A Genetic Algorithm for Automatic Business
Process Test Case Selection

Kristof Bohmer and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science
{kristof.boehmer, stefanie.rinderle-ma}@univie.ac.at

Abstract. Process models tend to become more and more complex and,
therefore, also more and more test cases are required to assure their
correctness and stability during design and maintenance. However, ex-
ecuting hundreds or even thousands of process model test cases leads
to excessive test suite execution times and, therefore, high costs. Hence,
this paper presents a novel approach for process model test case selection
which is able to address flexible user-driven test case selection require-
ments and which can integrate a diverse set of knowledge sources to
select an appropriate minimal set of test cases which can be executed
in minimal time. Additionally, techniques are proposed which enable the
representation of unique coverage requirements and effects for each pro-
cess node and process test case in a comprehensive way. For test case
selection, a genetic algorithm is proposed. Its effectiveness is shown in
comparison with other test case selection approaches.

Keywords: Process Modeling and Design, Process Testing, Test Case
Selection, Genetic Algorithm

1 Introduction

Over the past years, processes have risen to deeply integrated solutions which
are extremely important for various organizations. Hence, ensuring the stability
and correctness of processes is a crucial challenge [11]. Several approaches for
process verification exist [14], that focus on structural and behavorial correctness
of process models. Specifically, when implementing process models, testing has
proven a valuable complement to capture the process behavior at runtime, e.g.,
with respect to process data [18]. Testing concentrates on creating and executing
test cases on the tested process model [13]. At minimum a test case consist of
input data, which is used to initialize a new instance of the process under test,
and an expected execution path that should be followed by the process model
instance when executing the test case [18]. A fault can be detected, e.g., when
an execution path deviates from the expected test case execution path [18].
Testing plays an important role in process model design, development, and
maintenance because it allows to identify faults early during these phases [18].
As process models tend to become more and more complex, manual test case

T3:Test-Case 3, execution time 15 minutes

.Process Node @XOR Split or Join = Connection Edge (Control Flow)

Fig. 1. Test case selection example with coverage illustration

generation becomes time-consuming and, therefore, expensive [17]. Hence, au-
tomatic test case generation tools emerged which quickly generate hundreds or
even thousands of test cases to completely test a single process model [9].

Each individual test case might be executed quickly. However, executing all
test cases may still require an excessive amount of time and, therefore, results
in high costs [5]. Hence, it becomes necessary to apply test case selection and
minimization techniques. Those techniques select an appropriate! subset of the
available test cases to be executed. If the subset is small and efficient enough
then significant time-savings are achieved [5,12].

Take, for example, the process model shown in Fig. 1. It’s tested by three
test cases, whereby the first covers the top most path, the second the middle
path and so on. Assume that the user requirement is to cover 75% of the process
model (i.e., 75% node coverage, so 75% of all nodes are tested by test cases)?.
Then possible subsets would be to select T1 and T2 (combined execution time
15 minutes), T2 and T3 (25 minutes), or T1 and T3 (20 minutes). However, if
the selected test cases should be executed in the minimum possible amount of
time then the selection technique must select T1 and T2 as the optimal subset.

Identifying an optimal test case subset results in a combinatorial explosion
problem [5] (the complexity is exponentially related to the amount of test cases).
Hence, it cannot be solved in polynomial time [8]. So, existing approaches utilize
heuristics, such as the Greedy Algorithm, which allow to find solutions where
analytical algorithms are infeasible because of the huge search space [5].

We have analyzed existing process model test case selection and minimization
approaches and found that those are inflexible regarding the supported user-
defined coverage requirements, only use a incomprehensive representation of each
node’s unique coverage requirements, and also model the coverage effects of each
test case in a limited fashion. Hence, existing work is not suitable for answering
the following research questions:

RQ1 How can node coverage effects for process model test cases be modeled in
a more comprehensive way?

RQ2 How can the unique coverage requirements of each process node be deter-
mined and utilized during process model test case selection?

1 Appropriate means that user-defined requirements are fulfilled such as a minimal
coverage objective, e.g., that a minimal amount of process nodes is tested.

2 Multiple coverage metrics exist such as path, branch, or node coverage. However, in
this paper we will, for the sake of brevity, only use node coverage. However, we are
confident that a generalization to other coverage metrics is possible.

RQ3 Is it possible to integrate and utilize more complex process model test case
selection requirements than supported by existing work (e.g., to optimize the
selected test cases based on their execution time)?

RQ4 Whether and how can Genetic Algorithms be utilized to identify an ap-
propriate set of test cases during process model test case selection?

In this paper we want to address the identified limitations and concentrate
our efforts on test case selection in the process modeling domain. Therefore, we
propose a comprehensive representation of test case coverage effects along with
a novel approach to identify the unique coverage requirements of each process
node. Here we exploit the fact that different kinds of nodes in a process model
may have a different complexity, e.g., tasks versus gateways [3]. Additionally, we
prove the applicability of Genetic Algorithms for process model test case selec-
tion and show, by using an evaluation and a prototypical implementation, that
the presented approach supports more complex and flexible selection require-
ments than existing work.

This paper is organized as follows. Coverage metrics, prerequisites, and ways
to improve the current situation are discussed in Section 2. Section 3 describes
the proposed genetic test case selection approach. Evaluation, corresponding
results and their discussion are presented in Section 4. Section 5 discusses related
work. Conclusions and future work is given in Section 6.

2 Coverage Metrics

This section introduces coverage metrics for test case selection based on a given
process model O. O is defined as directed graph O := (N,CE,DE)3 where N
denotes the set of process nodes, C'E the set of control flow edges, and DFE
the set of data flow edges. As auxiliary functions (cf. [15]), we utilize the direct
successors of a node n as ne := {n’ € N | (n,n’) € CE} for the control flow and
no :={n’ € N | (n,n’) € DE} for the data flow. The direct predecessors of n
can be defined accordingly by en := {n’ € N | (n’,n) € CE} for the control flow
and on :={n’ € N | (n’,n) € DE} for the data flow.

