodes for each node in our set of nodes.
After the first iteration this means that the function is called for the nodes A;
(with instances I1 and 12) and Ag (with instances I3, I4 and I5). Note that the
iterator is incremented, thus analyzing the second level of changes (instances I1,
I4 and I5: A, instances 12 and 13: As).

4 n-gram Change Trees

In order to answer Q1 (cf. Section 1), the change tree represents the chronolog-
ical order of changes made to all instances in one aggregated view. In order to
answer Q2, in addition, all occurrences of a specific change sequence must be
detected and “consolidated” in the resulting representation in order to analyze
what happened after the change sequence to the process instances of interest.

A change instance as defined in Def. 1 can also be understood as a string
and a change sequence as substring. Thus, the problem can be considered as a
transformation of the problem of n-gram models in language processing where
two strings are defined as equivalent “if they end in the same n - 1 words”
[10]. Hence, the n-gram in the change setting will reflect the change pattern
(substring) of interest and we will determine the change sequences following the
change pattern for each of its occurrences in the log.

Algorithm 2: Create a change tree from a change log

Input: Change log cL

1 //parent is the parent node for the children which are inserted

2 //set-of-instances is the set of instances which contains data for child nodes of the
current parent node

38 //iterator is the number of the change in the change log instance - iterator=2 means the
2nd change applied to the instance

4 function create-children(parent,set-of-instances,iterator)
5 set-of-nodes = new Array
6 foreach instance in set-of-instances do
7 if there is no child node with the current change for this parent then
8 node = create-node(instance;terator,parent)
9 set-of-nodes.add(node)
10 else
11 L node = the child node of the parent containing the current change
12 if instanceiterator+1 ==empty then
13 L node.count+-+4
14 else
15 | node.nextinstances.add(instance)
16 foreach node in set-of-nodes do
17 L create-children(node,node.nextinstances,iterator+1)
19 | return;
20 function create-node(label,parent)
21 node.label = label
22 node.count = 0
23 node.nextinstances = new Array
24 node.children = new Array
25 if parent then
26 | parent.children.add(node)
27 | return node
28 Begin

29 root = create-node(null,null);
30 create-children(root, change log, 0);

Assume that we are interested in the n-gram A; — As and consider the
example depicted in Fig. 4. For instance 12, the n-gram can be found at the
beginning whereas for instances 14 and I5 the n-gram occurs after Az. This
results in a change tree where the required sequence of changes can be found in
two different branches of the change tree (red nodes in the middle pane).

To see all changes following n-gram A; — As, the two subtrees contain-
ing the n-gram have to be combined, i.e. restructuring the change tree becomes
necessary. This can be achieved by using a suffix tree [11] or, more precisely, a
generalized suffix tree which contains more than one string. A suffix tree repre-
sents all suffixes for a given string. Suffix trees are commonly used for pattern
matching in various scenarios, from string matching to finding common motifs
in DNA sequences [12]. In contrast to simple implementations of the suffix tree
the algorithm proposed by Ukkonen [13] works in linear time O(n), where n
represents the length of the string.

The Change Log : The Change Tree : The Suffix Tree

13: H
; ,

3

'

'
:IAZ ox] |A].lx”A, Oxl [2:1x]
I5: (2]

| 82 1x] | 1x] [as1x]
:

!

Figure 4. Development of the n-gram Change Tree

In the generalized suffix tree in Fig. 4 the leaf node of path Root — A — 2
means that two instances have change As as their suffix. There are also two
instances which end with the changes As — A, (instance 12 and I3), but only
one instance which ends with Ay — Az (instance 14).

As depicted in Fig. 4 the suffix tree is constructed over the suffixes for all
strings which can be found in the set of change logs for process instances I1 to
I5. For n-gram A; — Ay we can now easily see the combined subtrees since all
suffixes which start with the sequence can be found directly at the root node
(marked red in Fig. 4, third pane). This information can be represented as the n-
gram change tree, depicted in the second pane of Fig. 5. The n-gram change tree
contains the n-gram in its root node. The suffixes of the n-gram , i.e., Az — A,
Ag, and Ay have produced two paths from root to leafs. Specifically, Ag — Ay
and Az are aggregated into one such path.

