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Abstract—Today’s software is getting more and more complex
and harder to understand. Models help to organize knowledge
and emphasize the structure of a software at a higher abstraction
level. While the usage of model-driven techniques is widely
adopted during software construction, it is still an open research
topic if models can also be used to make runtime phenomena
more comprehensible as well. It is not obvious which models are
suitable for manual analysis and which model elements can be
related to what type of runtime events. This paper proposes
a collection of runtime event types that can be reused for
various systems and meta-models. Based on these event types,
information can be derived which help human observers to assess
the current system state. Our approach is applied in a case study
and evaluated regarding generalisability and completeness by
relating it to two different meta-models.

Index Terms—events, examination, models, runtime

I. INTRODUCTION

Recent research utilizes models at runtime to equip systems
with additional capabilities to reflect on their own structure
and to adapt themselves in response to changing requirements
and execution environments [1]–[3], [5]–[7], [18], [20]. This
is a contrast to conventional software engineering where
models are created during software development and have no
direct connection to the resulting executable software system.
This new paradigm uses models as causally connected self-
representations of the associated system, meaning that changes
to the models are reflected within the running system, and vice
versa. The used models emphasize the properties of the system
from a problem space perspective [2].

A prominent approach to ensure a continuous connection
between the system and its models is an autonomic control
loop. The idea originates from the autonomic computing
research community to realize self-management of systems
according to desired goals [4], [16]. With models in this
control cycle, live information from the system is fed back to
these models, and updates to these models are propagated to
the system while it is up and running. While automatic adap-
tation rules are common practice in control loop approaches,
scenarios with a need of human interaction have, to the
best of our knowledge, hardly been addressed by approaches
utilizing models at runtime yet. We argue that an integration of
human activities into the model-based control loop has many
advantages in scenarios where automatic decisions are limited
or too complex, like:

• Confirmation of actions where automatic decisions are
forbidden or undesirable (e.g., when performing finan-
cial transactions or legally binding actions). Models can
provide contextual information about the situation that
needs attention by a human observer.

• Control of simulations and handling of unexpected errors
which are not known in advance (e.g., when testing soft-
ware). Models provide a condensed view of the system
and enable on-the-fly adaptation of simulation and testing
conditions.

• Reacting to events which need individual assessment
(e.g., violation of service level agreements or hardware
faults). Models can help to visualize the context and
tracing history that led to a violation and help to localize
faulty communication paths.

• Reacting to violated constraints which originate from
non-technical requirements (e.g., violation of reporting
rules). Models can highlight processes and activities that
miss the required actions.

• Manual assessment of system health by analysing vari-
ous parameters on the model level (e.g., qualitative and
quantitative runtime data, bottlenecks, or trends).

However, combining the models at runtime paradigm with
human interaction leads to non-trivial problems in terms
of traceability, extraction of situation-specific data, model
navigation and generation of the monitoring environment.
In this paper, we focus mainly on supporting the extraction
of situation-specific data and present a meta-model-agnostic,
reusable collection of runtime event types which serves as a
basis for applying aggregation mechanisms to enable humans
the manual assessment of the system status.

This paper is organized as follows: In Section II we give
an overview of our approach to support human interactions
at runtime. In Section III we describe the approach details,
mainly centering around the idea of model-based runtime event
types. Section IV discusses the application of our approach in
a case study. In Section V we analyse our proposed event types
regarding generalisability and completeness. In Section VI we
discuss our results, and in Section VII we compare to related
work. We conclude in Section VIII.

II. APPROACH OVERVIEW

Integrating runtime models into the control loop enables
human observers to monitor system properties like error occur-
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Figure 1. Development steps when performing model-based human interaction

rences, constraint violations, usage statistics or performance
characteristics on the model-level. Models serve as both an
abstract view of the system and dashboard for aggregating data
and controlling the analysis, which makes them better targets
for annotations than the actual source code. As an example, a
human observer might decide to measure the performance of a
software component and thus annotate the desired component
in the respective UML component diagram. Performing an
equivalent monitoring procedure on the code-level would
require to annotate every sub-part of the component by hand,
meaning in most cases that many different implementation
artefacts must be altered.

However, there is no straight mapping between the recorded
events of the running system and the used runtime models,
so our approach presents a collection of runtime event types
which are independent of concrete meta-models and running
systems. These event types serve as a target for building
runtime metrics and should guide researchers to implement
mappings between runtime events and custom meta-models.
To make our approach work, however, we have to make some
assumptions about the used (meta-)models and the observed
systems:

• Models must exist before the analysis, either by manual
creation or by reverse engineering.

• The used meta-model must describe structural and be-
havioural aspects of the running system. We use UML
throughout the paper, but demonstrate the independence
of concrete meta-models in Section V.