In this paper, we are mainly interested in the execution path of each test case,
especially to determine which process model nodes are covered (i.e., tested) by
each test case. So a test case is formally defined as:

Definition 1 (Test Case). A test case v on a process model O = (N,CE, DE)
is defined as v := (N, CE,, enabled) with N, C N, CE, C CE, and enabled €
{0,1} where N,, and CE, form the expected test case execution path and enabled
indicates if the test case should be executed (1) or not (0). The ordered set V
of all test cases v on a process model O is denoted as test suite, which can be
configured to create a test suite configuration V; where all test cases are enabled
or not (i.e., v.enabled is set to 1 or 0).

3 The notion of directed graphs corresponds to the internal representation in order to
cover different prevalent process modeling notations such as BPMN [10].

Test case selection starts with a test suite V' (consisting of all available test
cases for the process model O) and a set of requirements R which are user-
defined, such as, the minimal node coverage should be 75%. The requirements
contained in R must be satisfied to find a test suite configuration (i.e., deciding
which test cases should be executed when executing the test suite) which provides
an adequate testing of the process. Hence, the challenge is to find a minimal
subset V/ C V that satisfies all requirements in R.

One typical requirement is that the process must be completely covered (i.e.,
each node must be tested by the selected test cases). For this, mostly, simple
coverage metrics are used. For example, a process node is already marked as
completely covered, and therefore, fully tested, when it is checked by at least
one test case. However, this approach ignores that each process node has a
unique complexity and significance [3] and therefore should be covered by an
individually adjusted number of test cases to achieve an optimal coverage.

2.1 Optimal Coverage: Optimal Number of Test Cases per Node

This approach is called optimal coverage because it determines an optimal cov-
erage value (i.e., how many test cases should be used to test it) based on various
complexity metrics individually for each process node. We assume that if a pro-
cess node (e.g., an activity or gateway) is more complex than another one, it
must be tested more thoroughly (i.e., covered by more test cases) and, there-
fore, must be assigned a higher optimal coverage value. We suggest to determine
the optimal coverage value C,(j) of node j as the weighted sum over selected
complexity metrics comp;(j) for node j, (i =1,...,n):

n
Co(y) =1+ ’VZ w; -compi(j)“ (1)
i=1

In Eq. 1, w; € [0,1] defines the weight for metric comp;(j). Moreover, a
minimal coverage of 1 is assigned to each node, i.e., each node must be covered
by at least a single test case. The complexity metrics and the weights reflect the
process node coverage requirements. One example for a complexity metric is the
Fan-In/Fan-Out metric (cf. [7]): for node j it sums over the number of successors
|7 @ | and predecessors | ® j| of node j and divides this sum by the maximum
Fan-In/Fan-Out value over all nodes of the process model.

Two types of metrics are considered in this paper. First, generic metrics that
are based on the process model itself which incorporate the node complexity (the
structural Fan-In/Fan-Out metric), the process structure (a node is positioned
in sequences or more complex loops, error, or concurrent paths), or the node
position (a fault at an early executed node affects more follow up process nodes
than a fault at a late node). Second, metrics that are supported by historic data
(e.g., log files), such as previously identified faults (it is then more likely to find
another fault), node execution frequency (an fault does have an higher effect if
the faulty node is executed more frequently), previous coverage (if a node was
not covered during previous tests, then it should be checked during follow up

tests), error path probability (if a node frequently has to fall back to its error path
it more likely contains a fault), frequency of data-modifications (we assume that
a node which modifies multiple variables has likely a higher internal complexity
than a node which modifies only one variable), and known changes (if a process
node is changed then those changes should be checked with tests).

Example: Node j has three incoming edges and one outgoing edge. It is
analyzed using the Fan-In/Fan-Out metric? with a weight of 1. Further, the
node with the maximum Fan-In/Fan-Out metric of the whole process model
has four incoming and two outgoing edges. Then compys,, would generate the
following result:(1 4+ 3)/(2 + 4) = 0.66. The total optimal coverage can then be
calculated by C,(j) using 1 + [(1 . 0.66)—| = 2, i.e., two test cases are required
to throughly test j, when considering its complexity. Existing approaches would
ignore the node complexity and hence test it with a single test case. This could
result in not detecting faults that will be found by the proposed approach. Why?
Because, each node has a specific internal node behavior® which can, for example,
contain multiple execution branches. Imagine that the internal node behavior
contains a single conditional branch which provides two execution paths (e.g.,
for premium or normal customers), then a single test case will most likely only
test one of the branches so 50% percent of the node’s internal behavior and it
will require at least two test-cases to throughly test the node. Note, that we are
assuming that the mentioned complexity metrics also allow to assess the nodes
internal complexity (e.g., a node with many incoming edges most likely has a
more complex internal behavior then a node with only one incoming edge).

2.2 Test Coverage Metrics: Coverage of all Enabled Test Cases

The following coverage calculation approaches are applied individually on each
process node j to determine, given a test suite configuration V; and a process
model O, which test coverage is achieved by V; on j.

Traditional Coverage The traditional coverage is based on existing coverage
calculation approaches. The traditional coverage covy, is calculated for a process
node j and a test suite configuration V; by analyzing the test paths of each
enabled test case v = (N, CE,, 1) (cf. Eq. 2).

covtr (4, Vi) 1= > count; (v, j) 2)
v=(N,,CE,,1) € V;

If j is covered by an enabled test case (i.e., it is contained in j € N, of
v = (N,,CFE,,1)), its coverage value is increased by one, cf. Eq. 3.

4 This example only utilizes, for the sake of brevity, the Fan-In/Fan-Out metric. The
test case selection prototype (cf. Sect. 4), however, uses all the mentioned metrics
(see previous paragraph).

5 Note, each node’s functionality is determined by its internal behavior (e.g., realized
as a web-service or application) that is executed when execution the process node.

