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Abstract

Context: Testing is a key concern when developing process-oriented solutions
as it supports modeling experts who have to deal with increasingly complex
models and scenarios such as cross-organizational processes. However, the com-
plexity of the research landscape and the diverse set of approaches and goals
impedes the analysis and advancement of research and the identification of
promising research areas, challenges, and research directions. Hence, a com-
prehensive and systematic review that covers state of the art research in the
process model testing domain is required.
Objective: The objective is to analyze process model testing approaches to
identify and present, connected research domains and the used terminology.
Additionally, research challenges, gaps, and future research directions are iden-
tified and discussed.
Method: A systematic literature review is conducted to identify interesting ar-
eas for future research and to provide an overview of existing work. Over 6300
potentially matching publications were determined during the search (litera-
ture databases, selected conferences/journals, and snowballing). Finally, 153
publications from 2002 to 2013 were selected, analyzed, and classified.
Results: It was found that the software engineering domain has influenced pro-
cess model testing approaches (e.g., regarding terminology and concepts), but
recent publications are presenting independent approaches. Additionally, his-
torical data sources are not exploited to their full potential and current testing
related publications frequently contain evaluations of relatively weak quality.
Overall, the publication landscape is unevenly distributed so that over 31 pub-
lications concentrate on test-case generation but only 4 publications conduct
performance test. Hence, the full potential of such insufficiently covered testing
areas is not exploited.
Conclusion: This systematic review provides a comprehensive overview of the
interdisciplinary topic of process model testing. Several open research questions
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are identified, for example, how to apply testing to cross-organizational or legacy
processes and how to adequately include users into the testing methods.

Keywords: Process model testing, Systematic literature review, Testing,
Process, Usability
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1. Introduction

Over the past years, processes have started to be deeply integrated in many
domains such as business, scientific applications, and e-learning [1]. Hence,
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Figure 1: Process model with three example test-cases.

ensuring the stability, correctness, and feature completeness of processes has
become a crucial challenge and an emerging major research topic.

Terminology. Processes have risen to deeply integrated solutions which are ex-
tremely important for various organizations [137]. During this development,
multiple definitions emerged [2]. For this Systematic Literature Review (SLR)
a process is defined as ‘a structured set of activities designed to produce a spec-
ified output for a particular customer or market ’ [3, p. 5].

In addition, this SLR concentrates on process testing (i.e., testing of pro-
cesses models for properties such as conformance, correctness, or quality of
service using test-cases) approaches. Hence, testing has been defined as ‘oper-
ating a system or component under specified conditions, observing or recording
the results and making an evaluation’ [4, p. 76].

Figure 1 illustrates how one of many possible types of test-case definitions
can be used to ensure that process model activities have an adequate (i.e.,
correct) internal behavior. In this example, the test-cases consists of an expected
execution path which should be followed by the process model during the test-
case execution and input data that should guide (e.g., at conditions) a correct
process model definition to follow the predefined expected execution path (cf.,
[S27]). During the test-case execution an instance of the process model is created
and instrumented using the test-case input data. Subsequently the process
model instance execution is monitored and the executed process model path is
compared to the expected execution path. A fault can, for example, be identified
if a process instance does not follow the expected execution path or if an activity
reports an internal error (e.g., if T1 would ‘visit’ Node E because there was an
error at Node B which did set variable b to some value greater than 3).

Research challenges. Cross-Organizational Scenarios: A typical automobile
manufacturer, for example, uses thousands of processes in different domains such
as research, production, or management. Hence, current processes frequently
integrate a diverse set of resources and external partners, thus creating cross-
organizational processes [5]. At such a complex process a single undetected
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error can result in lawsuits or loss of confidence [6]. Therefore, it becomes
necessary to constantly apply tests to ensure, for example, process soundness
and compliance [7]. However, testing cross-organizational process models is
substantially more complex than testing, for example, process models which are
only used internally at one organization. Why? Because external partners can
change noticeably (e.g., until some user reports an error that a process no longer
executes correctly). Additionally the partners must frequently be handled as a
black boxes, so it is not possible to observe their internal behavior which would
be helpful to check their correctness. Finally, the respective partners can be
chosen dynamically just in time during the process model execution which makes
it harder to create deterministic tests. Additionally the testers have to deal with
network communication, latency, service level agreements, and typically a more
diverse error handling mechanic which must be tested throughly. Note, complex
error handling is often specified because, for example, there can be timeouts,
corrupted data, or unspecified partner behavior which must be ‘foreseen’ and
handled by exception paths. The needs for cross organizational processes also
exist in other domains such as education, science, or health care.
Volatile Environments: Process models must constantly be adapted to react
on changing environmental conditions and requirements [8]; a great challenge
for companies/organizations and their employees [137]. However, by applying
tests it can become easier to ensure quality and stability [S14] because, testing
allows to identify unintentional errors and no longer executable use-cases (e.g.,
caused by a lack of employee skills or training [9]). This applies especially to
long used processes repositories where the original process designers frequently
left the organization, documentation is outdated or non-existent, and a constant
time pressure requires to quickly implement adaptations into feature crowded
process models (legacy processes).
Flexibility and Costs: Process testing approaches also struggle with addi-
tional challenges. One of them is related to the flexibility of process modeling
languages, which allow to integrate various components [6]. Hence, testing ap-
proaches have to deal with the simulation or integration of users, automatic
systems, and various partners [S65,S97]. For example, it’s important that the
tests do not increase interaction liabilities (payed for accessing external part-
ners) to an unjustifiable extend (cf. [S12] and [10]).
Diversity: Another challenge is the diversity of up-to-date process modeling
languages [11]. For example, the WS-Business Process Execution Language
(BPEL) [12] depends on specific technology (e.g., XPATH). Others, such as
the Business Process Model and Notation (BPMN) [13] describe a similar pro-
cess behavior using more abstraction and a technology independent approach.
Testing approaches therefore need to keep the specific characteristics of pro-
cess modeling languages and their enactment systems in mind to find the right
balance between flexibility and specialization [S92].

These are just some examples which demonstrate the flexibility and complex-
ity of the ‘process world’. However, testing is a promising approach to address
increasingly complex process scenarios and can also be applied complementary
to existing approaches which concentrate mainly on soundness and compliance
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(e.g., [14,15]).

Motivation for the systematic literature review. Testing is used at the software
development domain since more than 20 years [16]. Hence, we assume that the
process testing community is influenced by the software domain. However, it
has not yet been investigated if an interlocking exists. Furthermore, the process
modeling community has already created conformance checking (e.g., [17]) or
validation (e.g., [18]) techniques which are not based on tests. Hence, the ques-
tion arises which challenges are addressed by process testing approaches (e.g., to
asses the value of the test based approaches or to identify not sufficiently covered
areas). In this context the question arises if current process testing research is al-
ready covering upcoming challenges. For example, cross-organizational process
scenarios grew in importance over the past years; are those already supported
by process testing approaches? Subsequently, it’s also important that potential
users are capable of applying the presented approaches (e.g., which skill-set is
needed? Was the applicability of current approaches proven through user and
case studies?). Finally, process testing emerged to a complex and extensive
research domain. It is therefore hard to get an overview above the existing
work. Hence, a SLR would greatly contribute to the understanding and future
development of the process testing discipline.

This paper is organized as follows. Section 2 starts by outlining the applied
research methodology. Hence, it discusses the research questions, literature
search (6256 papers were discovered), literature selection (153 relevant papers
were identified), data extraction and classification strategy. The results are
presented in Section 3, which is also discussing existing SLRs and identifies
the main testing approaches. Classification techniques are utilized in Section
4 to compare the identified main testing approaches with the required skills/
knowledge and to analyze if existing test approaches support upcoming chal-
lenges. The identified gaps and promising challenges are discussed in Section
5. Subsequently, Section 6 discusses the limitations of this SLR. The paper is
concluded in Section 7.

2. Research methodology

This SLR is based on a systematic literature review (cf. [19–22]). Multiple
guidelines and best practice recommendations were investigated, ranging from
domains like psychology [23] to software development [21]. To our knowledge
there are currently no guidelines available which specifically focus on the needs
and requirements existing in the process modeling domain. Hence, we examined
existing reviews and guidelines (cf. [19–21,24]) to form an appropriate approach.

The applied research methodology is condensed into Figure 2. First the
need for this review is identified (cf. Section 1) by investigating multiple papers
(including a preliminary search) and discussions with experienced researchers.
Those preparatory steps allowed us to create the initial results which we con-
sidered to be analyzable by a SLR. Then we continued by searching/checking
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Figure 2: Research methodology.

already existing SLR in the process modeling domain. Subsequently, the au-
thors designed the SLR and documented it within a review protocol. This was
followed by a literature search, data preparation, and date extraction. synthesis
into multiple categories. Finally, the results were documented, classified, and
used to identify novel research challenges and research areas.