• The source code of the observed system must be avail-
able. While this is not strictly necessary, in our Java-
based prototype, we did not cover black-box approaches
yet which require techniques like load time weaving [17]
to unobtrusively extract runtime data.

A detailed view of the model-based control loop realized in
our approach is depicted in Figure 1. Elements of interest
are annotated directly in the models of the system under
observation. Based on the annotations and their parameters,
a generator component automatically generates software arte-

facts with multiple probes which provide events to extract
relevant information from the system. The generation process
also configures a monitor and an analysis component of the
observing system. The monitoring component is configured
to listen for events of the running system while the analysis
component is configured to filter and aggregate data according
to the model annotations. The benefit of such a decoupling
is that the monitoring and analysis components can also be
configured by rules that do not result from annotations, but
from external data sources.

In case of constraint violations, the analysis component
refreshes the user views that contain the associated model
elements to highlight the incident. Thus, the monitor and the
analysis components are key parts in our control loop because
they are responsible for receiving and analysing information
gathered at runtime. They correspond to the monitoring and
analysis control loop phases, respectively.

In the running system, the generated software artefacts
and their probes are installed on-the-fly while the system is
executing. This is realized using aspect-oriented techniques as
described in Section III-C. Changes might include detaching
of previous probes. The probes enable the causal connection
between the model annotations and the installed monitoring
environment. The newly installed probes then produce runtime
information which is stored in a file or a database for further
analysis by the monitor that performs the system observation.

The gathered information consists of runtime events which
occur if specific conditions are met. Events and their con-
ditions depend on the type of the annotated model element,
the annotation itself and the parameters of the annotation. For
example, if a user wants to observe the average runtime of a
modelled behaviour, the type of model element would be Be-
haviour, the annotation type would be an average annotation
and the parameter of the annotation would be an expression
which measures the runtime of a single behaviour execution.
Figure 2 shows the model annotation for this example to
measure the average runtime of a sorting behaviour. The
resulting probe triggers an event if the annotated behaviour
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executes, with the condition that the execution of the behaviour
completes without errors. The average runtime is calculated
by the analyser by taking the successfully occurred events
into account that have been recorded by the monitor. Similar
to the average runtime, other metrics can be assigned to
model elements whereas every model element provides a set
of runtime event types from which metrics can be calculated
or on top of which other analyses can be performed.

Overall, our approach utilizes the causal connection of
the models at runtime paradigm to interactively analyse and
adapt a running system while minimizing human interventions
concerning technical details below the model level. To achieve
this, it is necessary to identify the types of runtime events
that can be captured by generated probes and how they
can be related to model elements they originate from. This
paper focusses on the identification of these event types, their
relations to model elements, and provides a generic approach
and corresponding prototype implementation to utilize them
for metric calculations and other automatic analyses.

III. APPROACH DETAILS

A. Relating Meta-Models and Event Types

Figure 3 shows the relationship between models, events
and metrics as well as between their respective meta-level
descriptions. Our proposed runtime event types can be traced
to meta-model elements describing structural and behavioural
features of a system. Based on these event types, a user can
specify metrics to define measurements of interest. Reusability
is supported as our event types are defined independently of
concrete meta-models describing the structure and behaviour
of a system. Furthermore, metrics and other analyses are based
on event types, which in turn are independent of a concrete
meta-model, which makes the metrics/analyses meta-model-
agnostic as well. The application of our approach to arbitrary
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Figure 3. Relationships between models, events and metrics

meta-models requires a developer to enrich his or her code (or
code generator) with events that conform to our proposed event
types and contain tracing information to model elements they
originate from. As a result, our proposed runtime event types
serve as guidance to implement mappings between runtime
events and custom meta-models.

Please note that we use metric calculation in the remainder
of this paper as an exemplary type of analysis; however,
other analyses like forecasting or recommendations can be
implemented in a similar way.

B. Categorizing Model Elements based on their Traceable
Runtime Event Types

A runtime event is the most basic unit which enables the
extraction of information from a running system. We define
a runtime event as an occurrence at a specific point in time
within a specific context while a system is executing. A
runtime event thus consists of a time stamp and arbitrary data
that represents the context. In object-oriented programming
terms, this data is often called event arguments and usually
contains information about the source of the event and data
describing the impact on the running system, for example old
and new values of properties when dealing with mutable state.
A concrete example would be a change in the balance of a
bank account: The account object is the source of the event
while the old and new values of the balance field represent
the changed state.