1 if j € N,
0 otherwise.

county (v,) == { (3)
Neighborhood Coverage Neighborhood coverage reflects that, in a process,
each node depends on its predecessors. Hence, if the predecessor of a node j
is faulty then j might never be executed (e.g., the process might terminate
because of a fault before reaching j) or has to deal with incorrect data/states.
We propose that this should not only be reflected by increasing the optimal
coverage (because of the increased complexity if multiple predecessors can affect
a single node), but also by acknowledging that each test case that is executed
on a predecessor of j also has a slightly positive effect on j itself. Therefore, j’s
coverage value should slightly be increased if one of its predecessors is tested.
Hence, we are proposing to calculate the individual neighborhood coverage of
each process node and combine it with its respective traditional coverage to
provide a comprehensive representation of each test case’s positive effects.

This a) motivates the test case selection algorithm to select test cases which
together achieve a broad coverage of functionality supported by the process
model under test and b) reflects the positive effects of each test case more com-
prehensively during test case selection. Why a)? Because with neighborhood
coverage the test case selection algorithm gains less additional total coverage
from covering close paths (i.e., paths that all concentrate on one function) than
without. Hence, it is additionally motivated to cover paths (and therefore func-
tions) which are more diverse and further apart from each other. Both advantages
increase the probability that test cases selected by the proposed approach will
more likely detect faults than test cases selected by existing approaches.

The neighborhood coverage value for a node j is calculated by analyzing each
enabled test case, i.e., Vv = (N,,CE,, 1) over process model O = (N,CE, DE)
to identify the neighborhood path start nodes Nypg, by (cf. Alg. 1):

Nypsw:={k€ N, |Ipe N\ N, with k € ep)} (4)

Neighborhood path start nodes are nodes that are covered by test case v, but
also have direct successors that are not covered by v. Subsequently, all identified
neighborhood path start nodes are analyzed, i.e., Vs € Nypg,y, to determine
all direct successors which are not covered by v using:

NpnnNsw:={a€N|a€sehadv.N,} (5)

Finally, the successors of all nodes in Npy s, are searched for j to calculate
J’s neighborhood coverage (cf. Alg 2).

Example: Consider Fig. 2a with test suite configuration V; containing a sin-
gle® enabled test case v with N, = {4, B,...,F,G}. Obviously, B is the only

5 Note, if a test suite contains multiple enabled test cases then the neighborhood cover-
age is calculated individually for each test case v on j. Subsequently each individual
neighborhood coverage effect of each test case is added up to calculate V;’s total
neighborhood coverage effect on j.

neighborhood path start node, i.e., Nyps,, = {B}. In turn, B results in the set
Nenn,Bow = {H,K}, ie., H and K are situated in a neighboring path to the
path covered by test case v, but are not covered by v themselves.

Assume that the neighborhood coverage is to be determined for node L. For
this, all successors of H and K are searched until L is found or the search reaches
a node which is covered by v. During the search, the nodes on the “search paths”
are numbered consecutively (using counter ¢). The number indicates the number
of edges or the distance respectively between L and the neighborhood path start
node B. The greater the distance, the less the neighborhood coverage. This is
expressed by a coverage reduction factor cov,.q that indicates how quickly the
positive effect of the test case v is reduced when getting further away from nodes
covered by v. For cov,eq = 0.2, a node numbered with 1 would be assigned
0.8 of the traditional coverage effect of the neighborhood start node. Here it
is assumed that the traditional coverage of v on the neighborhood path start
node is always 1. Hence, if j (so j = L) is the node marked with a 2 i.e., the
node that is two “steps” far from the neighborhood path start node, so ¢ = 2,
then the control flow neighborhood coverage effect on L can be calculated by
maz((1 —(2-0.2)),0) = 0.6 when using a covyeq of 0.2.

Path covered by distributing the

coverage of the main test path The shading visualizes
the distribution of the
coverage values

Path covered
by the test-
case

The shading visualizes
the distribution of the
coverage values

Path covered by the test-case

G
A B c D F G

Path covered by distributing the
coverage of the main test path

@ Process Node @ Process Node

= Connection Edge - = Connection Edge -
€ XOR Split or Join (Control Flow) a >E:|§an(;e§|'$3 Edge € XOR split or Join (Control Flow) ‘ >((i_;)an[:chltng) Bdge
(a) Utilizing the control flow (b) Utilizing the data flow

Fig. 2. Illustrating the concept of neighborhood coverage

Algorithm NeibCov(V;, j, cOVyeq)
covpbp =0
Data: process node j to be analyzed, test suite configuration V;, and coverage
reduction factor cov,cq
Result: the neighborhood coverage covy,pp of j
foreach test case v € V; with v.enabled =1 do
foreach neighborhood path start node s in Nyps,, do
foreach fs € NpnnN,s,o do
covnpn+=NeibCovRecur (j, s, fs, v, 1, covyed) /* adds up the achieved
neighborhood coverage of each v on j */
end
end
end
return cov,pp

Algorithm 1: Neighborhood coverage calculation (pseudo code)

Recursive Subroutine NeibCovRecur (j, s, n, v, ¢, COUyeqd)

Data: process node to search for j, current neighborhood path start node s, current
analyzed node n, analyzed test case v, step counter ¢, and a coverage reduction
factor covyeq

Result: cov,p of j for process model branch starting with s

if j = n (i.e., the searched node j is found) then

| return maz((1 — (¢ covyea)),0) /* calculate the neighborhood coverage */
else if n € N, (i.e., the currently analyzed node n is covered by v) then
‘ return 0 /* stop the search for this branch */
else
c=c+1 /* increase the step counter by one */
foreach n* € ne (i.e., n* € no for the data flow) do
return NeibCovRecur (j,s,n™,v,c,cov,cq) /* recursively analyze all
successive branches */
end
end
return 0

Algorithm 2: Neighborhood coverage calculation subroutine (pseudo code)