2.1. Research questions

Research Questions (RQ) are extremely important for any systematic review
[22]. Hence, we start by discussing our RQ.

RQ1 What does testing in process model design related areas mean (terminol-
ogy, common understanding, related research areas)?

RQ2 Which testing approaches are currently in use to test process models and
how are their objectives defined?

RQ3 What are the main process testing areas the research community is cur-
rently concentrating on?

RQ4 How are up to date testing approaches suited for current process chal-
lenges?

RQ4.1 Which skills/knowledge and manual work are required to prepare a
test-case?

RQ4.2 How are current approaches dealing with upcoming challenges such
as legacy processes or cross-organizational scenarios?

RQ1 to RQ3 focus on generating an understanding of the complex topic
and its diverse research directions, while RQ4, RQ4.1, and RQ4.2 focus on
identifying the suitability of the published approaches for pressing challenges in
the process modeling and testing domain.

RQ1 concentrates on finding out how testing is defined by the research com-
munity and which research areas are interconnected. This definition of RQ1 en-
ables the identification of relevant resources by building up keywords to search
for, forming search strings, and by identifying relevant sources.
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The search results are then analyzed in order to identify the main approaches
and objectives of up to date process testing research to address RQ2 and RQ3.

Classification approaches are considered by the authors as an promising ap-
proach to address RQ4.1 and RQ4.2. For RQ4.1 a classification approach will
be used that compares the required knowledge/skills/training (to utilize the
available testing approaches) with the most important testing techniques (e.g.,
unit or regression testing). For RQ4.2 it will be analyzed if current testing
approaches were designed to support legacy processes or cross-organizational
scenarios. Hence, RQ4 aims on finding research challenges and gaps [22].

It’s generally accepted as a best practice approach to check if a new SLR
is really necessary upfront before conducting it [22]. Hence, we are adding
a preliminary RQ0 which specifically focuses on determining if RQ1 to RQ4
(including their sub-questions) can be answered by existing SLRs.

RQ0 Are existing systematic literature reviews already providing answers for
the formulated research questions (RQ1 to RQ4) in whole or in part?

2.2. Literature search

The literature search was realized in a three-step process which is executed
twice, once for the search for existing SLRs and, afterwards, once for the main
SLR to identify relevant research papers which answer the discussed research
questions.

For the initial search for existing SLRs we concentrated our efforts on large
digital research databases, especially SCOPUS, IEEE Xplore, DBLP, and ISI
Web Of Knowledge (includes the Springer database). Due to the broad base of
sources we assume that no existing SLR was left behind.

The main SLR applies a more targeted approach which utilizes a combined
vertical and horizontal search. The horizontal search is based on digital research
databases (SCOPUS, ISI Web Of Knowledge, and ACM Digital Library), fol-
lowed by a manual vertical searches which focuses on selected top ranked sources.
A detailed list can be found in the appendix.

Different search terms were used for searching existing SLRs (a) and for
searching interesting papers for this new SLR (b). We used a systematic method
to construct the necessary terms, adapted from [23]. For a) the search string
was built by combining terms (using OR/AND) which identify SLRs (literature
review, research review, systematic review, research synthesis, meta-analysis),
interesting areas (validation, verification, test, conformance, compliance, con-
straint), and terms which narrow the results on processes (workflow - workflow
is frequently used as a synonym for process, therefore, we added it to the search
keywords list -, business process). For b) the search string was composed of
the interesting area (test) and narrowing terms (workflow, business process).
Stemming and wildcards (e.g., test* to cover also testing) were applied where
possible.

The time frame for the search for primary papers was limited to papers which
were released at the year 2013 or earlier. This strengthens the reproducibility
of this SLR because the literature search was conducted during the second and
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Figure 3: Overview of the (intermediate) search results.

third quarters of 2014. Hence, all papers from 2014 were not already released and
researchers would probably gain different search results if they are reproducing
this SLR, for example, in 2015. The search for existing SLRs was not limited.

After the initial search, backward and forward snowballing [25] were applied.
The search for existing SLRs identified 382 papers. 6256 papers were iden-

tified during the search for the new SLR (cf. Figure 3). Filtering for duplicates
and applying inclusion/exclusion criteria to assure the relevance of each indi-
vidual paper resulted in following findings: 6 relevant SLRs exist in a similar
area (from 382 papers) along with 153 papers (from 6256) that were discovered
as relevant for this new SLR.

2.3. Literature selection

Following on from the search, the raw data was aggregated. Subsequently,
the SLR process was continued by filtering the papers based on criteria which
were defined and documented upfront at the SLR protocol. The documented
selection/filtering process consists of two main steps, whereby each of those
contains two to three sub-activities (cf. Figure 3). First, the paper’s title and
abstract were checked. Second, the introduction, conclusion, and (if the authors
still could not clearly identify it as relevant or not relevant) the full text were
read and checked if the paper is related to processes and testing.

This SLR applied the following inclusion and exclusion criteria. To be in-
cluded a paper must a) be a primary paper (e.g., no doctoral theses – it’s ex-
pected that the findings are also published as a paper), b) focus on testing (for
this new SLR and existing SLRs) and related areas (existing SLRs only), and c)
processes. The d) abstract, title, or keywords must contain relevant terms such
as business process or test (compare Section 2.2). In addition, the paper must
e) be published in English (enabling international researchers to reproduce the
findings) and the publication must f) be published in a peer reviewed journal
or conference. The exclusion criteria excluded a) short/poster papers (the ex-
istence of a full length paper was assumed), papers whose b) full text was not
accessible, and papers that are c) not presenting novel approaches (e.g. papers
that only present a summary of existing approaches or duplicates).
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Figure 4: Data extraction and aggregation: categorization approach

A paper was immediately excluded if at least one of the exclusion criteria
could be matched. In addition, it was required that a paper matches all inclu-
sion criteria to pass the selection process. An extended duplicate removal was
applied, for example, if a paper was published at a conference and at a journal
then the journal paper was preferred.

The relevance criteria for existing SLRs that potentially contain answers
for the given research questions used a wider focus to assess related areas such
as conformance checking, verification, or validation (cf. Section 2.2). This
decision was made to reduce the likelihood that some relevant publication will
be overlooked.

Altogether, by applying these criteria it was possible to significantly reduce
the number of papers from 6638 to 159 (cf. Figure 3). These 159 papers were
processed in the following.

2.4. Data extraction and aggregation

This SLR extracts information such as the paper’s main topic of interest, the
non-functional and functional objectives of the presented testing approaches,
and the applied validation and evaluation techniques. A multitude of sub-
categories could be assigned to each of those top categories, for example, the
paper’s main topic could be categorized as regression or performance testing.
Hence, we defined a manual extraction process (cf. Figure 4) which started with
a base set of sub-categories (e.g., inspired by existing literature, such as [S58]).
In the following the list of sub-categories was extended when necessary. Finally,
the categories were analyzed and aggregated to form a coherent whole using a
constant granularity level.

The extracted information can be separated into three groups. The first
one contains details mainly used for documentation and organization purposes
(e.g., a unique id), the second one contains generic paper information (e.g.,
author names), the third one contains information such as the abstract, a short
summary of the main ideas and concepts, and boolean values representing if the
authors, for example, address cross-organizational scenarios.

However, the vast majority of extracted information was supported by the
described manual categorization approach, namely the paper’s main objective
(e.g., to present an unit testing approach), functional and non-functional test
objectives, required knowledge/skills to prepare a test, the process life cycle
where it can be used, which validation/evaluation data and approaches are used
(if any), which process views are tested (e.g., control or data flow), the stake-
holders which are addressed by the approach (e.g., domain experts), and the
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inspiration source of the paper (e.g., if the presented approach was ported from
the software development domain to the process testing domain). Altogether
28 individual values were extracted from each paper.

3. Results and findings

First, we will outline which relevant existing systematic reviews were discov-
ered and if those already provide answers for our research questions. This step
will be followed by outlining publication dates of the identified primary papers.

In the following, RQ1 will be tackled by a general discussion what testing
in process design related areas stands for (see Section 3.2). This section is
continued by an overview about the identified main testing areas addressed by
existing publications (e.g., test-case generation, regression testing, and so on;
cf. Section 3.3) to address RQ2 and RQ3.

3.1. General overview on relevant publications

This section starts by outlining the results of the search for existing relevant
SLRs. Afterwards temporal information of the selected relevant publications
will be presented.

