
Counterexample Analysis for Supporting
Containment Checking of Business Process Models

Faiz UL Muram, Huy Tran, Uwe Zdun

Software Architecture Group
University of Vienna, Austria.

faiz.ulmuram|huy.tran|uwe.zdun@univie.ac.at

Abstract. During the development of a process-aware information system, there
might exist multiple process models that describe the system’s behavior at different
levels of abstraction. Thus, containment checking is important for detecting unwanted
deviations of process models to ensure a refined low-level model still conforms to
its high-level counterpart. In our earlier work, we have interpreted the containment
checking problem as a model checking problem and leveraged existing powerful model
checkers for this purpose. The model checker will detect any discordance of the input
models and yield corresponding counterexamples. The counterexamples, however, are
often difficult for developers with limited knowledge of the underlying formal methods
to understand. In this paper, we present an approach for interpreting the outcomes of
containment checking of process models. Our approach aims to analyze the input mod-
els and counterexamples to identify the actual causes of containment inconsistencies.
Based on the analysis, we can suggest a set of countermeasures to resolve the incon-
sistencies. The analysis results and countermeasures are visually presented along with
the involved model elements such that the developers can easily understand and fix the
problems.

Keywords: Counterexample analysis, containment checking, consistency checking,
BPMN, process model, behavior model, model checking, countermeasure.

1 Introduction

Model checking is a powerful verification technique for detecting inconsistencies of software
systems [8]. In general, especially in the context of business process management, behavior
models are transformed into formal specifications and verified against predefined properties.
The model checker then exhaustively searches for property violations in formal specifica-
tions of a model and produces counterexample(s) when these properties do not satisfy the
formal specifications. The ability to generate counterexamples in case of consistency viola-
tions are considered as one of the strengths of the model checking approach. Unfortunately,
counterexamples produced by existing model checkers are rather cryptic and verbose. In
particular, there are two major problems in analyzing counterexamples. First, the developers
and non-technical stakeholders who often have limited knowledge of the underlying formal
techniques are confronted with cryptic and lengthy information (e.g., states numbers, input
variables over tens of cycles and internal transitions, and so on) in the counterexample [11].
Second, because a counterexample is produced as a trace of states, it is challenging to trace
back the causes of inconsistencies to the level of the original model in order to correct the
flawed elements [9]. As a result, the developers have to devote significant time and effort

in order to identify the cause of the violation, or they get confused about the relevance of
a given trace in the overall explanation of the violation. Besides that, in order to raise the
practical applicability of model checking, there is a need for an automated approach to in-
terpret the counterexamples with respect to containment checking and finding the causes of
a violation.

There is a certain amount of approaches that target counterexample analysis for model
checking [4, 9, 11]. Out of these existing approaches, only a few are aiming at supporting
counterexample analysis of behavioral models [11]. Most of these approaches focus on fault
localization in source programs for safety and liveness properties or generation of proofs
to aid the understanding of witnesses. As these approaches focus on model checking in a
generic context, their analysis techniques can be applied in a wide range of application do-
mains. However, this comes with a price: the analysis outcomes are rather abstract and far
from helping in understanding the specific causes of a violation in a particular domain. Fur-
thermore, these techniques have not considered to provide any annotations or visual supports
for understanding the actual causes nor suggest any potential countermeasures

In this paper, we propose to focus on a specific context, which is the containment check-
ing problem, in order to achieve better support for understanding and resolving the inconsis-
tencies. The goal of containment checking is to ensure that the specifications in high-level
models created, for instance, by business analysts early in the development lifecycle, are
not unwittingly violated by refined (one or more low-level) models of the high-level model
created, for instance, by developers during the detailed design phase [13]. The containment
checking problem can be interpreted as a model checking problem, in which the behavior
described in the high-level model are used as the constraints that the low-level counterpart
must satisfy [13]. In case of a containment violation, the model checkers will generate cor-
responding counterexamples.