Complete Change Tree ' n-gram Change Tree
]

» i As: 1x |AA:1x|
[0x] [ac1x]|acox]| [az1x]:
‘

! Az 1x
=

'

'

'

'

|A2:1x| IA;:lxl IAg:lxl

Figure 5. All occurrences of the n-gram in the change tree and the n-gram change tree
The n-gram change tree can be defined similarly to the change tree with some
modifications as set out in Def. 3.

Definition 3 (n-gram Change Tree). Let cL be a change log and C be the
changes contained in cL. Then n-gram change tree nT is defined as a change
tree (cf. Definition 2) where the following conditions are different:

1* r =< Ay,...,A; > where A; € C, i = 1,...,1. is the unique root node

4% Y paths p from root r to node v = (A, n) € V with n > 0: p corresponds
to a projection of m change instances in cL starting from < Aq,....A; > as
defined in the root node.

Algorithm 1 also works for n-gram change trees with the only difference that
the change is only added to the n-gram change tree if it has been applied after
the respective n-gram has been applied to an instance.

Preparing the change logs for queries: In a complex setting such as the nursing
domain, often multiple changes are made, which are not necessarily interacting
with each other. For example, a patient has problems with his right knee, but at
the same time he is on a special diet because of certain allergies. In these cases,
we have to trim the aforementioned data structure, so only the relevant
changes are analyzed. Based on these trimmed change logs, we can analyze
the remaining logs with either the change tree or the n-gram change tree.

5 Comparison with Other Representations

This section compares the change tree and the n-gram change tree to other
representations such as the change process [9] and graph-based structures. The
basis for the evaluation is Listing 2 with an extension by multiple instances®.
Recall for the following examples that

< A; = (INSERT, A, {Therapy Fragment C, End}, S) and

Ay = (INSERT, B, {Therapy Fragment C, End}, S)>.

First consider the scenario depicted in Table 1. On the left side the change
log is depicted, in the middle the resulting change process after applying change
mining, and on the right side the change tree. Note that the resulting change
process as for example shown in Fig. 1 has been transformed into a Petri Net in
order to reason about the semantics of splits.

For the scenario in Table 1 the change process does not convey the infor-
mation that for 9 instances change A; has been applied while change As has
only been applied for two instances. Moreover, based on the OR-split, it is not
possible to see that for 3 instances first A; and then As has been applied while
for one scenario the reverse order of change occurred. The reason for this limita-
tion is that change mining abstracts from the number of instance occurrences. In
contrast to this the change tree reflects multiple occurrences of change instances,
thus fulfilling requirement R1. All possible combinations of changes as they can
be found in the change logs can be easily detected and interpreted. For example
it can be concluded that the probability of having change A; is nine times the
probability of change A,.

In the second scenario (cf. Table 2) the change process cannot correctly reflect
the difference between the scenario where only change A; has been applied, and
the two others where A; respectively As followed A;. The multiple occurrence
of the same change cannot be reflected correctly in the change process. The

® The logs can be found on http://cs.univie.ac.at/project /apes.

Table 1. Multiple Instance Occurrences

Change Log

Change Process

Change Tree

I01-109:
I10:
I11-T13:
I14:

Ay
A,
A -> A,
Ny, -> A

change tree in Table 2 removes the inaccuracy of the change process regarding
the occurrence of multiple changes at different points in time. We can now easily
see that in the given situation for each case change A; has been applied first.
In half of the cases afterwards change A, has been applied again - in the other
half change A, was used.

Table 2. Distinction of Change Occurrences

Change Log Change Process Change Tree
<—Q—'I—>Q—'.\

I1: 4 O

IZZ le'—> le uﬁmﬂ

I3: le ">'ZX2

The problem that multiple occurrences of the same change cannot be cor-
rectly reflected in the change process is aggravated in the third scenario shown
in Table 3. Here, different process scenarios still produce the same change pro-
cess. The fact that in two cases A; has been applied only once are not reflected
in the resulting change process. The corresponding change trees clearly show a
distinction between the instances where A; has been applied once or multiple
times, thus fulfilling requirement R2.

Table 3. Multiple Change Occurrences

Change Log Change Process Change Trees
I1: le

I2: A,

I3: A > Ay

or

I1: A > Ay

I2: A —> A\

Representing change logs as graph structure instead of a tree would lead to
information loss and is thus not a viable solution. Consider the tree and the graph
representation in Figure 6. The change tree on the left has been compressed to
a graph structure which requires fewer nodes. Each edge in the graph contains
information about how many instances have evolved in the respective direction,
so it can be seen that after A; on the first level four instances have evolved to
Ajz (and possibly beyond this point). As can be discovered easily in the change
tree, only one instance stopped its evolution here at A3 while 2 instances evolved
further to A; and one instance evolved to As. However, this information is lost
in the graph representation since the two Az nodes would be merged.