3.1.1. Existing systematic literature reviews

By searching literature databases, and applying snowballing to widen the
search area, six unique, relevant (out of 382 search results) publications were
identified which matched the following criteria: the paper must a be a SLR,
focusing on process modeling and test related areas. Subsequently, each SLR
was read in full text, analyzed and checked if its research questions or findings
were already answering one or more research questions of this new SLR – to
address RQ0.

However, it was found that existing SLRs are not able to completely answer
the research questions of this SLR. On reason for this finding was that existing
SLRs [S58–S63] only focus on very narrow areas and, therefore, provide only an
incomplete picture which makes it impossible to asses the research directions and
challenges of the whole process testing domain (e.g., some process testing areas
are not even covered by a single SLR). [S61], for example, concentrates only
on single testing approach (unit testing) and BPEL processes. Hence, it leaves
other testing approaches (e.g., regression testing) and modeling languages (e.g.,
BPMN or Petri Nets) behind. Additionally, it was recognized that the existing
SLRs were, typically published around the year 2010 or earlier. Hence, they
are missing the latest developments. Moreover, the identified SLRs frequently
only concentrated on web service related technologies that represent only a
small excerpt from the whole process modeling domain. For this reasons it was
concluded to continue with performing this SLR.
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Figure 5: Publications on process model testing published from 2002 to 2013.

3.1.2. Publication time frame

The literature search discovered 153 relevant papers (released between 2002
and 20131). A detailed overview can be found in Figure 5 which shows that
the interest in this topic has constantly increased over the years. During the
early years (2002-2005) there were only 0 to 4 publications per year. From 2006
to 2008, the publications increased to 12-19 papers each year. Beyond 2009,
10-31 publications were released each year concentrating on mature topics like
cross-organizational scenarios or test data generation. In 2009, 31 papers were
released. Most likely this is related to the release of BPEL 2.0 in 2007 (cf. [S6]).

This development indicates that the scientific community has a high interest
in the process model testing domain. research.

3.2. Testing in the process domain

This section addresses RQ1. Our findings indicate that a common inspiration
for the identified publications is the software development domain. There, BPEL
is frequently used when developing service oriented software. Hence, authors
which already published on software testing then adapted known concepts and
ported these to the process testing domain (e.g., [S109]). This also influenced
the terminology so that terms like regression or unit testing can be found in
both domains.

1Papers published in 2014 are not included in this SLR to strengthen the reproducibility
of this SLR (cf. Section 2.2).
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Terminology, definition, and common understanding. Several relevant defini-
tions, used in the testing domain, are currently available and published in stan-
dards by the ISO or IEEE. For example, the IEEE 1012-2012 defines test-cases
as a ‘set of test inputs, execution conditions, and expected results developed for
a particular objective’ [26, p. 11]. The definition already states that a test-case
must consist of the required test data, has to set the execution conditions so that
the test can be executed, and that it must define the properties which should
be checked by the test-case. Hence, it divides the test-cases in three individ-
ual problem domains which can be tackled separately. This is also reflected by
research where publications are frequently only focusing one specific challenge
such as the test data generation. Those test-cases are then executed during the
so called testing which was defined, at the IEEE 829-2008, as an ‘activity in
which a system or component is executed under specified conditions, the results
are observed or recorded, and an evaluation is made of some aspect ’ [27, p. 11].

This exemplary definitions provide already the insight that, in general, test-
ing consists of specifying and checking if specific characteristics are met by the
system.

Nevertheless, it must be taken into account that those definitions are tailored
towards requirements of the software engineering domain which has a different
basis for the utilization of tests than the process modeling domain. For example,
the granularity is different. Even small software components frequently contain
way more than a thousand lines of code. A process model, instead, which con-
tains a thousand steps would be recognized as a large enterprise solution and
each step would provide much more ‘value’ compared to a single line of code.
Similar diversions become visible when the utilized log generation practices are
compared between software development and process modeling. Process execu-
tions are frequently logged extensively, sometimes the whole data and control
flow can be extracted from the log (cf. [28]). A comparable extensive logging
approach (e.g., one log output after each method call or changed variable) is
typically not applied at the software development domain [29]. The two do-
mains (software testing vs. process model testing) also struggle with different
challenges. For example, testing concurrent executions is a major challenge at
the software testing domain [30] while on the process model testing domain it is
‘solved’ by multiple authors, for example, by generating a unique test-case for
each possible process model execution path. This is possible, because process
models typically contain way less possible execution paths and individual nodes
(i.e., statements in software testing) than source code. Hence, one of the most
serious challenge when testing concurrent executions, potential state explosions
(i.e., more test-cases/potential execution paths must be checked than possible
in a reasonable amount of time), is mitigated through relatively simple process
model structures and various state explosions prevention techniques originating
from formal testing approaches [S33]. Hence, generating and testing all poten-
tial concurrent node execution orders and execution paths is frequently possible,
cf. [S19,S33,S113,S123].

The differences, mentioned above, have created a diverse field of techniques
and concepts that use unique approaches (not based on testing) to tackle prob-
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lems like validation, conformance checking or verification at the process do-
main. Conformance checking, for example, analyses if a model’s implementa-
tion/execution mimics the process model or fulfills specific requirements. This
objective can be achieved by tests [S81,S91] or by a different technology called
log mining [31,32]. Another example are soundness properties like deadlocks
or livelocks and their validation. One possibility is to transform the process
model into a formal representation (e.g., a Petri Net) and various tools (e.g.,
the CPN-tools) and algorithms can then be applied (cf. [33]). Of course, a check
for soundness properties can also be implemented with tests. For example, by
checking if all tests have terminated (for deadlock detection) or by applying a
static analysis of the process’s control flow (by e.g., testing for known deadlock
patterns [S66]).

All those alternatives slowed down the application of tests at the process
research community, because there were already existing specialized concepts
available which could be pushed forward. So, the initial testing based solutions
were mainly published by researchers with a strong software development back-
ground. But today a increasing interest (cf. Section 3.1.2) into this topic has
emerged at the process modeling research community. Therefore, novel testing
concepts are developed that fulfill upcoming challenges of the process modeling
domain, which are discussed in the following paragraph.

Related research areas. We found that existing publications are relying on al-
ready existing software testing definitions and standards (e.g., what unit testing
stands for). [S32], for example, express that processes have ‘built-in constructs
expressing concurrency and synchronization, thus can be seen as a kind of con-
current programs.’[S32, p. 75].

Nevertheless, there are also some challenges arising independently of the
software testing domain. This includes testing in cross-organizational scenar-
ios which is perceived as ‘complicated substantially by heterogeneous process-
modeling languages’ [34, p. 59] or the testing of legacy processes (cf. Section 5).
Additionally, inter-organizational processes are seen as a key challenge because
of their loose coupling, heterogeneity in modeling languages and distributed
partners [34] for process testing. Another key challenge ‘in testing a composite
service emerges from its inherent variability ’ [S56, p. 138] and the demand for
approaches which allow to describe and test the semantic characteristics of a
process [35].

3.3. Testing of processes and workflows

In this section, RQ2 and RQ3 are examined by investigating current testing
approaches and techniques in the process modeling domain. During the data
extraction process (cf. Section 2.4) each publication was clustered and sorted
based on their main topic/objective to form groups of related publications.
These groups were created based on the number of papers covering one specific
objective (so if more papers concentrate on an objective then it’s more likely
that this objective is used as a group) and their delimitation to the objectives
of other groups. Performance testing publications, for example, although very
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Title No.
Unit testing (Section 3.3.1) 14
Test-case generation (Section 3.3.2) 56
Test data generation (Section 3.3.3) 36
Integration testing (Section 3.3.4) 7
Quality of Service testing (Section 3.3.5) 19
Conformance testing (Section 3.3.6) 21
Regression testing (Section 3.3.7) 13
Formal testing (Section 3.3.8) 28

Table 1: Identified main objectives. Note, a publication that concentrates on multiple topics
and will be counted multiple times.

few (4) were discovered, aim to fulfill so distinctive objectives that they cannot
be appropriately merged with another group (cf. Table 1).

Each of the following sections is addressing one main testing approach (cf.
Table 1) by providing a short description followed by an overview of the relevant
publications and a short conclusion. However, niches which are not addressed
by a sufficient number of publications to justify an independent section are
discussed in Section 3.3.9.

3.3.1. Unit testing

To apply unit testing, the system under test is separated into small pieces
which concentrate on individual tasks and functions [S139]. Subsequently, test-
cases are generated for each identified piece which stimulate the process and
compare observed/expected behavior; during test executions the process is typ-
ically isolated from its partners by abstracting its interconnections.