We have developed an approach that supports the interpretation of the generated coun-
terexamples and reports typical possible causes of a containment inconsistency. In particular,
we have constructed a counterexample analyzer that automatically extracts the information
from the counterexample trace file generated by containment checking using the NuSMV
model checker [5]. Based on the extracted information along with formalization rules for
the containment relationship, our counterexample analyzer identifies the cause(s) of the vi-
olation(s) and produces an appropriate set of guidelines to countermeasure the containment
violations. Our approach allows the developers to focus on the immediate cause of an incon-
sistency without having to sort through irrelevant information. In order to make our approach
more usable in practice, we devise visual supports that can highlight the involved elements in
the process models. Furthermore, it provides annotations containing causes of inconsisten-
cies and potential countermeasures shown in the input process models. In the scope of this
study, we consider BPMN 1 process models because they are widely used for the description
of business processes and the majority of process developers are familiar with their syntax
and semantics.

The paper is structured as follows. In Section 2, we provide background information on
our model-based containment checking approach. Section 3 describes the counterexample
interpretation approach in detail. Section 4 presents a use case extracted from an indus-
trial case study to illustrate our approach. In Section 5, we review the related approaches
regarding behavioral consistency checking and counterexamples interpretation. Finally, we
conclude on our main contributions and discuss future work in Section 6.

1
http://www.omg.org/spec/BPMN/2.0

http://www.omg.org/spec/BPMN/2.0

2 Model Checking Based Containment Checking Approach

This section briefly introduces important aspects of our model checking based approach for
containment checking [13]. Containment checking aims to verify whether the elements and
structures (e.g., activities, events and/or gateways) of a high-level BPMN model correspond
to those of a refined low-level model. An example of a high-level model is a specification
produced by a business analyst together with a customer early in the software development
lifecycle. Later during architecting and detailed design, this model is usually gradually re-
fined for subsequent implementation. Containment checking can ensure that the high-level
behavior model is completely contained in the refined models and that developers did not
(unwittingly) introduce deviations (aka consistency violations). According to the definition
of containment relationship, the opposite direction is not essential because the low-level
behavior models are often constructed by refining and enriching the high-level model. An
overview of the approach is shown in Figure 1.

Business

analysts /

Software

architect

High-level

BPMN model

is refined to

LTL formulas

SMV

specifications

refines

models

refines &

models

Transformation of

high-level model

Transformation of

low-level model

NuSMV

model

checker

Counterexample

analyzer

Low-level

BPMN model

Visualization engine

Annotations of violations and

possible countermeasures

Containment

checking results

Developer

Fig. 1: Overview of the containment checking approach

As shown in Figure 1, the high-level process model under study will be automatically
transformed into Linear Temporal Logic (LTL) rules [14] whilst the low-level counterpart
will be automatically transformed into a SMV specification (input language of NuSMV
model checker) [6]. Then, containment checking is performed by leveraging the NuSMV
model checker [5]. In particular, the model checker takes the generated LTL rules and the
SMV specification as inputs to verify whether they are satisfied. In case the SMV specifi-
cation satisfies the LTL rules, it implies that the low-level process model conforms to the
corresponding high-level model. If, however, the low-level process model deviates improp-
erly from the high-level counterpart, NuSMV will generate a counterexample that consists of
the linear (looping) paths of the SMV specification leading to the violation. The main focus
of this paper is shown in the big grey box.

The counterexample essentially shows the progress of the states from the beginning (i.e.,
all variables are initialized) until the point of violation along with the corresponding vari-
ables’ values. Hence, it is time consuming and error-prone to locate relevant states because

the developers may have to exhaustively walk through all of these execution traces. We note
that counterexamples generated by the NuSMV model checker may contain different infor-
mation depending on the selected model checking options, model encoding techniques, and
the input LTL rules. Thus, it is crucial to provide useful feedbacks to the developers and non-
technical stakeholders that can reveal the causes of containment inconsistencies and suggest
potential resolutions.

In the subsequent sections, we present in detail our approach for counterexample inter-
pretation that is able to help identifying the causes of containment inconsistencies. It also
provides an appropriate set of guidelines to developers containing countermeasures to ad-
dress the deviations from the containment relationship. The low-level model is updated based
on the guidelines and re-mapped to its formal specification, and then will be re-verified. This
process iterates until no containment violations are detected.