Change Tree Representation

Graph Representation

|A1:2x| |Az: 1x||A1:3x| |AZZ3X|

Figure 6. Comparing tree- and graph based models

6 Proof-of-Concept and Real-World Example

In order to provide experts with the possibility to use the change tree and the
n-gram change tree for their own projects, we implemented it as a ProM plugin®.
Based on MXML and XES log files one can build a change tree, select an n-gram
and generate the n-gram change tree (cf. Figure 7).

During the Business Process Intelligence (BPI) Challenge real world process
logs are analyzed from various points of view. The BPI Challenge 20147 was
based on data from different processes of Rabobank Group ICT. When analyzing
the log files we found that one of these processes is suited to be analyzed by the
change tree since its log provides a set of activities which describe what has
happened to a specific item in order to solve some problem. These activities are
the basic building blocks for our change tree: Each time a new activity is planned
for a specific item, the process of this item changes. Thus, the change tree can
be used to mine change information from these log files.

S The current version of the plugin is available as a nightly build at
http://www.promtools.org/prom6/nightly/

" http://www.win.tue.nl/bpi/2014/challenge, doi: 10.4121/uuid:c3e5d162-0cfd-4bb0-
bd82-af5268819¢35

Proll 6

Change Tree

INSERT A (1x)

red N

INSERTA (1) ‘ [INSERT B (1) |

Element:

Element:

Figure 7. Implementation of the change tree as a ProM plugin

By mining process logs with the change tree we want to find information
about what has usually happened after a certain change or a set of changes. For
example we found multiple repeating process steps after including “Standard
Change Type 88” (SCT 88) into the process. This is reflected by the change
tree depicted in Fig. 8. Specifically, the tree is a 1-gram change tree with 1-gram
“Standard Change Type 88”.

Standard Change Type 88

T

Standard Change Type 41 (2x) Standard Change Type 91 (0x) Standard Change Type 82 (0x) Standard Change Type 84 (1x)

Standard Change Type 89 (0x) Standard Change Type 89 (0x)

Standard Change Type 89 (0x) Standard Change Type 82 (2x)

Standard Change Type 82 (2x) Standard Change Type 82 (1x)

Figure 8. Process steps following Standard Change Type 88

From the 1-gram change tree it can be concluded that change “Standard
Change Type 88” was followed in most cases by a change sequence containing
“Standard Change Type 82” or “Standard Change Type 41”. Since the provided
data lacks context information it is not possible to deduce any semantical infor-
mation from the generated change tree. If more information was available one
could predict certain requirements for future tasks based on the change tree.

Think for example of knowledge about resources required for a specific task,
such as requiring a technical specialist for executing “Standard Change Type
82”. Using the n-gram change tree as a resource planning instrument it can be
predicted that after executing change “Standard Change Type 88”, with a cer-
tain probability “Standard Change Type 82" will become necessary as well and
a technical specialist will be required (even if not required for “Standard Change
Type 88” in the first place).

7 Related Work

Change of process instances and process schemas have been analyzed from var-
ious vantage points.

[7] and [9] describe the generation of a change process based on change min-
ing. This method of analyzing change logs provides valuable information, espe-
cially for process instances which are based on a common schema, for example,
on how to improve the process schema itself. However, as shown in this paper,
change mining is not suited to reflect multiple change instances and multiple
occurrences of changes. Moreover, searching for change patterns and their sub-
sequent changes is not supported.

[6] aims at supporting users when applying change operations as well. For
this, users can annotate changes with explanations and the systems exploits the
changes by their frequencies together with the annotations in order to suggest
changes to users. Change trees and n-gram change trees do not consider addi-
tional change annotations. However, in the presence of such annotations, [6] can
provide complementary information to users.

[14] focuses on analyzing process variants, which are derived from a common
process schema. The authors’ goal is to find the process schema, where the
smallest set of changes has to be applied to in order to obtain the schema of
the individual process instances. In a first scenario, the existence of a reference
process schema is assumed. This reference schema is adapted such that as few
as possible additional changes will be necessary to reflect the process instances.
In the second part, a process schema is generated solely based on the process
instances and their changes. This approach does not construct analysis models
from change logs, but it can serve as valuable complement to the approach
presented in this paper. For example, one could find the change with the smallest
set of required changes and use it as a basis for future changes.