Algorithms 1 and 2 focus on the process control flow. Neighborhood coverage

can also refer to the process data flow denoted by the data flow edges DFE of a
process model O = (N,CE, DE). The data flow based approach uses different
sets to determine the neighborhood path starts nodes, i.e., they are based on
the data flow edges DFE instead of the control flow edges, i.e., DNypgs,, = {k €
N, |3p € N\ N, with k € op)} and DNpyn s :={a € N|a € soha ¢ v.N,}.
In Fig. 2b, hence, DNyps., = {A} and DNpyn a4, = {L} hold. Based on
these sets Alg. 1 and 2 can be used analogously. In the example depicted in Fig.
2b, starting from A nodes L and N are successively numbered with 1 and 2
respectively as they are connected via data edges. Assume a reduction factor of
covreq = 0.2. Then the neighborhood coverage covppn (L) of v turns out as 0.8
and for N as 0.6 respectively based on test case v.
Coverage Degeneration If multiple test cases are applied on the same process
node, partly similar internal node behavior (cf., Sect. 2.1) is likely executed and,
therefore, tested by multiple test cases. Hence, we assume that the individual
positive effect (i.e., the likelihood that a test case detects a not yet identified
fault) of an additional test case is higher when, e.g., a node is currently only
covered by two test cases as it would be if the same node is already covered by
ten test cases. Hence, we advocate to slightly decrease the additional coverage
gain of each test case if multiple test cases are covering the same process node. We
denote this by the term coverage degeneration which is captured by a coverage
degeneration factor that is determined for each coverage metric.

For traditional coverage covy.(j,V;) of a node j based on test suite configu-
ration V; (cf. Eq. 2), the degeneration factor results (cf. Eq. 6) from weighing
the number of enabled test cases with a user-defined factor wgey € [0,1] and
putting it into relation with the maximum possible factor wgegaras € [0,1], i.e.,
putting a limitation to the degeneration. Assume that 10 enabled test cases cover
Js Waeg = 0.05, and wgegrrax = 0.3, then the coverage degeneration factor for
traditional coverage turns out as 1 — min(((10 — 1) % 0.05),0.3) = 0.7. Hence,
the achieved traditional coverage will be multiplied with 0.7 to reduce it by 30%
from 10 (+1 for each test case) to 7.

covf:g(j,vi) = l-min((({v = (N, CE,, 1) € Vi |j € Nv}‘_l)‘wdeg):wdegM(aw))
6

The degeneration factor of the neighborhood coverage metrics is also based
on the number of enabled test cases. More precisely, each enabled test case in
V; is analyzed to count how many test cases generate a positive neighborhood
coverage (cf. Alg. 2) on j (cf. Eq. 8 and 9). Subsequently, the number of test cases
is also multiplied with wgeq, cf. Eq. 7, to calculate the neighborhood coverage
degeneration factor. Again wqegnrao limits the maximum possible degeneration.

deg

cov,, (]7 Vi, Covred) =1- min(((CO’UgiQ(ﬁ Vi, Covred) - 1) . wdeg)v wdegMaz) (7)

covid (§, Vi, covpeq) = Z Z Z countd® (4, s, £5,v, COVpeq)
v=(N,,CE,1)eV; sSENNpsv fSENFNN,sv
(8)
1 if NeibCovRecur(j, s, fs,v,1,covpeq) >0

countﬁeg (4, 8, M, U, COVpeq) =)
0 otherwise.

9)
The degeneration factors for the data flow (i.e., Dcovd®9) can be calculated
analogously. Due to space restrictions we again abstain from a detailed definition.
By applying the described coverage degeneration technique the proposed test
case selection approach gains a more comprehensive view on the coverage effects
of each test case, than existing work, and therefore will more likely identify faults
that are missed by existing test case selection approaches.
Final Process Node Coverage The presented metrics, i.e., traditional cover-
age as well as neighborhood coverage for control and data flow, together with
degeneration factors are combined to a comprehensive coverage metric for pro-
cess nodes (cf. Eq. 10) which takes a node j, a test suite configuration V;,
and a coverage reduction factor cov,.q (applied when determining the neigh-
borhood coverage) to determine the coverage which is achieved by V; on j. Note,
DNeibCov, (V;, j, cov,eq) calculates the neighborhood coverage based on the pro-
cess model’s data flow.

Cs(Vi, j, covyea) = covis?(j, Vi) - covpn(Vi, §)
+ covdeg(j, Vi, covpeq) - NeibCou(V, j, covyeq) (10)

n

+ Dcovfﬁg (4, Vi, covpeq) - DN eibCov(Vy, j, coVreq)

The proposed concepts address the first two identified research questions
by providing a more comprehensive view on coverage calculation and coverage
requirements than existing process test case selection work. However, we also
want to provide a solution to address flexible requirements and questions such
as “Which test cases should be selected to get the maximum possible coverage
within three hours test suite execution time?”. We assume that Genetic Search
Algorithms can play a viable role to address such challenges.

3 Genetic Selection Algorithm

A Genetic Algorithm (GA) is a search heuristic that mimics natural selection [4].
The first step is to determine the individuals of the problem and their encoding.
For test case selection, intuitively, the test cases are encoded as binary genes
and combined to individuals, i.e., the test suits. Multiple individuals then form
the population. Each individual is assessed using a fitness function that can
calculate the individual’s quality. Subsequently the individuals with the highest
quality (i.e., fitness) are selected and combined (i.e., by applying crossover and
mutation) to form the next generation of the population. Repeatedly applying
the last step typically increases the average quality of the whole population over
time and allows to find an adequate solution to the search problem.

Genetic Encoding Each potential test suite configuration V; (cf. Def. 1) con-
sists of multiple test cases, i.e., the V; :=< vy,... ,vx > which is encoded in a
binary way based on the value of the attribute enabled in each v:

Ve i=< vy.enabled, . .. ,vi.enabled > (11)

Generating the First Population The first population (i.e., the initial set of
all currently evolving test suite configurations, P :=< V"¢, ..., V§™¢ > where
S is the user chosen maximum population_size) is generated randomly. More
precisely, population_size test suite configurations V;*"¢ are generated and filled
with randomly generated genes (i.e., test case enabled states). A random number
rand € [0, 1] is generated for each test case in V;. If rand is lower then 0.5 then
the test case (i.e., the gene) is disabled (0), else enabled (1).