The oldest discovered publications on unit testing are inspired by the soft-
ware engineering domain. For example, [S1] proposes BPEL-Unit, which trans-
forms a BPEL process into Java classes and methods to apply unit testing using
JUnit – a Java unit testing framework. This approach provides great flexibility
because the behavior of each process activity, gateway, and node (i.e., all process
elements) can be described in source code and tested with source code based
unit tests. However, it’s a substantial amount of work to program a sufficiently
detailed process model behavior simulation and we assume that this will not
be applicable by typical modeling experts which most likely are not that well
trained in programming. [S27] manually specifies tests that contain input and
expected output data along with the expected execution paths for Microsoft’s
.NET Windows Workflow Foundation engine. Their approach can not be ap-
plied on other languages or engines which limits its applicability. However, they
provide the possibility to ‘simulate’ the process execution based on the config-
ured test-case input data. Hence, programming is only necessary if external
partners should be simulated during test-case execution.

The following publications are exploiting that BPEL processes frequently
communicate using SOAP messages that can be intercepted, modified, or in-
jected using, for example, a proxy server. Hence, the proposed approached are
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able to fully control and simulate process executions and process partners by
forging appropriate messages.

In [S30] a BPEL test framework is described. However, large parts of the
framework are only proposed for future work and the test-case definition ap-
proach requires an extensive amount of manual preparation (e.g., manual def-
inition of test data and expected results). Manual test-case definition, by de-
scribing the exchanged/expected messages, is also applied by [S41]. The pub-
lication is only concentrating on messages (i.e., order, content, amount) and
is not specifying how the intercepted data can be efficiently analyzed and also
does not observe the internal process execution operations. However, [S41] pro-
vides a neat way to define the abstracted simulated behavior of external process
partners by specifying it as BPEL processes. So it can be expected that the
modeling experts would be able to create those partner abstractions without
requiring too much additional training. But, defining the simulated partner
behavior – presumably – still takes a lot of time. [S40] concentrates not only
on testing composite processes, using BPEL, but also on calculating properties
such as test coverage (i.e., to assess which parts of the process are tested to
which extend). Therefore, a ‘Semantic Flow’ model, which combines the data
and control flow of composite web-services, is generated and analyzed. However,
all test-cases must be defined manually, the paper does not contain any evalu-
ation, and the Semantic Flow is generated based on a separate Web Ontology
Language (OWL) based description of the process. Hence, two entities must be
manually updated when modifying the process, the process model and its OWL
based Semantic Flow representation. Likely both models will start to derivate
over time. A similar concept is also in use by other authors (cf. [S32–S34]) to
map BPELs block-structured process definitions onto graphs.

The previously discussed publications are defining their test-cases manu-
ally. Manual test-case definition can become a very expensive task, a challenge
which was also recognized in [S42]. Hence, [S42] proposes to extract possible
operations, supported by the BPEL process, from a Web Services Description
Language (WSDL) file. However, the testers must still manually define appro-
priate test data and expected results. Hence, an in depth knowledge of the
domain and expected behavior is required and multiple domains must be mas-
tered to define, for each WSDL operation, expected response properties such as
response times, HTTP codes, or XPATH rules. So test-case generation is still
knowledge and time intensive.

However, other authors show that a more extensive automation is possible.
For example, [S32] auto generates unit tests by using an extended control flow
graph (XCFG). The graph is created based on the BPEL process specification
to extract possible execution paths which form the individual test-cases. Subse-
quently, a constraint solver (BoNuS) is used to calculate input data (booleans/
integers) which induce the process to follow the test paths. However, the pre-
sented approach ignores the processes data flow and large parts of the BPEL
standard as a ‘workaround’ for state explosion problems which occur during the
test-case generation and this approach is, therefore, hardly applicable on real
world process models. [S78] proposes a similar graph based test path genera-
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tion approach which applies McCabes’s cyclomatic complexity [36] algorithm
to check if all possible paths were found. However, the test data consists only
of randomly generated values (including partners that are abstracted to re-
turn random data). Hence, test-cases can be generated, however, the expected
outcome/behavior (i.e., expected execution path or results) must be specified
manually and can most likely not be achieved based on the generated random
input data. So this approach only identifies the possible execution paths but
most of the hard work (e.g., which input data to use or which outcome to expect
for specific input data) must still be done manually.

One alternative to defining tests by describing input values and expected
behavior, is to specify process patterns and later check for their existence (e.g.,
specification/requirements) or non-existence (e.g., anti-patterns). A pattern
based data flow testing approach is proposed by [S66]. They analyze the poten-
tially exchanged messages and check for data flow anomalies by matching for a
number of predefined patterns (e.g., are all message parts defined before sending
it). However, test-cases which, for example, proof the problem or allow to verify
if the problem was fixed can currently not be generated. Hence, all dynamic
aspects (e.g., messages returned by partners) can not be integrated into the
analysis. Patterns can also be applied onto the control flow. For example, [S70]
defines patterns that are capable of checking if activity X follows after Y. There-
fore, common process model control flow errors/weaknesses were identified and
if the pattern matches then most likely a potential error was found. However,
it suffers from the same drawbacks as [S66] approach (which, in general, also
apply to all following none customizable pattern based approaches).

A contradictory approach is proposed in [S67] by defining anti-patterns (e.g.,
a specific XOR-AND element combination that leads to deadlocks). An anti-
pattern should not be matched at a process model. They argue that their
matching algorithm is faster than competing ones (e.g., BPMN-Q [37]). How-
ever, they transform the process model into a language independent represen-
tation and therefore lack the support for language specific features and struggle
with complex process models because their language independent representation
does not support all possibilities provided by, e.g., the whole BPEL standard.
A comparable technique is proposed at [S68]. However, the identified static pat-
terns must be matched manually which is time and knowledge intensive. Hence,
their approach can hardly be applied on larger process model repositories and
should be combined with existing matching algorithms.

The pattern focused publications mentioned above are only providing a fixed
predefined set of patterns. However, to support individual requirements it’s
important that a tester can created custom patterns. Approaches which allow
to define custom patterns are presented in [S43–S45]. In [S43,S45] the authors
argue that current pattern description languages are too complex and therefore a
new one was designed called PROPOLS (based on the Web Ontology Language).
Their test algorithm transforms the patterns into Finite-State Machines (FSA).
Subsequently, every possible execution order of the process is simulated and
the states of the patterns FSAs is updated accordingly; it’s required that all
FSAs have reached their end state at least once to indicate that each pattern is
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supported. However, we assume that pattern definition and its parametrization
is quite time intense because [S43,S45] require to model all states, relations, and
the expected behavior of the internal process and and its partners (i.e., creating
Java source code as process partner simulations) by hand. Also the authors
are not providing any user study based evaluation to prove that their approach
can more easily be applied than existing ones – a challenge which should be
addressed in future work to assess the validity of their assumptions.

[S44] uses a subset of the UML 2.0 specification to describe patterns (to check
for specific properties) which are automatically transformed to state machines.
Process executions are monitored and state changes are triggered according to
the captured events (i.e., which messages are currently exchanged, hence, none
static runtime analysis is supported). A property is marked as fulfilled if its state
machine reaches its end state; or marked as failed if it reaches a predefined error
state. Yet another language (Prolog) is used to define control flow patterns in
[S122] to enforce specific modeling rules. However, [S122] only supports control
flow pattern and static process model analysis. Interestingly enough they not
only use their approach to identify potential errors but also to enforce modeling
experts to follow, for example, organization wide modeling guidelines.

We found that the majority of the approaches require that the modeling
experts learn novel pattern description languages, hence, an extensive amount
of training is necessary. The lacking support for cross-organization processes
enforces that all processes executions and monitoring must be executed on the
same server. However, this is unlikely the case for distributed process models
were each integrated process partner can call numerous supportive services.
Again, automatic test-case generation is not supported yet and only mentioned
as future work by the pattern based unit testing approaches which results in
high test-case generation costs.

Unit testing is an important testing technique which provides a rapid ap-
proach to define individual tests. Early approaches, such as [S1], were clearly
inspired by the software engineering domain, whereas later publications became
more independent in terms of the used techniques and approaches. However,
the presented approaches struggle with separating the process models into indi-
vidual and separately testable units. For example, unit tests at the source code
level are applied on the ‘smallest testable part of an application’[38, p. 244]
(i.e., on method, interface, or class level) while for process models the ‘smallest
parts’ are typically whole execution paths which integrate a diverse set of com-
plex activities. Hence, generating appropriate test-cases/data and interpreting
test results becomes harder because of this increased complexity. One additional
major challenge remains: the high cost to create all the individual test-cases,
because a majority of the described approaches rely on time consuming manual
test-case definition. In order to minimize that effort it becomes necessary to
auto generate tests and the according test data.