3 Interpretation of Containment Inconsistencies

Containment inconsistencies may occur due to a variety of reasons, such as missing or mis-
placed elements in the low-level model, and so on. We propose a two-step approach for locat-
ing the causes of containment inconsistencies. In the first step, the counterexample analyzer
extracts the information from the output trace file generated by the NuSMV model checker
and identifies the actual causes of the unsatisfied containment relationship and produces ap-
propriate suggestions. In the second step, the information provided by the counterexample
analyzer will be annotated in the low-level process model along with concise descriptions of
the violation’s causes and potential countermeasures.

3.1 Counterexample Analyzer for Locating Causes of Containment Inconsistencies

The counterexample analyzer investigates the causes of an unsatisfied containment relation-
ship with respect to the LTL-based primitives. Initially, the counterexample analyzer reads
the output trace file and parses the counterexamples that represent the unsatisfied LTL rules.
Afterwards, the counterexample analyzer traverses the extracted information, LTL-based
primitives and SMV specification to find out why the elements and control flow structures
of the high-level model are not matched by their corresponding low-level counterparts. Note
that the elements that are described in the high-level model but missing or misplaced in the
low-level model can be the causes of the containment inconsistencies. The counterexample
analyzer inspects and addresses all possible causes of an unsatisfied containment relationship
defined by a specific LTL-based primitive and possible countermeasures.

In order to locate the causes of the inconsistency, the counterexample analyzer first ver-
ifies whether all the elements (e.g., activities, events and/or gateways) that exist in the high-
level model are also present in the low-level model. For this, the counterexample analyzer
locates the missing element cause (either one, multiple, or all elements could be missing)
and suggests the countermeasure (i.e., insert missing element at a specific position in the
model).

After that a number of rules related to unsatisfied LTL rules for different possible kinds of
elements in the BPMN model are checked. For this, the counterexample analyzer matches the
exact position of the corresponding elements in the high-level model related to unsatisfied
LTL rules with elements present in the low-level model. Specifically, the counterexample
analyzer reads the sequence (of elements of the low-level model) from the SMV specification

Table 1: Tracking back the causes of containment violations and relevant countermeasures
Elements LTL-Based Primi-

tives
Causes of Unsatisfied
Rule

Possible Countermeasures

Sequence: A set of elements
(transitively) executed in se-
quential order.

(G (A1 -> F A2)) The sequential rule is vio-
lated, if element A2 does
not eventually follow ele-
ment A1 in the low-level
model, but A2 exists as a
preceding element of A1.

• Swap the occurrence of A2
and A1.
• Add A2 after A1 in the low-
level BPMN model.

Parallel Fork (AND-Split):
The execution of a Fork leads
to the parallel execution of
subsequent activities or events
(A1, A2...An). Please note that
the activities or events may be
executed one after the other or
possibly may be executed in a
real parallel enactment.

G (ParallelFork

-> F (A1 & A2

&...& An))

The Parallel Fork rule is
unsatisfied, if a Fork gate-
way is not eventually fol-
lowed by either one or
all the activities/events (A1,
A2,...An), or either one or
all the activities/events ex-
ist as a preceding element
of a Fork gateway.

• Put elements (A1 and/or A2
...and/or An) after the Parallel
Fork in the low-level model.
• Elements (A1, A2...An) shall
be triggered from the Parallel
Fork.

Parallel Join (AND-Join): The
execution of two or more paral-
lel elements (A1, A2...An) leads
to the execution of a Join gate-
way. The semantics is repre-
sented that all elements must
complete before the execution
of a Join gateway.

(G (A1 & A2 &

...& An) -> F

ParallelJoin)

The Parallel Join rule is vi-
olated, because either one
or all the elements (A1, A2
... An) exist as succeeding
elements of a Join gateway,
but are not followed by a
Join gateway.

• Replace flawed elements(s)
(“element’s name”) with the
correct elements (“element’s
name”), respectively.
• Remove flawed element(s)
(“element’s name”) from the
low-level BPMN model.
• Elements (A1, A2...An) shall
be followed by a Parallel Join.

Exclusive Decision (XOR-
Split): The execution of an
Exclusive Decision eventually
followed by the execution of at
least one of the elements among
the available set of elements
based on condition expressions
for each gate of the gateway.