Such basic runtime information enables analysis of system
activities over time, but it is not directly linked to the model
elements which are responsible for the event or its context. To
provide a human with adequate runtime information on the
model level, in the majority of cases a set of runtime events
that can be traced and related to one or more model elements
during software execution is needed. Since different model
elements comply with different meta-models, our approach
aims to categorize model elements according to the runtime
events they can possibly be linked to. This allows us to abstract
from various meta-models and look at the model elements
from a runtime analysis perspective.

In our research, we have first analysed the UML 2.5
meta-model for different kinds of meta-model elements and
event types that are typically related to those meta-model
elements. We chose UML because it is a complete and de-facto
standard for modelling both structural and behavioural features
of software systems. In addition, UML provides modelling
means for both high-level models (e.g., use case diagrams)
and low-level models (e.g., sequence diagrams) which makes
it suitable for monitoring runtime behaviour on various levels
of abstraction.

Regarding the event types, our starting point of research
were prominent approaches for handling cross-cutting con-
cerns like logging and tracing. We analysed aspect-oriented
frameworks regarding their abilities to intercept execution
points in the implementation code to extract runtime infor-
mation. Most frameworks allow to set hooks before, after and
around operation executions to extract data, add custom logic



Table I
CATEGORIZATION OF MODEL ELEMENTS ACCORDING TO THEIR

TRACEABLE RUNTIME EVENT TYPES

Category Traceable event types Event arguments

Container Derived from children Derived from children

Part-whole
relationship

Change in multiplicity Added/removed objects

Data
exchange

Data sent/received Sender/receiver,
transmitted data

Mutable
state

Value changed Old value, new value

Behaviour Started, ended, error Input/output parameters,
error message

Physical
entity

Environmental change Old and new environ-
ment configuration

Concrete
state

State occurred Participating objects

Testable
condition

Condition does (not)
hold

Constrained element

Instantiable
element

Instance created,
instance destroyed

Created instance,
destroyed instance

or alter existing behaviour. We combined these abilities with
all the elements of the UML meta-model to identify possibly
traceable event types for each of them. Examples would be
events before entering a state in a state machine diagram or
after sending a message in a sequence diagram. The combi-
nation of the de-facto standard modelling language UML and
the interception abilities of modern logging approaches gave
us confidence that our identified event types are both relevant
and appropriate.

In the next step, we have abstracted from the concrete meta-
model elements and devised the categories and abstract event
types discussed in this section, in order to make our approach
applicable to other meta-models. In Section V, we evaluate
our categorization and show that we are able to apply it to
two other existing meta-models as well, which indicates that
the categorization shows a high degree of completeness and is
generalisable. Table I shows our proposed categories with their
typical runtime event types and arguments. In the following we
describe the categories and give examples of typical runtime
events and event arguments that can be associated with them.

Containers serve as a mechanism to build hierarchies where
child elements can propagate runtime events to their parents.
These hierarchies allow to cluster and capture multiple runtime
events by annotating single model elements. Thus, the set of
runtime event types for an element in this category is the
union of all runtime event types of its children. Formulae
can be computed with the event types of the children, but
the annotation needs to specify the concrete event type that
is actually captured (e.g., all data received events within a
package). Examples of containers in UML are components
and packages.

A part-whole relationship indicates that one entity is com-
posed of one or more other entities, its parts. It is characterized
by multiplicities that indicate how many entities are related in
the relationship. As a consequence, a typical runtime event
type for such relationships is the change of the number of
entities that are participating in the relationship. The associated
event arguments usually hold the added and/or removed ele-
ments. An example would be a list where elements are added
and removed at runtime. In UML, part-whole relationships are
composition and aggregation.

A model element that represents a data exchange between
entities can either be a communication interface or a connec-
tion. Both forms can be targets for model-based analysis, typi-
cally by taking time, rate and size of exchanged messages into
consideration. Associated runtime events are the dispatch and
reception of data, whereas the event arguments are the sender,
the receiver and the transmitted data. UML-based examples of
data exchange elements are ports, pins and connectors.

Model elements that represent mutable state typically pro-
vide a runtime event if the associated value changes at runtime.
The event arguments then contain both the old and the new
value. Properties and value lifelines are examples of model
elements that represent mutable state in UML.

Model elements that represent behaviour are characterized
by input parameters and output parameters. An execution
of the involved actions may lead to an error and thus to a
premature termination of the behaviour. As a result, possible
runtime events for behaviours are typically start, end and error.
The event arguments are input parameters, output parameters
and error messages, respectively. UML-based examples of
behaviour are operations, receptions and actions.

Monitoring of environmental changes can be achieved
through model elements which reflect physical entities like
deployment artefacts and network connections. Associated
runtime events are usually changes of the environmental
set-up, dispatch and reception of data, and errors in case
of transmission failures. Event arguments for environmental
changes are the old and the new hardware configuration. The
arguments for exchanging data are the same as for exchanging
local messages. In UML, physical entities are represented by
nodes and communication paths.