Fitness Function A fitness function allows to assess the quality (i.e., fitness
level) of each individual (i.e., of each test suite configuration). For example, here
the quality is measured by taking the test suite coverage, which is achieved by a
specific test suite configuration, in relation to the required test suite configuration
execution time. We assume a test suite configuration with a higher fitness level
as better than one with a lower fitness value.

The following fitness function (cf. Eq. 13) utilizes Eq. 12, to asses the achieved
test coverage of a test suite configuration V"¢, Therefore Eq. 12 adds up and
determines (by using Eq. 10) the coverage of each process node j. We assume,
that a node does not gain any advantage from achieving a coverage level which
is above its own calculated optimal coverage level (cf. Eq. 12, Eq. 13, and Eq.
14). Hence, we take the minimum between the achieved final coverage Cs (cf.
Eq. 10) of the node j and its optimal coverage C, (cf. Eq. 1). The added up
coverage is then divided by the maximum possible optimal coverage (i.e., the
sum of all nodes’ optimal coverage) to normalize the generated result.

7 Note, that V"¢ can always be decoded into a specific V; by using the known V and
setting the respective enabled states.

Z min(Co(j), Cs (V”], Covred))

Z Colj)

The first fitness function, cf. Eq. 13, utilizes a user-chosen minimum test
coverage value covey; € [0, 1] and assesses a test suite configuration V; to check if
Vi achieves at least covep; percent of the total possible optimal coverage within
minimal test suite execution time.

cov, (Vi, COVpeq) =

(12)

cov,(V;, covyeq) /100 if cov, (V;, covpeq) < covopj
fitvninT(‘/U COVobj, CO’UTEd) = Z 7nin(co (])7 Cs (‘/;~,]> Cov‘rcd))
JEN .
= otherwise.
(13)

Specifically, fit,;n7 starts by determining if the minimum coverage objec-
tive covep; is already fulfilled by comparing the average node coverage of V;
(using cov, (V;, covreq), Eq. 12) with covep;. If the covey; is not fulfilled then the
achieved coverage is divided by 100 and returned. Hence, the fitness increases
when additional test cases are enabled, such that the GA is motivated to enable
at least enough test cases to achieve a minimum coverage of COVgp; -

If the covep,; is fulfilled then the achieved coverage is divided by x. x is defined
as the sum of the total execution times over all enabled test case in V;. Calculat-
ing the execution time of a single test case v starts by determining the average
execution time (e.g., based on timestamps stored in recorded process execution
logs®) of each node which is part of the execution path N,. Subsequently, the
average execution times of each node in N, are summed up to calculate v’s ex-
pected total execution time. Hence, the fitness increases by preferring test cases
that are executed quickly while providing a high amount of additional coverage.

The second fitness function fit,,q.(V;, covreq) (cf. Eq. 14) assesses a test suite
configuration V; to check if V; achieves the maximum possible total process model
coverage in at most g total test suite execution time. Therefore, it calculates the
total test coverage achieved by V; and multiplies it with a dynamic penalty
factor if the total execution time x of V; is too high compared to the user chosen
maximum execution time objective g (cf. Eq. 15).

fitmaz(Vi, cOVreq) = Z min(Cy(5), Cs(Vi, j, covreq)) | - (1 —d(g,2)) (14)

JEN
0 ifx<yg
d(g,z) =141 ifx>g-2 (15)
(m;g) otherwise.

8 Note, if no execution logs are available then the expected execution times can still
be specified manually, e.g., by a domain expert.

Equation 15 checks if the total test suite execution time of V; (i.e.,) is
below the user chosen execution time objective g. If x is below g (i.e., the total
execution time is below the chosen maximum one) then no penalty is applied.
The maximum penalty of 1 is applied if = is twice as high than g. Finally, if z is
between g and and two times g then a fraction of the maximum penalty is applied
to increase the flexibility of the presented approach. Hence, the algorithm is able
to select a test suite configuration which is slightly above the chosen maximum
execution time if it provides a dramatic coverage improvement for only a slight
miss of the execution time objective.

Selection of Parents Parents must be selected to create offspring that can form
the next generation [4]. Therefore, the user chooses an offspring_rate that con-
trols how many percent of the old generation will be selected as parents and re-
placed with their children to generate the next generation. The selection process
itself is based on the Tournament Selection [4] technique. Hence, the algorithm
randomly chooses individuals and compares their fitness. The individual with
the highest fitness is selected until offspring_rate percent of the population_size
are chosen. Tournament Selection was chosen because the selection pressure can
be controlled by varying the amount of compared individuals and it also showed
encouraging results when we compared it with other selection techniques during
the preliminary tests.

Crossover and Mutation The proposed GA utilizes Multi Point Crossover [4].
Hence, two parent individuals are selected and a crossover operation is applied
to generate two new individuals (children). Therefore, crossover_points € [0, I]
(i.e., the user chosen amount of crossover points, where I holds the amount of
test cases stored in a single individual) points are randomly chosen and ordered.
Then the algorithm iterates through all points and the section between the last
point and the current one is swapped between the parents [4]. After crossover,
each generated child is mutated. Hence, the mutation algorithm iterates through
all genes of the child and generates a random value rand € [0, 1] during each iter-
ation. If rand < mutation_rate then the current gene is replaced by a randomly
generated one [4]. Multi Point Crossover was chosen because it provides the
necessary flexibility to adapt it for each problem size using the crossover_points
variable. Finally the generated children replace their parents to create the next
generation of the population.

Termination The GA terminates automatically when the termination condi-
tion, to repeat the algorithm for maz_generation number of times, is satisfied.
It returns the best individual, i.e., the test suite configuration with the highest
fitness value, found until then.

Genetic algorithms provide flexibility (e.g., a custom fitness function can be
integrated to address unique coverage selection requirements) and customizabil-
ity (e.g., by providing a way to exchange algorithm components, such as the ap-
plied crossover method, or by allowing to customize the algorithm’s parameters
for various problem sizes). Hence, we propose genetic algorithms as an expand-
able foundation for process model test case selection and continue by evaluating
their effectiveness in comparison with other test case selection techniques.