(G (ExclusiveDe-

cision -> F (A1

xor A2)))

The Exclusive Decision
rule is violated, if both
of the branches return
either FALSE or TRUE
exclusively. It means that
the Exclusive Decision
gateway is not followed by
elements (i.e., A1 and A2).

• Replace flawed elements
(“element’s name”) with
correct elements (“element’s
name”) after the Exclusive
Decision, respectively.
• Remove flawed elements
(“element’s name”) from the
low-level BPMN model.

Exclusive Merge (XOR-Join):
The execution of at least one el-
ement among a set of alternative
elements will lead to the execu-
tion of an Exclusive Merge gate-
way.

(G (A1 xor A2)

-> F Exclusive-

Merge)

The Exclusive Merge rule
is unsatisfied, because ac-
tivity A1 and activity A2
are not followed by an
Exclusive Merge, but one
or both elements exist as
the succeeding elements of
an Exclusive Merge in the
low-level model.

• Put the Exclusive Merge after
A1 and A2 in the model.
• Replace the flawed ele-
ments (“element’s name”) with
correct elements (“element’s
name”) before the Exclusive
Merge, respectively.

and identifies corresponding element (i.e., activity or a gateway) causing the violation of the
LTL rules. The preceding and succeeding elements of that element are matched with the
elements of LTL rules to locate the causes of inconsistencies.

The descriptions of the possible causes for each LTL-based primitive and relevant coun-
termeasures to resolve these causes are presented in Table 1. The right-hand side column

contains the informal description of elements and second column contains the correspond-
ing LTL-based primitives for formally representing these constructs. Let us consider the first
one as an example: sequential order, which describes the relation that one element A2 even-
tually follows another element A1. As in the other rules in Table 1, violations occur due to
a misplacement of elements. For instance, in the case of the sequence described by the LTL
rule (G (A1 -> F A2)), a violation might happen because the element A2 (transitively)
exists in the low-level model as a preceding element of the element A1, but not as a suc-
ceeding element of A1. In this context, the counterexample analyzer generates the relevant
countermeasures to resolve the violation (in this case: “swapping the occurrence of A2 to A1”
or “add A2 after A1”). Nevertheless, our approach provides promising results for composite
controls, for instance, combinations of two or more control structures, like G (ParallelFork
-> F (ExclusiveDecision & A1 & & An)).

3.2 Visual Support for Understanding and Resolving Inconsistencies

In this section, we explain how the containment checking results can be presented to the
developers in a user friendlier manner in comparison to the counterexamples. The visual
support aims at shows the developer the causes of containment inconsistencies that occur
when the elements and structures (e.g., activities, events and/or gateways) of the high-level
process model do not have corresponding parts in the low-level model and also provides
relevant countermeasures to resolve the violations.

The visual support is based on the information provided by the counterexample analyzer
along with the input low-level process model. In particular, the element(s) that indicates the
first element causing the violation of the LTL rule is highlighted in blue whilst the elements
that are causes of containment violations are visualized in red, and the elements that satisfied
the corresponding LTL rule appear in green. In order to improve the understandability of the
counterexamples, we create annotations at the first element causing the violation to show
the description of the cause(s) of the containment violation and relevant potential counter-
measures to address the violation. Once the root cause of a containment violation is located,
the cause is eliminated by updating the involving elements of the low-level process model.
To differentiate more than one unsatisfied rule, shades of the particular color are applied, for
instance, the first unsatisfied rule is displayed in the original shade while others are gradually
represented in lighter tones. The low-level process model displaying highlighted involving
elements and annotation of the actual causes of the containment inconsistencies and relevant
countermeasures is shown in Figure 3.

4 Use Case from Industrial Case Study

This section briefly discusses a use case from an industrial case study on a billing and pro-
visioning system of a domain name registrar and hosting provider to illustrate the validity of
our technique. The Billing Renewal process is taken from our previous industry projects [18].
The Billing Renewal process comprises a wide variety of services, for instance, credit bureau
services (cash clearing, credit card validation and payment activities, etc.), hosting services
(web and email hosting, cloud hosting, provisioning, etc.), domain services (domain regis-
tration, private domain registration, transfer, website forwarding, etc.), and retail services
(customer service and support, etc.). Figure 2 shows the high-level Billing Renewal process
modeled as a BPMN model. The model is devised to capture essential control structures

such as sequence and parallel execution, exclusive decision, and so on. Similarly, the low-
level model of the Billing Renewal process containing detailed information is also modeled.