3.3.2. Test-case generation

The ISO/IEC/IEEE 24765:2010 standard, defines a test-case generator as
‘a software tool that accepts as input source code, test criteria, specifications,
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or data structure definitions; uses these inputs to generate test input data; and,
sometimes, determines expected results’ [39, p. 29]. This applies, in general,
also to the process domain. However, the test algorithms utilize process models
instead of input source code. This section starts by discussing how execution
paths, a foundation for most test approaches, can be extracted from process
models. Subsequently, those execution paths are reused by data generation
algorithms (cf. Section 3.3.3) to determine appropriate test input data.

[S33] proposes an approach to extract possible execution paths (and there-
fore possible test-cases) from a BPEL process model. Therefore, the model is
transformed into a BPEL Flow Graph (BFG). A BFG is a Control Flow Graph
(CFG) which is extended to support BPEL characteristics, however, large parts
of the BPEL standard, such as exception paths, are still missing. The BFG
is analyzed with graph search algorithms to extract possible execution paths.
Note, that the paper is missing a comparative evaluation and is mostly just
‘discussing’ how potential state explosion problems could affect the presented
techniques. However, a solution for this challenge is not presented. [S69] applies
a similar technique called PCFG. The additional P represents the integration
of connected partner process models – their private process view must be ac-
cessible, which is rather unlikely at cross-organizational processes. However,
they are also proposing rare ways to measure test quality by analyzing test-
coverage (i.e., for example which process activities are covered by the existing
tests) and support their work using one of the few identified case-studies. Ex-
ecution paths are extracted by applying data flow centered extraction criteria
(e.g., paths that cover variables which are forwarded to partner processes). Both
approaches [S33,S69] are extracting all possible execution paths which can lead
to a state explosion problem [40] – more tests are generated than the system
can check in a reasonable amount of time.

Hence, [S113] and [S111] present a solution which is based on extracting only
the most important paths, called ‘business rules’. However, a user must guide
the path extraction algorithm (to identify the important paths) and has to man-
ually specify test data. Additionally the support for the extracted rules must
also be checked manually. Hence, its unlikely that the proposed approach can
be applied on large real world process repositories, especially, because all work
is done manually and all concepts to automate this approach are ‘postponed’ as
future work by the authors.

The previous three approaches utilize a custom graph representation. Other
researchers, however, are converting the yet to be tested process models into
existing modeling language such as UML. For example, [S46] transforms BPEL
models into UML 2.0 activity models. The test paths and therefore potential
test-cases are extracted from the UML models, based on various criteria (e.g.
full path coverage), by applying a depth first search. However, the publication is
missing detailed information how the test-cases are executed/compared with the
process model to identify derivations and the utilized activity model based be-
havior representation requires a substantial amount of manual annotations and
domain knowledge to create the required formal specification of the expected
behavior. [S100] proposes a similar approach by generating an UML state dia-
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gram from the BPEL process and an extended FSA from the associated WSDL
file. Both representations are combined to an EFSM-SeTM model which indi-
cates how different partners/activities are related (based on the BPEL/WSDL
file) and which variable format is in use (based on the WSDL file). The pos-
sible execution paths are automatically extracted. However, it’s not specified
how derivations from the expected behavior (i.e., faults) can be identified and
only the test-paths are generated automatically. Hence, a substantial amount
of work is required to generate test data, select the yet to be tested services and
appropriate test-cases and a majority of the components which are required to
create a complete test framework are postponed by the authors as future work.
[S48] transforms process models defined in custom domain-specific languages
into UML models to manually add UML U2TP stereotypes – U2TP is an UML
extension which allows to annotate details that are helpful to conduct tests.
FOKUS!MBT then generates tests based on this extended UML models. This
approach benefits from extending U2TP because it’s already standardized and
documented and therefore it’s likely already known by testers. However, mod-
eling experts most likely will not have used it yet because the interest in the
industry is relatively low, as most UML standards (and the presented exten-
sions) it’s quite complex, and the authors identified some inconsistencies when
comparing it with the latest UML releases.

Other authors also transform UML models. In [S47] a UML model is trans-
formed into a Color Petri Net (CPN) representation to apply a random walk
algorithm (randomly choosing the next valid step) until all possible execution
paths are extracted. The paper starts by transforming UML Activity Diagrams,
however, most likely the presented test path extraction approaches can more fre-
quently be applied directly on Petri Nets because those are more common at
the process modeling domain then Activity Diagrams. Additionally, the authors
did not define ways to identify test-data which would be required to create com-
plete test-cases from the identified test-paths. However, the authors address,
for example, concurrency and proof that they are able to support concurrent
execution testing by finding each feasible activity execution order.

Generally, a transformation to Petri Nets is popular because Petri Nets pro-
vide a strict and formal representation that can be used as a workaround for
the nondeterministic behavior of modeling languages such as BPMN [41]. [S71]
transforms a BPMN modeled into an Algebraic Petri Net. Tests are randomly
generated based on manually specified rules, defined in Hennessy-Milner Logic
(e.g., a test must cover activity X). The combination of a rough Petri Net and
fine granular rules allows to automatically generate focused tests which cover
specific parts or situations were the testers are most interested in. However,
only the test paths are extracted and most importantly the paper is missing
an evaluations section and it is doubtful if a typical modeling expert would be
able to write the semantic rules out of the box. [S72] proposes to test BPEL
processes by using a CPN which represents the required properties. CPN mod-
els support data, hence, a WSDL file is analyzed to include the type/format of
each variable. The execution paths are automatically generated based on cov-
erage requirements and a manual activity prioritization. The authors promise
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that their approach is able to reflect data and data variable constraints bet-
ter than existing approaches because the requirements and constraints for each
data field can be manually defined. However, the required CPN models must
also be manually created or (when assuming that it’s already ‘existing’ because
the designers used it for design verification) at least extended with custom rules
to model data requirements - which increases test costs. So, it would be ben-
eficial to utilize auto-generated knowledge sources such as execution logs to
automatically extract and generate test data, rules, and constraints based on
the recorded ‘normal’ behavior to ensure that the process behaves consistently
after, for example, a process partner was changed.

An automatic transformation from BPEL to CPN is also used at [S74]. The
authors are concentrating on concurrency and are showing the efficiency (i.e.,
how state explosions are prevented) of their approach in concurrent situations
using multiple examples. The execution paths are directly extracted from the
CPN by graph search algorithms. BPEL is missing a graphical representation.
Hence, [S52] transforms BPEL into BPMN to create a visualization and to
extract execution paths. However, the presented test path extraction is not
particularly innovative (i.e., already presented in previous work).

Above transformation approaches typically transform one process modeling
language into another one to gain some advantages (e.g., to reuse existing algo-
rithms). However, another alternative is to transform the model in an abstract
representation such as timed state machines. A timed state machine is used in
[S26] to model details (e.g., timeouts) into the test generation approach. Test
paths are then extracted by applying the Hit or Jump algorithm. Although, the
main contribution of the paper is concentrating on model transformation than
on process testing, it still leaves many open areas of improvement to complete
the formal representation of the whole BPEL standard.

[S109] even modifies the process model to reduce the amount of necessary
test-cases. They are applying the Category Partition Method (CPM) which
requires that the process model gets substantially annotated, for example, by
dividing each input variable into multiple partitions. Each partition represents
value ranges of equivalent data which can be used for test data generation.
Additional metadata (e.g., priority, required combinations, or logic rules) are
assigned to each partition and to activities. All this information controls the
automatic test path extraction and, therefore, the test-case generation. The
tests itself are generated almost automatically, however, the preparatory work
and the required domain knowledge is enormous and we assume that it should
be possible to automatically extract a noticeable amount of the information
from various knowledge sources (e.g., how often each patch is executed can be
taken from recorded execution logs). In addition, the original process model
is extended and modified to integrate information which is required to gener-
ate the test-cases. However, this mixes up multiple concerns into the process
model and therefore hardens its maintenance and development. [S35] proposes
an approach which is, similar to CPM, also inspired by software testing ap-
proaches. Hence, the BPEL process is transformed into a Symbolic Transition
System (STS) to generate a Symbolic Execution Tree (SET) that contains all
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possible execution paths. The main difference between a normal and a symbolic
execution is that no concrete values are used, instead variables are replaced
with symbolic formulas. This allows to minimize the amount of generated tests
because each symbol can represent a range of possible values. Hence, this ap-
proach deals with complex XML based data variables without suffering from
state explosions. However, the presented work requires a careful transformation
of the process models into a processable formal representation and again only a
small subset of the whole BPEL standard is currently addressed by the authors
which limits the applicability of the this approach. Section 3.3.3 discusses how
paths extracted from the SET can be populated with real values to generate
executable tests.