Modelling concrete (partial) states of a system enables
to capture specific object collaborations and thus allows to
monitor more complex situations. An example of an adequate
runtime event is the occurrence of a modelled situation that
matches the state of the system under observation. Exem-
plary event arguments are the concrete instances that are
participating in the modelled state. UML-based examples of
modelling concrete states are instance specifications, slots and
links (instances of associations).

Model elements that represents conditions are usually tex-
tual and are attached to another element. Monitoring condi-
tions enable the detection of violations if conditions describing
system constraints do not hold. Typically, a runtime event
occurs if the condition holds or does not hold, and its argument



Table II
APPLICATION OF OUR PROPOSED CLASSIFICATION TO THE UML 2.5 META-MODEL

Category UML 2.5 counterparts

Container Component, Node, Class, Interface, Package, Partition, CombinedFragment, Region, UseCase

Part-whole relationship Composition, Aggregation

Data exchange Interface: Port, ActivityParameterNode, Pin, ExpansionNode, ControlNode
Connection: Generalization, Connector, Dependency, Import, ActivityEdge, Message, Extend, Communi-
cationPath

Mutable state Property, State/Condition Timeline, Value Lifeline, CentralBufferNode, DataStoreNode

Behaviour Behaviour, Operation, Reception, Action, ExecutionSpecification, InteractionUse, State, Transition

Physical entity Node, CommunicationPath

Concrete state InstanceSpecification, Slot, Link (instance of Association)

Testable condition Constraint, Invariant, Continuation

Instantiable element Class, Interface

is the constrained element. Examples of UML elements for
conditions are constraints, invariants and continuations.

From a monitoring perspective, an important observation is
the consumption of system resources, e.g., system memory.
Intense memory allocation is caused by instantiating a large
amount of objects. As a consequence, a model element that
represents an instantiable entity can be related to runtime
events that occur if the modelled entity is created or destroyed.
Event arguments are the created instance or the instance to be
destroyed, respectively. UML-based examples of instantiable
entities are classes and interfaces. Note that although an inter-
face cannot be instantiated directly, from a runtime analysis
point of view it is still desirable to analyse the memory
consumption of instances that implement a specific interface.

To demonstrate the adequateness of our categorization,
Table II assigns elements of the UML 2.5 meta-model to
the associated categories. Note that the UseCase element is
assigned to the container category since it serves as logical
parent for multiple realizing classifiers. Also note that the
elements Generalization, Dependency, Import and Extend ap-
pear to have nothing to do with data exchange, since they
model static relationships between entities. Nevertheless, from
a runtime analysis point of view, these elements also represent
communication, namely whenever an object from the client
calls functionality from the supplier. CentralBufferNode and
DataStoreNode represent mutable state if the changeable val-
ues are defined by their stored elements. State and Transition
fall in the category of behaviour since they have optional
behaviour attached to them. Note that Class is not only an
instantiable element, but also a container, since it can contain
other elements like subclasses and interfaces. Runtime events
are propagated from such subclasses and interfaces to their
parent element.

We presented a meta-model-agnostic categorization of
model elements and an associated collection of runtime event
types which can typically be triggered for the related model
elements by probes that are installed in a running system.

These events can be traced back to the model elements they
originate from and consist of a time stamp and arbitrary data
that describe the context. Thus, it is possible for a human
user to analyse runtime phenomena on the model level and
compose events (that is, create formulae using multiple event
types and metrics) to build more sophisticated runtime metrics
to reason about the system state.

C. Implementation Aspects

It is necessary that runtime events can be linked to the
annotated model elements they originate from. One way of
achieving this is to embed IDs into the probes which cor-
respond to specific model annotations (and thus, to specific
model elements). If a probe triggers an event, the IDs are
integrated into the event arguments and can be associated with
the correct model elements by the analyser component of the
observing system (recall Figure 1)

Dynamic attaching and detaching of probes is achieved by
extending aspect-oriented programming mechanisms for that
purpose. More specifically, we developed a custom extension
of the AspectJ1 parser to extract a so-called pointcut expres-
sion from an aspect and transform it into a tree structure
which is suitable for runtime interpretation. Such a tree is
similar to the abstract syntax tree of the pointcut expression
and consists of operators (internal nodes) and atomic sub-
pointcuts (leaf nodes) which can be evaluated for a given
method execution at runtime. If the whole tree is evaluated
to true, the associated advice is executed and performs the
logging activities which can be traced back to associated
model elements. The extension is needed because there is, to
the best of our knowledge, no native way of AspectJ to swap
aspects at runtime and load-time weaving does not support the
replacement of already woven aspects.