Receive Expiry

Notification

Retrieve

Customer

Profile

Charge

Payment

Automatically

Computer

Payment

Check

Payment

Type

Send Second

Payment

Request

Send First

Payment

Request

Extend

Domain

Extend

Hosting

Account

Notify

Contract

TerminationExtend

Support and

Services

Extend

Contract

Send

Invoice

Notify

Contract

Extension

is payment

automated?

Yes

No

Is payment
received?

NoIs payment
received?

No

No

Yes Yes
Is payment
received?

Yes

Fig. 2: High-level BPMN model of the Billing Renewal process

Formal consistency constraints (i.e., LTL rules) are automatically generated from the
high-level BPMN model whilst the low-level BPMN model is transformed into SMV speci-
fication. Next, NuSMV verifies whether the formal SMV specification is consistent with the
generated LTL rules. The NuSMV model checker generates a counterexample demonstrating
a sequence of permissible state executions leading to a state in which the violation occurs
in LTL rule. Finally, our approach for counterexample interpretation is applied to process
the violation traces and visualize the involved elements in the low-level BPMN model along
with annotations containing containment violation causes and suggestions. We opt to omit
the verbose generated LTL rules and SMV specifications and focus more on the interpreta-
tion of the generated counterexample.

Listing 1.1 shows an excerpt of a violation trace generated by NuSMV including the list
of satisfied and unsatisfied LTL rules, i.e., a counterexample. Despite the size and execution
traces of this counterexample, the exact cause of the inconsistency is unclear, for instance,
is the containment violation caused by a missing element, or a misplacement of elements, or
both of them? It is time consuming and human labor intensive to locate the relevant states
because the developers may have to exhaustively walk through all of these execution traces.
The counterexample presents symptoms of the cause, but not the cause of the violation itself.
Therefore, any manual refinement to the model could fail to resolve the deviation and may
introduce other violations.

Figure 3 shows the low-level Billing Renewal process displaying the actual causes of
the containment inconsistency and relevant countermeasures to address them. Using the
visualizations of the violation, it is easy to see which elements of the low-level model
involve in the containment inconsistency. In this case, the containment relationship is
not satisfied due to the violation of a parallel fork rule and a sequential rule. The par-

allel fork rule G (ParallelFork1 -> F ((ComputerPayment & CheckPaymentType)

& RetrieveCustomerProfile)) is unsatisfied because ParallelFork1 is not followed
by the parallel execution of the subsequent tasks (i.e., ComputerPayment, CheckPayment-
Type and RetrieveCustomerProfile) in the low-level model, which is the actual cause of the
containment violation. This violation can be addressed by triggering ComputerPayment

from ParallelFork1 as shown in the attached comment to ParallelFork1. Similarly, the
root cause of second violation is mainly because SendInvoice does not lead to Paral-

lelJoin4. This might be a symptom of a misplacement of SendInvoice in the model as
the primary cause that led to the containment inconsistency.
$ NuSMV BillingRenweal.smv
...
-- specification G (StartEvent -> F ReceiveExpiryNotification) is true
-- specification G (ReceiveExpiryNotification -> F ParallelFork1) is true
-- specification G (ParallelFork1 -> F ((ComputerPayment & CheckPaymentType) &
RetrieveCustomerProfile)) is false

-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
StartEvent = TRUE
ReceiveExpiryNotification = FALSE
ParallelFork1 = FALSE
RetrieveCustomerProfile = FALSE
ComputerPayment = FALSE

.....
-- Loop starts here
-> State: 1.6 <-
CheckPaymentType = FALSE
ParallelJoin2 = TRUE
SendLastPaymentRequest = FALSE
ExclusiveDecision5 = TRUE
ParallelJoin3 = TRUE

.....