4 Evaluation

To assess the feasibility of the proposed process model test case selection ap-
proach it was evaluated using three different process models with increasing size
and complexity. Additionally it was compared with alternative selection tech-
niques, namely random and adaptive greedy selection.

Designing Test Problems The test data which was used for the evaluation
consists out of a) three process models (with low, medium, and high complexity)
b) test cases (one test case was generated for each possible execution path for
each model) and ¢) historic data (e.g., recorded execution logs, to determine
the execution frequency of a node or its average execution time). All test data
were artificially generated and each evaluated test case selection technique was
executed on each of the three models and their related data (i.e., test cases
and historic data). Each test case was sextupled so simulate that the internal
behavior of process nodes is typically very complex and, therefore, multiple test
cases with various test data are required to thoroughly test it.

The process model generation starts with an initial model with a low com-
plexity (20 nodes, 42 test cases, 7 unique execution paths), which was then
extended by adding additional paths and XOR splits to generate a model with
medium complexity (80 nodes, 120 test cases, 20 paths) and high complexity
(266 nodes, 390 test cases, 65 paths). Finally, artificial historic data (i.e., exe-
cution log data) were generated in a deterministic way, e.g., the node execution
time was determined from the node position and a default execution timespan.
Hence, the test data is “stable” and can be reproduced for future evaluations.
Metrics and Evaluation The random, genetic, and adaptive greedy test case
selection techniques were compared as follows. First the proposed genetic search
algorithm based approach tried to answer one of two questions a) “Which test
cases should be executed to achieve a X percent process node coverage within a
minimal test suite execution time?” or b) “Which test cases should be executed
to achieve the maximum possible coverage in Y minutes test suite execution
time?”. Subsequently, the timespan which is required to execute the test suite
configuration which was identified by the proposed genetic search algorithm (for
questions a or b) was calculated. Finally, the determined timespan was used
by the other two evaluated selection techniques (random selection and adap-
tive greedy selection). Both selected one test case after another until selecting
another test case would create a test suite configuration which requires more
time to execute than the one identified by the proposed genetic algorithm based
technique.

The random selection technique randomly selects each test case from a list
of not yet selected test cases. Adaptive greedy selection, however, analyzes and
orders each available not yet selected test case based on its additional coverage/
required execution time balance. Finally, the test case which provides the most
additional coverage for the least additional execution time is chosen. The genetic
selecting technique utilizes the approach described in Section 3. The test suite
configurations (i.e., the configuration identified by each of the three selection
algorithms) were evaluated by determining the achieved final average node cov-

erage, cf. Eq. 12 (i.e., the optimal coverage, C, (cf. Eq. 1), of each node j € N
of a process model O = (N,CFE, DE) is added up and then compared with the
added up achieved final node coverage, C; (cf. Eq. 10), provided by the analyzed
test suite configuration). In addition, fault coverage was determined by assigning
artificial faults to each process node. We assume that a test suite configuration
V; would find more faults for the process node j if the achieved final coverage
gets closer to the optimal coverage of j (cf. Eq. 16).

1 if Cs(Vi, J, covreq) > 0 A Cs(Vi, J, covreq) < Co(4) - 0.25
3 if Cs(Vi, J, covreq) > Co(4) - 0.25 A Cs(Vy, j, covreq) < Co(4) - 0.50
fault(Vi, j, covpeq) = 1 5 if Cs(Vi, 4, covreq) > Co(4) - 0.50 A Cs(V3, 4, covreq) < Co(4) - 0.75
7T A Cy(Vi, j, covpeq) > Co(4) - 0.75
0 otherwise.
(16)
> fault(Vi, j, covrea)
jeN
faultCoverage(V;, covpeq) = ! IN| -7 (17)

Note that cov,eq represents the user chosen coverage reduction factor which

is utilized at Cy(V;, J, covreq) (i-€., the coverage calculation, cf. Eq. 10) during
the incorporation of the neighborhood coverage of j. For example, if the achieved
coverage (for the process node j) would be between 25% and 50% of j’s optimal
coverage, then it was assumed that three out of seven faults would be found by
the test suite for the node j. Finally, the detected faults for each node were added
up and divided through the maximum possible detectable amount of faults to
normalize the result of Eq. 17.
Results The evaluation results were generated by applying all three evaluated
test case selection techniques (the proposed genetic selection algorithm, random
test case selection, and adaptive greedy selection) on the described three test
problems. For each test problem two questions were analyzed a) “Which test
cases should be executed to achieve a X percent coverage within a minimal test
suite execution time?” whereby X is 20, 40, 60, or 80 percent of the maximal
possible optimal total process coverage and b) “Which test cases should be
executed to achieve the maximum possible coverage in Y minutes test suite
execution time?” whereby Y is 20, 40, 60, or 80 percent of twice the time which
would be necessary to execute each process node once.

Primary tests were executed to identify appropriate configuration values for
the designed genetic test case selection technique. Mutation_rate (0.5%), Waeg
(i.e., coverage degeneration, 10%), Waegrrae (i-€., maximal coverage degenera-
tion, 50%), cf. Eq. 6 and 7, covyeq (i-e., neighborhood coverage reduction per
step, 30%), cf. Alg. 1 and 2, all weights w (e.g., for coverage metrics, 1) and
offspring_rate (50%) were fixed for all three test problem complexity levels.
The value of maz_generation (low complexity test problem:300, medium:500,
high:800), population_size (200, 400, 800) and crossover_points (4, 8, 15), chosen
individuals for tournament selection (3, 5, 10), however, were chosen individually
to reflect the increasing test problem complexity. For example, it was found that
a low number of crossover_points would, naturally, exchange very large chunks

Achieved Average Node Coverage Achieved Average Node Fault Coverage
90% 100%

90%
80%
70%
60%
50%

CowerageAchieved ~ 40%
——f— Genetic 30%
Cov. Ach. Greedy 20%

80%
70%
60%
50%
40%
30%
20%

»