Note that the monitoring aspect generated from a model
annotation is completely independent from the used adaptation

1https://eclipse.org/aspectj/
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Figure 4. Measurements through model annotations which reveal a high number of database requests. Transfer time is measured in milliseconds.

mechanism, meaning that the same generated code can be used
either for compile-time or runtime weaving of pointcuts. How-
ever, a mechanism is needed which intercepts all control flow
activities and matches them to the currently active aspects. We
achieved this by a separate aspect that intercepts all method
calls and interprets currently active aspects to check if one of
them matches the current execution context. Intercepting all
method calls and shifting the pointcut matching logic from
compile-time to runtime involves a performance overhead
which depends on the number of currently active aspects.

IV. CASE STUDY

To study the applicability and the relevance of the event
types, we have applied our approach in a case study which
was originally implemented without using model-driven tech-
niques. The case study is on a small system implementing
a wireless scanner. We choose this system because of our
familiarity with it and to see whether the data provided by our
proposed event types helps to locate and improve a number
of problems of the initial implementation. The system was
realized independently by three developers for half a year and
was originally not intended to serve as unit of analysis for
this case study. We applied our approach to multiple models
extracted from its documentation to find the root causes of
existing performance problems.

In the wireless scanner project, mobile devices scan their
environment for other devices and transmit their scan results to
a central database. Based on the collected data, the system then
allows arbitrary clients to query device information by using
filter parameters like locations, time stamps, transmission
types and device properties. We realized the system by using
a three-tier architecture as depicted in Figure 4. The system
consists of a mobile Android application for sending and
querying scans, a server which acts as interface between the
mobile application and the backend, and a MySQL database
as persistent data storage. All parts are written entirely in Java,
using 10,064 lines of code in total. Modelling the system was
done in Eclipse with Obeo UML Designer2 and Papyrus3. We
inserted 875,000 test scan entries into the database (approx-
imately the number of households in Vienna) and noticed a

2http://marketplace.obeonetwork.com/module/uml
3http://www.eclipse.org/papyrus/

disturbing latency when requesting scans within a range of 1.5
kilometres around the University of Vienna.

We applied our annotation-based approach as shown in
Figure 4 to track down the root cause of the latency problem.
The first obvious action is to examine the network connec-
tions between the involved subsystems. According to our
categorization in Table I, the model elements representing the
network connections are data exchange relationships where the
associated event type captures data transmission and reception.
The annotation:

http : @Average(e => e.transferT ime)

indicates that we want to calculate the average data transfer
time from all transmission events that be traced to the anno-
tated communication path. The term http is simply a name
other metrics can refer to, while transferTime is a special
keyword that instructs the code generator to capture send and
receive events and calculate their differences. As a conse-
quence, the concrete event type of e (“Data sent/received”,
recall Table I) can be omitted since it is inferable from the
monitoring expression. The term @Average indicates that the
average of all captured data transfer times should be calcu-
lated, although specific time windows can also be specified
by utilizing the aforementioned time stamps which are part
of every event (they are accessible via a special property of
e). In a similar fashion, the annotation named jdbc depicted in
Figure 4 counts all transmission events between the application
and the database server.

The annotations produce aspects that are dynamically inter-
preted and are responsible for emitting the transmission and
reception events of data. The results are directly visible in
the models, and the annotation of the backend communication
path revealed a surprisingly high number of database queries
for a single scan request.

We assumed that there could be a problem of using sub-
queries in a loop instead of making a single join over con-
nected database tables. We wanted to assure that the number
of sub-queries is indeed responsible for the disturbing latency
experienced by the client. We decided to apply our annotation-
based approach to a model describing the query of scans
in more detail. Figure 5 shows an activity diagram which
describes the process of querying scans. The diagram shows
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Figure 5. Annotations in the activity diagram describing a query of wireless scans. Average runtime is measured in milliseconds.

that there are two process paths: One for faulty and one
for correct requests. We annotated both paths of the activity
to check if there are errors and to measure the processing
time of performing the database actions of a client request.
This could be done since the annotated model elements are
behaviours, and according to our categorization in Table I, the
associated event type provides information about the start, end
and possible errors of the operation. Note that the keywords
start and end indicate that it must be a measurement of a
behaviour, so the concrete event type of e can be omitted.
Figure 5 shows that the database actions require a processing
time of around 36 seconds, which is unacceptable from the
client’s point of view.