Listing 1.1: NuSMV Containment Checking Result of the Billing Renewal Process

The use case illustrates that a rich and concise visualization of the inconsistency causes
can allow for an easy identification of the elements that cause the violation and helps de-
velopers correct the process model accordingly. In the particular case, after following the
suggested countermeasures, rerunning the containment checking process yielded no further
violations. Without these supports, the developers would have to study and investigate the
syntax and semantics of the trace file in order to determine the relationship between the exe-
cution traces and the process model, and then locate the corresponding inconsistency within
the model, meaning that the complex matching between the variables and states in the coun-
terexample and the elements of the models must be performed manually.

5 Related Work

The work presented in this paper relates to the two main research areas: behavior model
consistency checking and analysis of the model checking results (i.e., counterexamples) for
identifying the causes of inconsistencies.

5.1 Behavior Model Consistency Checking

In the literature, many approaches tackle different types of models and/or model checking
techniques [12]. However, very few of these studies focus on the consistency of behavior

Receive Expiry

Notification Retrieve

Customer

Profile
Charge

Payment

Automatically

Computer

Payment

Check

Payment

Type

Send Second

Payment

Request

Send First

Payment

Request

Extend

Domain

Extend

Hosting

Account

Notify

Contract

Termination

Extend

Support and

Services

Extend

Contract

Notify

Contract

Extension

is payment

automated?

Yes

Is payment
received?

NoIs payment
received?

No

No

Yes

Yes

Is payment
received?

Yes

Block

Domain

Send Last

Payment

Suspend

Contract

Block

Hosting

Account

Stop

Support and

Services

Terminate

Contract

Unregister

Domain

Delete

Hosting

Account

No

Is payment
received?

No

Yes

Send

Invoice

Cause: ParallelFork1 is not directly followed by CheckPaymentType.

Countermeasure: (1) CheckPaymentType, RetrieveCustomerProfile,

Computer Payment shall be triggered from the ParallelFork1.

Cause: ParallelJoin4 does not exist before SendInvoice.

Countermeasures: (1) Swap the occurrence of SendInvoice and ParallelJoin4.

(2) Add SendInvoice after ParallelJoin4.

Fig. 3: Visual Support for Understanding and Resolving Containment Violations

models; for instance, van der Straeten et al. [15] present an approach for checking the consis-
tency of different UML models by using description logic. This approach considers model-
instance, instance-instance, and model-model conflicts, instead of containment checking.
Van der Aalst presents a theoretical framework for defining the semantics of behavior in-
heritance [1]. In this work, four different inheritance rules, based on hiding and blocking
principles, are defined for UML activity diagram, state-chart and sequence diagram. Sim-
ilar ideas have been presented in [16]. In [10] a general methodology is presented to deal
with consistency problem of state-chart inheritance, which involves state-charts as well as
the corresponding class diagrams. Communicating Sequential Processes (CSP) is used as
a mathematical model for describing the consistency requirements and the FDR tool 2 is
used for checking purposes. Weidlich et al. consider the compatibility between referenced
process models and the corresponding implementation based on the notion of behavior in-
heritance [19]. Awad et al. introduce an approach for automated compliance checking of
BPMN process models using BPMN-Q queries [3]. They adopted the reduction approach to
verify the correctness of process models, instead of performing the detailed analysis using
model checker. Unlike our approach, the aforementioned techniques do not aim at provid-
ing the analysis of the violation results for identifying the causes of inconsistencies and a

2
https://www.cs.ox.ac.uk/projects/fdr/

https://www.cs.ox.ac.uk/projects/fdr/

set of countermeasures to resolve inconsistencies. Thus, these approaches are very useful
for finding similar or alternative behavioral descriptions but not applicable for verifying the
containment relationship.

5.2 Generating and Analyzing Counterexamples

The problem of generating and analyzing model-checking counterexamples are classified as
follows: generating the counterexample efficiently, automatically analyzing the counterex-
ample to extract the exact cause of violations, and creating a visualization framework suitable
for interactive exploration.

Several existing approaches have addressed the idea of generating proofs from the model-
checking runs. Many of these techniques focus on building evidence in form of a proof
and controlling the generation of information to aid the understanding of counterexamples
[7, 17]. One of the drawbacks of these approaches is their size and complexity, which can be
polynomial in the number of states of the system and of exponential length in the worst case.
The proof-like witness techniques also require manual extrapolation, and the developers still
need certain knowledge of the underlying formalisms in order to understand the proofs.