L e

! —l— Faults Found Genetic

100 B 0% Fau. Fou. Greedy

+ Fau. Fou. Random

0% w0 Cov. Ach. Random 0%

20% Coverage 40% Cov. 60% Cov. 80% Cov. 20% Cowerage 40% Cov. 60% Cov. 80% Cowv.
User Chosen Coverage Objective User Chosen Coverage Objective

(a) Process node coverage (b) Fault detection rate

Fig. 3. Average across all three process model complexities for question a (User chosen

coverage objective)
Achieved Average Node Coverage

90% Achieved Average Node Fault Coverage
80% =i CoverageAchievedGenetic 70%
° Cov. Ach. Greedy 60%
70% s Cov, Ach. Random
60% - : 50%
50% 40%
40%
J 30%
30% - iy " =8 Faults Found Genetic
A " o 20% e
20% ot e
e - Fau. Fou. Greedy
10%» 10%
s Fau. Fou. Random
0% 0%
40% Exec. Time 80% Exec. Time 40% Exec. Time 80% Exec. Time
20% Execution Time 60% Exec. Time 20% Execution Time 60% Exec. Time
User Chosen Maximum Execution Time User Chosen Maximum Execution Time
(a) Process node coverage (b) Fault detection rate

Fig. 4. Average across all three process model complexities for question b (User chosen
maximum test suite execution time)

of test case configurations during child generation. This hardens the fine tun-
ing of the identified results during the final stage of the search (this challenge
increases from small to large test problem complexity/sizes, so the number of
crossover_points was increased whenever the test problem complexity increases).

The results show that GA outperforms the random and adaptive greedy
selection techniques (cf. Fig. 3 and 4). It is also noticeable that GA benefits from
increasing the test problem complexity. The GA generated a 3.6%/3.5% higher
coverage/fault detection, compared to the adaptive greedy selection technique
for questions a, for the low complexity test problem, while for the test problem
with high complexity the genetic selection technique provides a 9%/10.3% higher
coverage/fault detection than the adaptive greedy selection (cf. Table 1 and 2).

We conclude that GA is able to make better use of the additional flexibility
(i.e., it can be chosen from more test cases or more test suite execution time is
permitted) provided by more complex test problems. Hence, it is better suited
for complex process models and selection requirements than the compared tech-
niques but still provides at least equally good results for all other problems. The
improvement is even higher if the results are compared with random selection.
The evaluation also shows comparable results for question b (cf. Fig. 4).

Note, that the results were generated by averaging the outcome of 100 runs
of the random and genetic approach on each problem and question, so that

Table 1. Raw evaluation results for question a (User chosen coverage objective)

Process Complexity, Proposed Genetic Selection Approach|Adaptive Greedy Selection Random Selection
Node Coverage Objective|Achieved Coverage Detected Faults Achieved Coverage Detected Faults|Achieved Coverage Detected Faults
Low, 20% Coverage 21.2% 23.5% 19% 21.4% 8.1% 3.2%
Medium, 20% Coverage [20.5% 21.5% 15% 16.4% 10.2% 10.8%
High, 20% Coverage 20.2% 21% 17% 17.5% 15.7% 13.2%
Tow, 40% Coverage 11.6% 16.4% 38.7% 10% 25.3% 26.7%
Medium, 40% Coverage [40% 42.7% 35.1% 37.1% 31% 30.2%
High, 40% Coverage 40% 43.3% 36.1% 37.8% 29% 29.5%
Low, 60% Coverage 60.2% 70.7% 53.4% 62.2% 50.3% 48.7%
Medium, 60% Coverage [60% 65.9% 53% 56.6% 45.7% 46.6%
High, 60% Coverage 60% 65.4% 54.6% 56.4% 45.3% 45.7%
Low, 80% Coverage 80% 94.2% 69% 81.4% 65% 69.6%
Medium, 80% Coverage [80% 86.9% 73% 78.7% 66% 68.5%
High, 80% Coverage 80% 83.1% 1% 73.2% 60% 63.1%

Table 2. Raw evaluation results for question b (User chosen maximum test suite
execution time)

Process Complexity, Proposed Genetic Selection Approach|Adaptive Greedy Selection Random Selection
Max Execution Time Objective|Achieved Coverage Detected Faults Achieved Coverage Detected Faults|Achieved Coverage Detected Faults
Low, 20% Execution Time 32.1% 37.1% 32.1% 37.1% 11% 13%
Medium, 20% Execution Time (24.6% 24.6% 20.3% 20.3% 14.7% 14.2%
High, 20% Execution Time 18.9% 21.3% 18.1% 20.62% 11.8% 13.1%
Low, 40% Execution Time 43% 47.1% 41.6% 45.2% 29.3% 30%
Medium, 40% Execution Time |36.6% 37.6% 31.5% 33.3% 21.2% 27.8%
High, 40% Execution Time 30.5% 34.7% 26.1% 30.1% 21.7% 22.3%
Low, 60% Execution Time 53.6% 64.3% 48.1% 55.7% 38.5% 44.1%
Medium, 60% Execution Time [48.1% 50.5% 39.2% 41.2% 35% 35.8%
High, 60% Execution Time 42.1% 46.8% 33.1% 38% 28.2% 32%
Low, 80% Execution Time 61.1% 70.7% 55% 60.5% 47.9% 56.5%
Medium, 80% Execution Time |56.4% 60.7% 50.1% 52.6% 43.1% 45.6%
High, 80% Execution Time 48.8% 55.2% 42.6% 48% 38.6% 37.1%

the randomized behavior of those approaches does not falsify the results (e.g.,
because of a single “randomly” generated outstanding good or bad result).

5 Related Work

Related work can be classified into two categories: test case selection and min-
imization. Minimization is only partly relevant for this paper because it con-
centrates less on selection, but more on test suite redundancy prevention, i.e.,
removing test cases that are only covering process parts that are already suffi-
ciently tested by other test cases. However, the research areas are connected and
the proposed approach can be used to generate results which are comparable
to existing minimization approaches, e.g., by defining a 100% coverage objective
which should be reached in minimal test suite execution time. Hence, this section
also discusses minimization approaches.