Changes in the process instances schema cannot only be derived from the
change log, but also from the event log. [15] presents methods to detect sudden
changes in the process schema solely based on event log entries. For analyzing
the effects of a change, such a system would also be of interest: Imagine a doctor
who adds a new therapy to a patient where drug X has to be applied each
week. It is generally known that drug X cannot be given at the same time
as drug Y, which the patient currently receives. However for some reason the
administration of drug Y has not been removed from the patient’s therapy plan,
and the next time the doctor sees that he should administer drug Y he just

skips the corresponding process task. Such effects of changes, which cannot be
detected based on the change tree could be analyzed with such a system.

8 Conclusion and Future Work

This paper introduced change trees and n-gram changes together with the asso-
ciated mining algorithms in order to discover analysis models from change logs
that support users in deciding on future change application based on previously
applied changes. The benefit of change trees — specifically when compared to ex-
isting change mining results — is that they reflect multiple change instances and
multiple change occurrences. Both are characteristic to highly adaptive process
scenarios. In addition, n-gram change trees enable answers to questions such as
‘which changes happened after the occurrence of a certain change pattern?’. This
can be very interesting for users, as they do not have to search possibly com-
plex change tree structures containing all the information in a change log, but a
“projection” of the trees to the information of interest. Change trees and n-gram
change trees have been evaluated in several ways: we compared them to exist-
ing change mining techniques and graph based methods, provided a technical
implementation and an application to a real-world log.

Change trees reflect the structural aspect of change logs. Specifically, change
instances and patterns are only considered as equal if they contain exactly the
same changes. For practical settings it might be also of interest to consider ‘sim-
ilar’ change sequences and patterns, i.e., go from a structural point of view to a
more semantic one. This also might necessitate the inclusion of additional infor-
mation such as process instance execution state or other instance parameters.

Data mining techniques such as Generalized Sequential Patterns might be
useful to narrow down the number of possible change sequences to those which
are statistically significant. Especially in change logs where a large number of
different process changes appear, such an approach can significantly increase the
usability of the change tree. Additionally, the analysis of scalability and efficiency
when it comes to very large process logs is an interesting topic for future work.

Bibliography

1. Kaes, G., Rinderle-Ma, S., Vigne, R., Mangler, J.: Flexibility requirements in real-
world process scenarios and prototypical realization in the care domain. In: OTM
Workshops. (2014) 55-64

2. Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-play virtual factories.
IEEE Internet Computing 16 (2012) 78-82

3. Bassil, S., Keller, R., Kropf, P.: A workflow-oriented system architecture for the
management of container transportation. In: Business Process Management. (2004)
116-131

4. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

10.

11.

12.

13.
14.

15.

Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging,
and utilizing change logs in process management systems. In: Business Process
Management. (2006) 241-256

Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle
support in process-aware information systems. Int. J. Cooperative Inf. Syst. 18
(2009) 115-165

Giinther, C., Rinderle-Ma, S., Reichert, M., van der Aalst, W.: Using process min-
ing to learn from process changes in evolutionary systems. International Journal
of Business Process Integration and Management 3 (2008) 61-78

Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support fea-
tures - enhancing flexibility in process-aware information systems. Data & Knowl-
edge Eng. 66 (2008) 438-466

Giinther, C., Rinderle, S., Reichert, M., van Der Aalst, W.: Change mining in
adaptive process management systems. In: On the Move to Meaningful Internet
Systems. (2006) 309-326

Brown, P., Desouza, P., Mercer, R., Della Pietra, V., Lai, J.: Class-based n-gram
models of natural language. Computational linguistics 18 (1992) 467-479
McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the ACM 23 (1976) 262272

Sagot, M.F.: Spelling approximate repeated or common motifs using a suffix tree.
In: LATIN’98: Theoretical Informatics. (1998) 374-390

Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249-260
Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges,
scenarios, algorithms. DKE 70 (2011) 409 — 434

Bose, R., van der Aalst, W., Zliobaité, I., Pechenizkiy, M.: Handling concept drift
in process mining. In: Advanced Information Systems Engineering. (2011) 391-405