A major disadvantage of transformation based approaches is that the tests
are no longer generated on the ‘real’ process model, but on an abstracted repre-
sentation. A diversion between the real model and the tested model is possible,
an effect which can be prevented by generating tests based on the original pro-
cess model. Additionally the transformation based approaches frequently only
support a subset of the transformed modeling standards and can therefore, pre-
sumably, not be used on complex real world process models which most likely
rely on some of the unsupported modeling language aspects which can lead to
a complete failure of the test generation approach or incorrect test results.

Hence, [S78] proposes a path generation approach which extracts possible
execution paths directly from a BPEL model. This can create long execution
paths, especially at loops, so that [S54] proposes an algorithm that respects a
configurable maximum path length. However, the papers only contain a moti-
vational example and are missing an evaluation to proof the feasibility of the
presented approaches. Overall, the papers only extract test paths and must be
combined with third party tools to generate, for example, appropriate test data
to create complete test-cases.

[S79] applies scatter search. The generic search algorithm was extended to
address BPEL characteristics such as fault handlers. Hence, a sub goal (e.g., a
transition) is selected and the search algorithms searches for paths which cover
this goal. The authors state that they are able to identify 100% of all possible
execution paths. However, they only support a fraction of the whole BPEL
standard and only compare it to a very limited testing method (random testing)
during the evaluation. Hence, the presented approach is ‘unsurprisingly’ better
than the compared one and the significance of the evaluation is limited. Note,
that we found similar evaluation quality issues at multiple process model testing
papers.

[S132] proposes to utilize message sequence graphs which are generated from
BPEL models. All possible sequences are extracted, populated with random
data and executed while checking for exceptions. However, the presented ap-
proach does not specify any sort of expected behavior which could be compared
with the observed one. Hence, they are only checking for generic errors such
as thrown exceptions and can therefore be applied on systems with unknown
behavior and documentation. However, this also can quickly result in false
positives because, for example, there is no way to describe expected exceptions.

21



Another concept is to exploit the counter example generation capabilities of
verification tools (cf. [S101,S102]). Therefore, the process model is transformed
into a language (e.g., PROMELA) which can be processed by verification soft-
ware like SPIN. The tester then specifies negated properties, for example, in Lin-
ear Temporal Logic (LTL) [42] (e.g., that transition X can never be reached).
The verification software will then use this property (e.g., Quality of Service
requirements) and generates a counter example (how transition X in fact can
be reached) that can be used as a test-case. This approach greatly benefits
from a wide range of optimizations and research which were already invested
into existing formal verification techniques, for example, to deal with state ex-
plosions. However, this promising foundation requires the modeling experts to
learn new none modeling related languages, for example, to describe test prop-
erties. Again, the authors are only able to prove the correctness of their model
transformations approach for a very limited subset of the BPEL standard.

The previously described approaches (except for [S69]) concentrated mainly
on generating execution paths based on the control flow (the order in which the
individual activities are executed). However, a process model also contains a
data flow that describes how data is exchanged between different activities.

Hence, test paths can also be extracted based on the data flow using adapted
coverage criteria such as all-du (the define/use paths of all variables). An all-
du path extraction criteria is applied in [S107,S115] and evaluated in [S116] for
BPEL (including solutions for BPEL characteristics such as death-path elimina-
tion [43]). BPEL does not contain an explicitly modeled data flow, hence both
papers first ‘detect’ probable data flow paths. However, both papers are missing
a thorough evaluation and only detect ‘basic’ paths (e.g., ignoring fault handling,
at least concurrent model aspect are supported by [S115]). [S108] widens the
covered area by considering the XPath rules which are used at BPEL to, for
example, extract variables from XML messages. Therefore, the BPEL process
is converted into a CFG that is extended with XPath Rewriting Graphs (XRG –
a graph representation of a XPath rule) to create a X-WSBEPL model which is
used to extracted data flow paths. XPaths are an important data handling arti-
fact in most BPEL processes which were ignored by previous work. Hence, this
approach is one major step forward to fully test all aspects of BPEL processes,
the authors even performed one of the few identified case study to evaluate their
ideas. However, the data dependencies of the individual activities are ignored
by the authors. It would be promising to combine, for example, the approaches
presented in [S107,S115] with this technique.

[S12], instead, calculates a data flow graph from a BPEL model and then
extracts all possible paths. However, the authors only utilized the technique to
measure change impact and to identify test-cases which cover changed execution
paths and process areas. Hence, it would be interesting to refine the approach to
see if can also be applied successfully during test-case generation, for example,
to generate tests specifically for changed process parts.

Until now, concurrency (multiple branches can be executed in parallel dur-
ing a process instance execution) was not explicitly discussed – although im-
plicitly supported by many process model testing approaches. Concurrency, is
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a challenging topic because it leads to a great variability in the possible activity
execution order – increasing the number of necessary test-cases and the risk of
a state explosion. ParTes [S123] was specifically designed to counter that risk.
ParTes is limiting the amount of generated execution paths by checking if the
executed activities (of e.g., two different parallel branches) are communicating
with the same or different sub systems. Only if they are communicating with
the same sub system (i.e., process partner), then a race condition can occur and
all possible execution paths are generated. The process model is adapted/tested
by explicitly modeling the various execution paths (XOR gateways allow to indi-
vidually select each path). Hence, this approach reduces the risk to be affected
by state explosions. The authors are currently only applying this on concurrent
activities which communicate with external services. However by integrating
data paths into the approach (see [S107,S115]) it should also be applicable in a
broader more general way when applied on all concurrent control flow execution
paths.

This section provides an extensive overview about the existing test path ex-
traction approaches. Two major aspects that can be take from this section, that
are a) concurrency and connected state explosion problems are already acknowl-
edged by existing work and b) that formal test path generation approaches exist
but all of them struggle with proving the feasibility of their approach on the
whole respective process modeling standard (e.g., BPEL) they are aiming on.
The presented approaches are important for the following sections because they
all require test-cases and are therefore are frequently reusing the presented con-
cepts. However, each test-case also requires test data, a topic which is addressed
in the following.

3.3.3. Test data generation

Test data is the second most important component required to ‘assemble a
test-case’ (compare, Section 3.3.2).

A primitive approach to generate test data is to do it manually. Hence, a user
has to study the objectives of each test-case and select appropriate input data
(cf. [S27,S28,S30,S31,S40,S46,S126]). However, this is substantially increasing
the cost to generate tests.

Hence, an automatic data generation is required. A simple approach, used by
[S71,S78,S79,S99,S109,S127,S128,S132,S135,S136,S138,S139,S142,S159], is to gen-
erate random test data or complete random messages for robustness tests (cf.
[S127,S128]). Random generation can easily be applied on numbers/booleans
but becomes more complex for strings which frequently must follow a specific
structure. Thus, strings are frequently only randomly selected out of a prede-
fined list (cf. [S135]).

Despite numerous efforts (specifying value ranges [S78] or defining partitions
[S109,S138]), it’s still ‘random’ data and so it can take a while to generate a
value combination which triggers all guards correctly so that the desired test
execution path is followed. Of course, it’s possible to adapt and modify the
yet to be tested process so that each test path can be selected individually
(cf. [S123,S141]). However, this might distorts the results and a more focused
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approach is needed. Hence, [S105] proposes to start with a manually defined
value which can later be optimized (so that it fulfills the guards/conditions of the
test path) by using a genetic algorithm. A reversed approach is used in [S106]
to identify value combinations which would violate Service-Level-Agreements
(SLA) and to generate tests which prove that the SLA is not fulfilled.

Search based approaches can identify the same ‘optimal’ input data for mul-
tiple test-cases. Hence, [S104] utilizes tabu search (generated values are noted
on a tabu list and ignored for a certain amount of generations to increase the
likelihood that a new value is chosen). In [S80] a scatter search algorithm is
applied that combines evolutionary ideas (genetic algorithms) with tabu search.

An alternative to search algorithms was found in constraint solvers. Con-
straint solvers (used by [S32,S33,S35,S36,S48–S51,S54,S74,S77,S140,S145]) are
based on algorithms which get as input some constraints and output a value
which fulfills, if possible, all of them. Hence, each extracted execution path
is searched for guards/conditions which must be fulfilled so that the process
instance follows this test path. The identified conditions are utilized by a con-
straint solver to generate appropriate test data. Similar results can be achieved
using verification software and their counter example (cf. Section 3.3.2) gener-
ation capabilities [S101,S102] – typically, path and data are generated at once.