The problem of the automated analysis of counterexamples was addressed by many re-
searchers, for instance, Ball et al. [4] describe an error trace as a symptom of the error and
identify the cause of the error as the set of transitions in an error trace that does not appear in
a correct trace of the program via the SLAM model checker. Kumazawa and Tamai present
an error localization technique LLL-S for a given behavior model. The proposed technique
identifies the infinite and lasso-shaped witnesses that resemble the given counterexample
[11]. However, these approaches focus on finding the error causes in the program, such as
deadlocks, assertion violations, and so on, but they are not applicable for verifying the causes
of unsatisfied containment relationships.

Visual presentation of generated counterexamples is explored by Dong et al. [9]. The au-
thors developed a tool that simplifies the counterexample exploration by presenting evidence
for modal µ-calculus through various graphical views. In particular, the highlighting corre-
spondence between the generated counterexample and the analyzed property is addressed in
their visualization process. Armas-Cervantes et al. [2] developed a tool for identifying be-
havioral differences between pairs of business process models by using Asymmetric Event
Structure (AES) and verbalization of the results.

The above discussed approaches focus on general consistency checking. In contrast to
our work, none of these techniques focuses on the diagnosis of counterexamples generated
by a model checker with respect to containment checking. Note that, in our approach we do
not need nor modify the source code of the model checker. Our interpretation process auto-
matically extracts the information from the generated counterexample. In addition, another
differentiating factor of our approach in comparison to aforementioned approaches is that
our framework provides a compact and concise representation of the failure causes (such
as missing or misplacement of elements) and countermeasures that are easily understand-
able for non-expert stakeholders. Finally, the counterexample interpretation steps are fully
automated and do not require developer intervention.

6 Conclusion and Future Work

In this paper, we presented an approach for interpreting the causes of inconsistencies in be-
havior models based on the output results (i.e., counterexamples) of the model checker. In

our work, the counterexample analyzer will help locating the actual causes of a containment
inconsistency and producing appropriate guidelines as countermeasures based on the infor-
mation extracted from counterexample trace file, formalization rules (i.e., LTL-based prim-
itives), and the SMV specification of the low-level models. The visual support will show
the involving elements along with annotations of causes and countermeasures in the low-
level model. The advantage of this interpretation technique is twofold. On the one hand,
the technique supports users who have limited knowledge of the underlying formalisms,
and therefore, are not proficient in analyzing the cryptic and verbose counterexamples. On
other hand, by locating actual cause(s) of the inconsistency and providing the relevant coun-
termeasures to alleviate the inconsistencies to the user, it significantly reduces the time of
manually locating the causes of an inconsistency. To the best of our knowledge, we investi-
gated and presented almost all possible causes of a containment inconsistency and relevant
countermeasures represented by a specific LTL-based primitive.

Currently, our approach supports output generated by the NuSMV model checker with
respect to containment checking. Nevertheless, it is possible to adapt the presented tech-
niques to support the other behavior models such as state machines, sequence diagrams3, and
BPEL4 with reasonable extra efforts. In our future work, we plan on extending our approach
for additional constructs (rather than the set of essential widely used constructs presented in
this paper) and evaluate our approach with larger case studies. Another direction for future
work is to quantitatively evaluate the counterexample interpretation approach in order to ex-
plore the pragmatic usability of the approach. Finally, we are looking into ways to extend
our approach, in particular to support the interpretation and visualization of the analysis re-
sults from model checkers such as SPIN5 that employ different underlying model checking
techniques and data structures. The counterexample analyzer depends on the formalization
rules and the options used in the model checker for generating output trace file. Extending
our approach for SPIN is also possible as NuSMV and SPIN share several similar concepts
regarding the state based counterexamples.

Acknowledgment. The research leading to these results has received funding from the
Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), Grant No. ICT12-001.