We checked if there are any database requests inside loops,
which is easy to do since Eclipse allows to quickly jump to
code statements that were woven by the generated monitor
aspects. We identified a defective code snippet by navigating
through the woven statements where capabilities of a WLAN
access point were requested in a sub-query for every access
point in the result set of a previous query. After replacing the
snippet with a join operation, the result of the count annotation
in Figure 4 was reduced from 1957 to three. We came to the
decision that even three requests were too much.

Since we have three types of scans (WiFi Infrastructure,
WiFi Peer-To-Peer, Bluetooth), we assumed that the system
was falsely requesting all scan types instead of the requested
one only. We identified a defective code snippet which possibly
resulted from a copy-paste-operation from a method that
requests all three scan types. However, we were able to locate
the error only by analysing the implementation code directly.
After fixing all the problems, we were able to reduce the
original processing time of around 36 seconds for performing
a query by half (while the monitor aspects were still woven).
Although this is a significant improvement and we consider
the case study as success, further adaptations are required to
enhance the client experience, for example by limiting the
amount of requested information by introducing paging.

As a summary, our proposed event types provided infor-
mation that enabled us to successfully narrow down the root
cause of a performance problem by stepwise application of
model annotations to gain insight into the behaviour of the

running system. The combination of model-based metrics and
Eclipse-based navigation capabilities (that is, the navigation
from aspects to woven code fragments) allowed us to quickly
search for defective code snippets. After fixing the sub-query
issue, our approach revealed a masked error of requesting
excessive data from the database which we were able to fix
without the help of navigation support.

V. EVALUATION

As described in Section III, we extracted the categorization
of model elements according to their traceable runtime event
types from the UML 2.5 meta-model. To evaluate the general-
isability and completeness of our proposed categorization, we
have mapped the categorization to two other existing meta-
models. Many meta-models that can describe both structural
and behavioural aspects are closely related to UML them-
selves (e.g., fUML, Ecore, SysML, SoaML), which makes
a comparison rather trivial, and thus not too useful for this
evaluation. Instead, we decided to compare our categorization
against meta-models which are capable of describing system
parts, but differ in their pursued modelling goal: BPMN4 and
FAD [22]. We conducted the evaluation by mapping meta-
model elements of the BPMN and FAD specifications to our
proposed categorization.

By applying our categorization to the BPMN meta-model,
we can show that our approach is also able to relate runtime
event types to models at a higher abstraction level (that is, busi-
ness processes). FAD is an analysis and design methodology
for systems that follow the functional programming paradigm.
By applying our categorization to the FAD meta-model, we
can show that event types following our categorization are
conceptually independent from the underlying programming
paradigm that realizes the actual implementation.

The results of our mappings are shown in Table III. Un-
surprisingly, because of its process-oriented nature, BPMN
contains various model elements that represent behaviour,
container for grouping process participants and data exchange
for communication activities between tasks. Since BPMN
describes a system at a rather high abstraction level, it follows

4http://www.omg.org/spec/BPMN/



Table III
APPLICATION OF OUR PROPOSED CATEGORIZATION TO THE BPMN AND FAD META-MODELS

Category BPMN model element counterparts FAD model element counterparts

Behaviour Activity, Choreography Task, (Sub-)Process, Sub-Choreography, Task,
Transaction

Curried Function, Function

Concrete state None Partial Application, Type (Named Value)

Container Activity, Group, Lane, Pool, (Sub-)Process, Sub-Choreography,
Transaction

Exclusive Signature (Association), File, Module, Permissive Signature
(Association), Project, Subsystem

Data exchange
Choreography Task, Event (Cancel, Compensation, Error, Escalation,
Link, Multiple, Parallel Multiple, Signal, Timer), Fork, Join, Gateway,
Message, Message Flow, Sequence Flow

File Use Relationship, Function Use Relationship, Module Use
Relationship, Project Use Relationship, Signature Inheritance
Relationship, Subsystem Use Relationship, Type Use Relationship

Instantiable element Data Object, Event, Message Function Argument, Function Result, Permissive Signature, Type

Mutable state Data Object None

Part-whole relationship None Containment Relationship, Partition Relationship

Physical entity None File, Module

Testable condition Branching Point, Decision, Event (Conditional) Function Use Relationship

quite directly that it contains no model elements for physical
entities. Interestingly, we could not find any model element
which represents part-whole relationship in a sense that it
supports the event type of adding and removing parts at
runtime (recall Table I). Furthermore, we could not identify
model elements that represent a concrete state, like the actual
value of a data object for a given situation. While activities and
processes serve as containers, they could also be categorized
as instantiable elements since a process or activity can be
executed multiple times, usually by an execution engine.