This and the previous Section 3.3.2 provide the requisite tools to automati-
cally create test-cases. Those will be used not only at the initially described unit
testing approaches but also at the testing techniques addressed in the following.
We see search algorithms and constraint solvers as the most valuable approaches
for test data generation. Both approaches can generate artificial test data by
utilizing the constraints and rules described at process model gateways as a
foundation for test data generation. However, frequently this base set of rules
must be manually extended, for example, by annotation pre- and postconditions
at each process partner or even activity which is time intensive. Hence, it would
be promising (e.g., for regressing testing) to generate the required extended rule-
set – which guides the data generation process –, for example, from recorded
previous process model instance executions (e.g., using recorded execution logs)
to identify, for example, typical data ranges and data structures which can be
used by the presented data generation approaches to create realistic test data.

3.3.4. Integration testing

Integration testing is defined as ‘testing of programs or modules in order
to ensure their proper functioning in the complete system’ [44, p. 8]. Hence,
integration testing can check if a process can correctly interact with their partner
processes and services.

Therefore, [S126] proposes to integrate sensors into all process instances (in-
cluding the partners) to observe test executions. Subsequently, the expected
behavior is described in High Level Petri Nets to extract execution paths; test
data is added manually. The tests are executed while checking if the observed
behavior mimics the expected one. However, it is unlikely, in real world sce-
narios, that an organization is allowed to integrate sensors and new logic into
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important processes of partner organizations and the approach was also not
evaluated.

[S105] annotates the process model with meta information (pre/post-conditions
at activities and constraints for the exchanged values). Subsequently, the whole
process is converted into Java source code to apply Java Path Finder to extract
execution paths. The test data is generated with genetic algorithms and model
checkers (counter example generation). Finally, each test is analyzed and the
exchanged messages are extracted and used as integration tests by comparing
the returned values with manually specified constraints. The main idea is to
identify execution paths with as many partner interactions as possible because
those most likely lead to faults. However, the potential state explosions during
the search are, based on the paper’s authors, negated by applying genetic algo-
rithms and formal approaches. However, the approach is computational intense,
requires a substantial amount of manually annotations and domain knowledge
– which increases testing costs, and does not provide a through evaluation (i.e.,
just some small examples).

[S36] proposes to use UML models (e.g., activity model and interface model)
as contracts that restrict the behavior of the process and its partners. There-
fore, each activity gets manually annotated with pre- and post-conditions. The
test-cases are automatically generated (path extraction, guard/condition based
data generation, cf. Section 3.3.3) and executed while comparing the observed
behavior with the conditions. The proposed approach is promising. However,
large parts of the whole concept are just described as potentials solutions and
postponed as future work, for example, the approach is missing a way to com-
pare the observed behavior with the expected one to detect derivations. [S37]
converts the process into a state diagram to extract the hierarchical order in
which the partners are called at specific execution paths. The extracted call or-
der is used to manually specify test messages and expected return values. The
only automatically executed aspect is the test path extraction, hence, even the
test execution and the comparison of the results with the expected values must
be done manually. We assume that it is not applicable on complex business
process models because those manual time intensive steps lead to high costs.

Potential partner processes are reviewed in [S38] to identify if they can be
integrated into the already existing internal process. Therefore a Orchestration
Participant Testing strategy (OPT) is generated that consists of a graph rep-
resentation of the process and manually defined properties (LTL statements)
which allow to create tests based on model checkers (counter example genera-
tion). The further steps are comparable to [S105]. The presented approach is
work intensive. Why? Because each test is ‘manually’ generated, because the
presented automatic test generation always requires a complex manually speci-
fied test property. The possible test properties are limited and likely not suited
for real life process models and the model checkers only supports a subset of the
BPEL standard. Hence, the test generation approach is promising but must be
extended and evaluated in regards of usability and model language support.

[S39] addresses the same challenge by identifying execution paths which con-
tain interactions with the potential partner. Finally, the test data is defined
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manually and the potential new partners are bound. Then the tests are exe-
cuted and simple error conditions are checked (e.g., if error messages/exceptions
are observed). Finally, the results should allow to assess if the new partner can
be correctly integrated into existing potential bindings (i.e., each service inte-
gration point can be replaced by multiple potential concrete candidate services
at runtime). Data flow metrics are utilized to reduce the amount of potential
bindings which must be evaluated by checking if and how each service is con-
nected with each other services. The whole testing process is widely automated
and the authors provide a comprehensive evaluation.

The publications presented in this section mainly concentrated on ensuring if
partners can correctly be integrated with the process under test by applying inte-
gration tests. Section 3.3.5 shows that a similar objective can also be followed for
non-functional requirements. We found that the support for cross-organization
scenarios is quite high at the identified integration testing approaches. Hence,
it would be interesting to explore existing integration testing concepts and see
if their assumptions, ideas, and concepts could also be applied on other testing
domains such as unit tests to strengthen the support for cross-organizational
scenarios in such test domains.

3.3.5. Quality of Service testing

Quality of Service (QoS) is defined as a ‘set of quality requirements on
the collective behavior of one or more objects’ [45, p. 2]. Hence, the follow-
ing publications mainly concentrate on ensuring that non-functional require-
ments (e.g., availability or response time) are fulfilled. In this context, cross-
organizational scenarios pose a particular challenge because external partners
can change quickly and, initially, unnoticed.

[S57] and [S56] are addressing this challenge. Hence, [S57] proposes to an-
notate each process activity with its expected completion times (one for each
potential partner implementing this activity). Genetic algorithms then search
for input data and partner combinations which would violate a predefined maxi-
mum completion time. The presented approach requires that the ‘real’ response
times of each service are available and it is assumed that those are completely
equal for each request (i.e., independently from the request data which is, likely,
a unrealistic assumption). Hence, currently a tester has to manually defines the
response times in a coarse grained manner (which is error prone, time intensive
and requires a in depth knowledge of the process partner services), but the same
information could also be extracted by analyzing historic execution logs or by
sending randomly generated test messages to the services. Hereby, it is also
possible to create a more fine granular configuration and more realistic results
for average and worst case scenarios which increases test quality.

A similar objective is addressed in [S56] by applying pair wise testing to
reduce test redundancy by 99%. Pair wise testing is a combinatorial testing
approach that creates unique pairs of input data (i.e., partners which can be
chosen from to implement each activity) and then tests those combinations
[46]. Therefore, a feature diagram is created that contains the interactions and
features (e.g., delay or cost) of each partner. Then the process is converted into
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a concurrent programming language (ORC) to generate tests which indicates
a possible violation of a guaranteed SLA. However, concurrent process model
aspects were only discussed theoretically and, therefore, the results fall short
of what is possible. The authors also conducted two case studies. However,
they only compared their approach with a random testing approach while a
comparison with more advanced approaches, e.g. [S57], would provide better
insights.

A less complex, but still powerful, approach is used in [S21] to check if
a process model respects a maximum completion time in each possible exe-
cution path (classic verification properties such as deadlock checking are also
supported). Counter example generation techniques are applied to generate the
possible paths while timed state transition systems describe the approximated
execution times of each activity. The approach requires that the BPEL model
is extend with custom annotations. However, the BPEL model should, at least
based on our assumptions, mainly contain data which is relevant for process
model execution. So, it would be interesting to check if the relevant infor-
mation can be stored in a separate place, e.g., the Web Service Timed State
Transition System model (WSTSTS). The WSTSTS is core component of this
approach and is generated by transforming the BPEL process. Hence, if there
is already a separate model required then it could be also used to separately
hold the test data.

The previous approaches did not consider that SLAs can describe complex
dynamic behavior (e.g., a 1 MB file is processed within 2 minutes but a 3
MB file needs at most 10 minutes). Hence, [S106] focuses also on variables
and input values. Therefore, each partner must create a fine granular SLA
that specifics value ranges and their guaranteed execution times. A genetic
algorithm then searches for potential SLA violations. The presented approach
quickly identifies problematic areas. However, we assume that the required very
fine granular SLAs are not available in real scenarios. This challenge also applies
to the following approach. [S25] proposes to evaluate QoS specifications based
on autogenerated stubs which reflect the SLAs of the integrated partners (e.g.,
maximum calls per minute or response time). The stubs are replacing the real
partners and a typical workload is simulated to check if any of the partner SLAs
would be violated or if the overall performance of the process does no meet its
own SLA.

The previous approaches are based on the expectation that each partner
process provides detailed SLAs. However, the papers are not specifying (ex-
cept for [S25] which uses WS-Agreement [47]) how SLAs could be defined in a
standardized machine readable format. Hence, the approaches are hardly ap-
plicable on real world scenarios and upcoming researchers should consider to
reuse existing SLA specification languages or propose new ones (or extensions
to existing ones) which allow to, e.g., conduct case and users studies to compare
the efficiency of the various approaches.