References

[1] Van der Aalst, W.M.: Inheritance of dynamic behaviour in uml. MOCA 2, 105–120 (2002)
[2] Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Behavioral comparison of

process models based on canonically reduced event structures. In: Sadiq, S., Soffer, P., Völzer, H.
(eds.) Business Process Management, Lecture Notes in Computer Science, vol. 8659, pp. 267–
282. Springer International Publishing (2014)

[3] Awad, A., Decker, G., Weske, M.: Efficient compliance checking using bpmn-q and temporal
logic. In: Proceedings of the 6th International Conference on Business Process Management. pp.
326–341. BPM ’08, Springer-Verlag, Berlin, Heidelberg (2008)

[4] Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in counterexam-
ple traces. In: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 97–105. POPL ’03, ACM, New Orleans, Louisiana, USA (2003)

3
http://www.omg.org/spec/UML/2.4.1

4
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

5
http://spinroot.com/spin/whatispin.html

http://www.omg.org/spec/UML/2.4.1
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://spinroot.com/spin/whatispin.html

[5] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a new symbolic model checker.
International Journal on Software Tools for Technology Transfer 2(4), 410–425 (2000)

[6] Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic model veri-
fier. In: 11th Int’l Conf. on Computer Aided Verification (CAV). pp. 495–499. Springer-Verlag,
London, UK (1999)

[7] Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of counterexamples
and witnesses in symbolic model checking. In: Proceedings of the 32Nd Annual ACM/IEEE
Design Automation Conference. pp. 427–432. DAC ’95, ACM, New York, NY, USA (1995)

[8] Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA,
USA (1999)

[9] Dong, Y., Ramakrishnan, C.R., Smolka, S.: Model checking and evidence exploration. In: En-
gineering of Computer-Based Systems, 2003. Proceedings. 10th IEEE International Conference
and Workshop on the. pp. 214–223 (April 2003)

[10] Engels, G., Heckel, R., Küster, J.M.: Rule-based specification of behavioral consistency based on
the uml meta-model. In: 4th International Conference on The Unified Modeling Language, Mod-
eling Languages, Concepts, and Tools. pp. 272–286. Springer-Verlag, London, UK, UK (2001)

[11] Kumazawa, T., Tamai, T.: Counter example-based error localization of behavior models. In:
Proceedings of the Third International Conference on NASA Formal Methods. pp. 222–236.
NFM’11, Springer-Verlag, Berlin, Heidelberg (2011)

[12] Lucas, F.J., Molina, F., Toval, A.: A systematic review of UML model consistency management.
Information and Software Technology 51(12), 1631–1645 (Dec 2009)

[13] Muram, F.U., Tran, H., Zdun, U.: Automated Mapping of UML Activity Diagrams to Formal
Specifications for Supporting Containment Checking. In: 11th Int’l Workshop on Formal Engi-
neering approaches to Software Components and Architectures (FESCA). pp. 93–107. Grenoble,
France (2014)

[14] Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science. pp. 46–57. SFCS ’77, IEEE Computer Society, Washington,
DC, USA (1977)

[15] van der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to maintain
consistency between uml models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003 – The
Unified Modeling Language. pp. 326–340. Springer, Berlin, Heidelberg (2003)

[16] Stumptner, M., Schrefl, M.: Behavior consistent inheritance in uml. In: Laender, A., Liddle, S.,
Storey, V. (eds.) Conceptual Modeling ER 2000, Lecture Notes in Computer Science, vol. 1920,
pp. 527–542. Springer-Verlag, Berlin, Heidelberg (2000)

[17] Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen, K. (eds.)
Computer Aided Verification, Lecture Notes in Computer Science, vol. 2404, pp. 455–470.
Springer Berlin Heidelberg (2002)

[18] Tran, H., Zdun, U., Dustdar, S.: Name-based view integration for enhancing the reusability in
process-driven soas. In: zur Muehlen, M., Su, J. (eds.) Business Process Management Work-
shops, Lecture Notes in Business Information Processing, vol. 66, pp. 338–349. Springer Berlin
Heidelberg (2011)

[19] Weidlich, M., Dijkman, R., Weske, M.: Behaviour Equivalence and Compatibility of Business
Process Models with Complex Correspondences. The Computer Journal 55(11), 1398–1418 (Feb
2012)

	Counterexample Analysis for Supporting Containment Checking of Business Process Models