Regarding FAD, the underlying functional programming
paradigm avoids mutable state as much as possible. This is
also reflected in the meta-model which contains no model el-
ement that represents mutable state. On the contrary, the FAD
meta-model provides various model elements for composing
functions and types, the two central concepts of functional
programming. Furthermore, in alignment with the functional
programming paradigm, the only two elements that represent
behaviour are functions and curried functions.

Although we extracted our proposed categorization of model
elements and event types from UML, we were able to apply
it to all elements of two other meta-models which are quite
different in their modelling goals. This gives us confidence
that the categorization has a high degree of relevance, gen-
eralisability and completeness and that the proposed event
types help to understand what kind of runtime events can be
associated with what kind of model elements.

VI. DISCUSSION

In our approach we extracted the necessary information
from the UML meta-model. Other meta-models could have
led to a different categorization. We argue that, since UML is
the de-facto standard for modelling structural and behavioural
features of a system, the choice of UML led to the most
complete categorization because the meta-model provides a
mixture of highly abstract and more low-level models of
many different types. Furthermore, we mitigated the risk of
creating an incomplete categorization by applying it to all

model elements of two other meta-models in Section V. We
argue that additional meta-models would not significantly
contribute to the completeness of our categorization, since
many standardized meta-models are either closely related to
UML or not suited for analysing structural and behavioural
properties of a running system (e.g., entity-relationship mod-
els). Regarding the event types, we argue that a high degree of
completeness is given since they are inspired by interception
operations of well-established, orthogonally working aspect-
oriented programming approaches.

In Section IV, we utilized parts of our proposed event types
in a case study and were able to detect the root cause of a
performance problem. Regarding measurement accuracy, the
performed observations may be flawed due to incorrect aspect
generation and environment-specific deviations. We mitigated
such risks by explicitly excluding some paths in the control
flow to prevent flaws in the measurements. For example,
recursive calls must not be measured if the overall processing
time of that method is desired. This makes the formulation
of advice more complex, error-prone and thus less suited
for writing them by hand. Regarding environment-specific
deviations, some subcomponents cannot be influenced directly,
like network buffers of caching mechanisms of database sys-
tems. Furthermore, exact measurements require an integration
of distributed clocks which is currently not realized in our
prototype.

Regarding applicability, our approach assumes that models
of the monitored parts exist, which is rarely the case, but
various reverse engineering tools exist to generate initial
models which can then be refined. As demonstrated in our
case study (see Section IV), modelling the most important
parts of a system is an adequate basis to locate various forms
of unexpected runtime behaviour. However, to exploit the full
potential of our approach, model-based metrics must be com-
plemented with model navigation and tracing capabilities to
seamlessly navigate between models and their implementation.
Nevertheless, some problems still remain hard to detect, like



unexpected runtime behaviour that results from unmodified
copy-paste operations. Narrowing down the root cause of a
problem needs some practice, since some annotations may lay
a false trail (e.g., measuring the average transfer time would
not have revealed the excessive query count in Figure 4).

More specifically, our approach requires that traceability
links and a fair degree of cohesion are ensured for the
modelled software components. Otherwise, our approach is
limited in a sense that monitoring results are either inaccurate
or completely impossible. A bad example would be a use case
that is traceable to its realizing classifiers, but these classifiers
are implemented with low cohesion, meaning that they are
implemented poorly with respect to the separation of concerns
principle. If this is the case, monitoring the realizing classifiers
would be flawed since some parts of their control flows do not
belong to the use case of interest. Such a problem can only be
compensated by an intelligent code generator or by refactoring
actions to ensure high cohesion.

Our approach supports models which are close to the
problem space as well as models that contain more technical
details. For problem space-oriented models, our approach re-
quires tracing information to either models of lower abstraction
or directly to associated code fragments. A code generator can
exploit this information and ensure that the generated code
emits events that can be traced back to the corresponding
model elements. The models themselves must be somehow
related to structural or behavioural properties of the observed
system to narrow down unexpected behaviour and eventually
find defective implementation artefacts.

Regarding portability, the event types provide guidance to
implement monitoring for other meta-models. An alternative
would be a model-to-model transformation which converts a
meta-model to another one for which a code generator already
exists. This requires additional trace links between the source
and the target meta-model for reasoning on the source model.

An alternative to our proposed model-based approach would
be dynamic code analysis. We argue, however, that a strict
examination of measurements on the code level provides
not necessarily enough aggregation mechanisms to make as-
sumptions of whole system parts. An example would be the
measurement of a use case (e.g., the average time spent for a
specific use case) where a direct counterpart does not exist in
the implementation code, hence dynamic code analysis is not
enough for such scenarios. However, an integration of dynamic
code analysis approaches into our approach may provide more
runtime data to reason about.