Two strategies are currently applied to achieve minimization. One option is to
analyze and minimize an already existing set of test cases (also called test suite).
Farooq and Lam describe their minimization objective as a Traveling Sales Man
[6] or an Equality Knapsack problem [5]. Subsequently, they apply Evolutionary
Computation heuristics to search for a minimal set of test cases that still pro-
vides full structural coverage. However, the authors only used their approach to
minimize test cases which were generated through model based software testing
using UML activity diagrams. Alternatively, the test case generation algorithms

can try to generate a duplicate/redundancy free test suite. [1] utilizes Orthogo-
nal Array Testing (a statistical method that calculates which parameter values
should be tested in which combination) and semantic constraints to reduce the
amount of generated process model test cases. [2] instead searches for an optimal
amount (e.g., minimal amount of test points which are necessary to achieve a
user chosen coverage level) of test points were sensors can be added to a process
model to detect faulty behavior.

Selection analyzes all test cases and selects those which provide the most
value. [12] selects all test cases which cover process model areas which were
changed since the last test runs. Ruth [16] instead concentrates on external
partners and selects only test cases which cover a process partner that was
adapted. Ruth’s approach requires that each partner process definition is publicly
available which is rather unlikely in real world scenarios.

Overall, existing work is frequently utilizing simple and relatively inflexible
selection requirements such as “Which test cases should be selected to achieve a
100% coverage?” and therefore is, e.g., not trying to optimize test suite execution
times to their full potential. Additionally, existing work is treating each process
node equally and is, therefore, not respecting its unique coverage requirements
(i.e., current work is counting a node as completely tested if at least a single
test case tests this node once, independently from the nodes’ complexity), which
reduces the likelihood to identify a fault because important nodes are not tested
as thoroughly as necessary. Finally, we found that existing work does not utilize
a comprehensive approach (such as the presented Neighborhood Coverage) to
describe test case coverage effects.

6 Conclusions

This paper provides coverage metrics and a Genetic Algorithm (GA) for test
case selection specifically geared towards process model testing (— RQ1 and
RQ2). The evaluation results support their feasibility even for complex process
models. It is also shown that historic information such as log files can positively
influence the generated results. They enable the incorporation of test case execu-
tion times, hence enabling the selection of those test cases that fulfill user-chosen
requirements in minimal time. Especially the last point was not addressed un-
til now by process model test case selection work. The presented GA basically
enables the creation of more flexible test case selection approaches for process
models (addressing RQ3 and RQ4). It can also be adapted to meet unique user
requirements, such as “node X must always be tested”, “only the partner pro-
cesses should be tested”, or “only modified process parts should be tested”, by
configuring adequate optimal coverage calculation metrics. As shown, flexibility
can be further increased based on different fitness functions. Overall, this work
provides the most comprehensive and flexible process model test case selection
solution so far, especially because it takes the characteristics of process mod-
els, e.g., by integrating neighborhood coverage metrics and execution log files,
into account. Future work will incorporate process model test case prioritization

and minimization by, for example, analyzing the applicability and feasibility of
flexible GA for these domains. In addition we want to conduct a case study to
assess the impact of the proposed coverage metrics (e.g., optimal coverage or
neighborhood coverage) on the test selection quality in real world scenarios.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Askaruinisa, A., Abirami, A.: Test case reduction technique for semantic based
web services. Computer Science & Engineering (3), 566-576 (2010)

Borrego, D., Gémez-Lépez, M.T., Gasca, R.M.: Minimizing test-point allocation
to improve diagnosability in business process models. Systems and Software (11),
2725-2741 (2013)

Cardoso, J.: Process control-flow complexity metric: An empirical validation. In:
Services Computing. pp. 167-173. IEEE (2006)

Eiben, A., Smith, J.: Introduction to evolutionary computing (natural computing
series). Springer (2008)

Farooq, U., Lam, C.P.: Evolving the quality of a model based test suite. In: Software
Testing, Verification and Validation. pp. 141-149. TEEE (2009)

Farooq, U., Lam, C.P.: A max-min multiobjective technique to optimize model
based test suite. In: Software Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing. pp. 569-574. IEEE (2009)

Gruhn, V., Laue, R.: Complexity metrics for business process models. In: Business
Information Systems. pp. 1-12 (2006)

Harman, M., Jones, B.F.: Search-based software engineering. Information and Soft-
ware Technology (14), 833-839 (2001)

Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In: Service-Oriented Computing. pp. 66-78. Springer (2009)

Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for difference
analysis of process models and instance traffic. In: Business Process Management.
pp. 219-226 (2013)

Leymann, F., Roller, D.: Production workflow concepts and techniques. Prentice
Hall PTR (2000)

Li, B., Qiu, D., Ji, S., Wang, D.: Automatic test case selection and generation
for regression testing of composite service based on extensible bpel flow graph. In:
Software Maintenance. pp. 1-10 (2010)

Li, Z.J., Sun, W., Jiang, Z.B., Zhang, X.: BPEL4AWS Unit Testing: Framework and
Implementation. In: Web Services. pp. 103-110. IEEE (2005)

Mendling, J.: Metrics for process models: empirical foundations of verification,
error prediction, and guidelines for correctness, vol. 6. Springer (2008)

Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16, 91-116 (2004)
Ruth, M.E.: Concurrency in a decentralized automatic regression test selection
framework for web services. In: Mardi Gras Conference. pp. 7:1-7:8. ACM (2008)
Stoyanova, V., Petrova-Antonova, D., Ilieva, S.: Automation of Test Case Gener-
ation and Execution for Testing Web Service Orchestrations. In: Service-Oriented
Systems Engineering. pp. 274-279. IEEE (2013)

Zakaria, Z., Atan, R., Ghani, A.A.A., Sani, N.F.M.: Unit testing approaches for
BPEL: a systematic review. In: Asia-Pacific Software Engineering. pp. 316-322.
IEEE (2009)