In its current form, our approach does not provide sophis-
ticated mechanisms to detect deviations between the running
system (the probes) and its causally connected models (the
annotations). Such a synchronization problem occurs if an
annotation provides monitoring code for a component which
has already crashed. The attached probes would then simply
yield no runtime data instead of communicating a possible
error. Another form of deviation is introduced if the system
structure changes, which means that new probes must be
generated accordingly. Such form of automation is currently

not implemented. As a result, a current limitation is consis-
tency, and more runtime checks are needed in the future when
attaching new probes to a running system.

VII. RELATED WORK

The tool SM@RT [23], [24] is similar to our approach and
maintains the causal connection between the system and its
architecture model in a bidirectional way. This is achieved by
creating a runtime architecture infrastructure [20], [21] without
modifying the system under observation by using QVT model
transformations. The used models are application-specific with
no reusability in mind, while our approach aims to present
a reusable collection of event types and needs no additional
models than the ones resulting from the software design phase.

Holmes et al. [12]–[14] analyse monitored information to
check compliance to regulations by using models as first-class
citizens. Models are stored in a repository and are accessed
via Web services at runtime. Multiple versions of models
can be stored, and old versions can be used until they are
migrated or not referenced any more. Our approach is similar,
but supports not only compliance checks but also custom
monitoring situations.

Regarding traceability, an interesting approach is proposed
by Johanndeiter et al. [15] where business process modelling
tools serve as dashboards with tracing capabilities. These dash-
boards contain business process type models which themselves
contain aggregated information about their corresponding pro-
cess instances, thus serving as high-level views of a process
with drill down functionality to specific instances of interest.
Our approach has a similar objective, but on a more fine-
grained level: The business process models in the approach by
Johanndeiter et al. tackle long-living and business level (i.e.,
high-level) processes, while we focus on models that provide
views for short-living activities and operations with more
technical detail (like UML). While this seems considerably
easier from an abstraction perspective (since it is closer to
the solution space), it is challenging to use high-level models
alone to detect unexpected runtime behaviour or make fine-
grained adaptations to monitoring properties. To this end, our
approach provides a language that helps to define monitoring
properties directly in structural and behavioural models.

Model-based monitoring can also be achieved by using
Triple Graph Grammars (TGG) [8]–[10] to support architec-
tural monitoring. In this approach, a low-level source model
is causally connected to one or more high-level target models.
Synchronization is declared by TGG rules at the meta-model
level for both source and target models. A similar approach
is proposed by Cheng et al. [3] and Garlan et al. [6] where a
low-level runtime layer observes the system, a model layer in-
terprets recorded data with analysable architecture models, and
a task layer determines new requirements. These approaches
give only vague indications how a human operator can in-
fluence the monitoring properties and what commonalities
regarding events can be utilized across multiple applications.

Nordstrom et al. [19] introduce a fault localization mech-
anism in workflow models to cope with unforeseen error



occurrences. In case of an error, a simulation algorithm
determines future states of the workflow assuming no external
intervention or future faults. Jobs within the workflow model
are annotated as desired or undesired using a metric for
determining the relative desirability of a partial workflow.
Similar to the approach of Johanndeiter et al. [15] above,
our approach operates on a more fine-grained level, focussing
on models with more technical detail, which is inevitable to
realize fine-grained adaptations to monitoring properties.

Regarding model-based human intervention, Hamann et al.
[11] present an approach where a detailed platform aligned
model is extracted from the source code and subsequently
reduced by the user by selecting central classes and associa-
tions. While this also requires human interaction, our approach
focusses the examination of runtime phenomena by developing
a reusable collection of event types from which custom metrics
can be derived.

VIII. CONCLUSIONS

In this paper we presented a meta-model-agnostic, reusable
collection of runtime event types, their mapping to model
elements (of UML and other meta-models), and an approach
and corresponding prototype implementation for using these
concepts for supporting humans in the model-based exami-
nation of runtime phenomena. Our approach provides human
users with an adequate basis for further system analysis. Our
interactive approach allows humans to observe and manipulate
monitoring properties on the model level. We applied our
approach to a case study where we were able to find the root
cause of a performance problem. Our prototype enabled us
to specify monitoring properties via model annotations from
which a code generator was able to generate code that con-
tained the software probes responsible for emitting the needed
events. In addition, we evaluated the relevance, generalisability
and completeness of our categorization by applying it to two
quite different meta-models, and discussed its limitations in
terms of applicability and measurement accuracy.

As future work we plan to extend our approach so that
adaptation rules can be defined based on the measured run-
time metrics. Furthermore, we plan to conduct an experiment
with human participants to analyse if our proposed model-
based event types and metrics enable to make more precise
statements about the behaviour of a running system.
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