A further attempt is based on monitoring process instances. Two directions
can be observed: a) a fingerprint of the typical behavior is generated and com-
pared with subsequent executions or b) running instances are monitored and
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compared with manually defined rules. [S22] uses direction a), and generates a
fingerprint based on support vector machines. The presented approach can cur-
rently only be applied on hand piked variables which must only contain numeric
data. Hence, the approach is not yet suitable for large scale monitoring which
would be required in real world scenarios. Direction b) is utilized in [S23,S24].
Hence, [S23] modifies the process model and adds sensors after and before each
activity. This allows to observe/check execution times and variables. For each
sensor a manager was designed which compares the observed data with prede-
fined rules (i.e., test-cases). However, all the rules must be defined manually in
a custom language which, because of the huge amount of sensors, ends up at
a substantial amount of preparatory work. The authors are only providing a
performance evaluation because they have noticed that adding a big amount of
sensors can also generate a large amount of traffic. Therefore, [S24] concentrates
on finding the optimal places to integrate the smallest possible amount of sen-
sors into a process model to fulfill predefined coverage criteria. The sensors are
configured with manually defined monitoring rules and the activity which most
likely violated a rule is reported. However, [S23,S24] almost exclusively concen-
trate on execution times. Hence, it would be promising to combine them with
approaches presented in, for example, [S22], to cover a broader area of risk/data
based quality of service rules in combination with execution time based quality
of service rules.

The dynamic nature of processes is addressed in [S10] by proposing to define
constraints (e.g., in activity structure or temporal) as some sort of SLA which
enforce the modeler to support basic properties. Hence, a normal user can start
adapting a base process model so that the process model can be dynamically
adapted while specific ‘guaranteed’ properties are still ensured. Currently the
constraints must be generated completely manually and this approach is therefor
time intensive. Hence, it would be promising to define an automatic two sided
transformation between SLAs and checkable constraint rules (and vice versa)
which could be applied in such an scenario to reduce constraint generation
workload and to ensure that the public SLAs are always up to date.

This section concentrates on generic quality of service aspects like availabil-
ity or data quality. We found, that the identified publications are frequently
not exploiting existing knowledge sources such as existing service level agree-
ments so that all rules and conditions are generated newly. Hence, we assume
that the separately stored rules/conditions will likely derivate from the public
documentation over time (which, e.g., confuses external partners) and also an
unnecessary amount of work can be saved by generating an automatic trans-
formation between SLAs or execution logs and the enforced quality of service
rules. The following two approaches are connected to quality of service testing,
but form specialized groups that concentrate specifically on performance testing
as well as robustness testing.

Performance testing. Performance testing tries ‘to evaluate the behavior of a
test item under anticipated conditions of varying load ’ [48, p. 8]. Hence, it
analyzes performance indicators (e.g., response time) or checks if the system is
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in a consistent state even under high load.
[S65] proposes to simulate process execution while measuring the response

times of all partner systems. Overall, the recorded information allows do eval-
uate the performance of entire business process environments. However, all
simulated executions and test message must be defined manually, which is time
intensive. Hence, to apply this approach in real world scenarios, it is neces-
sary to increase test generation speed, for example, by automatically extracting
correct message orders from business process models. If performance testing
should be done on an already finished process model (e.g., during maintenance)
then the message could also be automatically generated from recorded previous
executions.

The concept of aspect oriented programming inspired [S64] to propose an
approach that weaves timers (e.g., before/after each activity) into XML files
which store process models. Subsequently, those timers are used to measure
execution times. However, this only generates the necessary data for a manual
posteriori analysis because the authors did not specify any sort of rule language
or concept to define constraints/tests which evaluate the generated data - which
greatly limits the applicability of this approach. One of the main advantages of
this approach is that the timers are weaved dynamically into the process model
just before the execution so that the model is not cluttered by none business
related elements. Note, that this still can lead to issues during the execution
(which are currently not addressed), e.g., how to handle situations where the
sensor manager, that is collecting all data, is not available. For example, this
could ‘block’ or slow down the process execution because a sensor could, e.g.,
wait until the connection to the manager is closed because of a timeout.

[S142,S159] also asses (in additional to e.g., the response time) if the observed
behavior still respects a predefined specification (modeled as a timed automaton)
if the process is under load. A configurable amount of processes is created that
are executed using random input data. All partners are replaced with stubs
and the incoming requests are logged and compared with a specification (e.g.,
to check the message order).

Note, that random data might not be perfect for this solution because it
maybe substantially differs from real life data. Hence, a search or constraint
based approach, cf. Section 3.3.3, might be beneficial. Alternatively, recorded
old execution logs could be replayed in masses. This would be especially come
in handy because they represent real world use cases and should be available
at certain scenarios, e.g., when a former process partner is replaced with a new
one.

The presented performance testing approaches allow to evaluate if the sys-
tem behaves as expected at various load levels. Here [S64] proposes a inter-
esting aspect oriented programming, cf. [49], based approach that is able to
integrate process model extensions, that are required for testing, dynamically
when preparing the model for execution. Hence, the testing aspects are not
mixed with the business aspects and so the model and its tests become easier
to maintain. It would be promising for future work to check if this concept can
also be applied on other testing approaches. However, performance tests can
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also be seen as some sort of robustness tests which ensure that a process is con-
sistent even at high load. Nevertheless, specialized robustness testing concepts
are discussed in the following.

Robustness testing. Robustness testing assesses if a process behaves correctly if
it has to deal with mutated input data or flawed environmental conditions such
as databases that report errors instead of the expected information. In computer
science, robustness is defined as ‘the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environmental
conditions’ [39, p. 313].

We found that this topic is approached from two angles: a) publications
which describe mutation algorithms that can create corrupted input data or
flawed environmental conditions and b) publications which use those mutation
algorithms and discuss how to conduct robustness test on a process model.

[S129] proposes to automatically adapt the exchanged messages and database
connections (e.g., by applying data corruption or adding delay). The processes
are evaluated by measuring how many activities are executed (lower = bet-
ter) before the process instance recognizes and reacts on the mutations. This
approach basically assumes that each type if incorrect should lead to a ‘termi-
nation’ of the process. Hence, it can lead to false positives when dealing with a
very robust process which, for example, is able to repair ingoing incorrect data
or if the process is able to still continue its execution but then follows a specific
error handling path to deal with the incorrect data. [S127] tunnels all messages
though a proxy to, for example, delay or mutate them. They evaluate a process
model by comparing if the process reaches the same end state with and with-
out the injection of mutated messages, which would be the case in an optimal
situation because then the process would not be affected by the mutated data.
A comparable approach is proposed in [S49,S131]. However, the proposed three
approaches also generate invalid XML data or messages which do not conform
to the specified message interfaces and that should, therefore, be automatically
rejected by the workflow engine. Hence this partly reduces the efficiency of this
testing approaches in process oriented scenarios compared to, e.g., pure service
oriented scenarios were the service developer must specify how invalid XML
data should be handled. Overall, [S49,S131] provide the most complete solution
(compared to [S127]) because they also allow to simulate classic network errors
such as lost messages or services which are temporarily not available.

[S133] assumes that a process should always continue its execution, for exam-
ple, by repairing corrupted messages. Hence, all process partners are abstracted
and valid, invalid, expected, and unexpected exceptions and messages are au-
tomatically generated and sent to the process while observing its behavior. A
major disadvantage of this approach and its fundamental assumption is that it
is not checked if the behavior of the tested process model instance is still correct
after, for example, a corrupt message got repaired or if the repairing logic was
too optimistic and the process is now executing steps which were not foreseen
by the message sender.

[S133] is a contrasting approach to [S129]. So, similar disadvantages exists
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and a combination of both approaches would be promising to major the devel-
opment in this area and to evaluate the synergetic effects of such an advanced
solution.

In contrast, in [S134], the test engineer has to manually define each yet to
be injected fault (e.g., incorrect parameters) and the process model instance
state that should be reached after the injection. Of course this leads to an
enormous amount of manual preparation and effort for each test-case so that
this approach can only be recommended as an addition, because of its flexibility
and fine grained configurability, to the previously discussed approaches.

A different approach is presented in [S130]. It’s based on a symbolic speci-
fication (STS) of the expected behavior. The STS is transformed into an SET
which is split to generate sub trees that are only addressing one specific BPEL
operation. Later on, random input data is generated to call those operations
and the behavior is compared with the STS and with custom rules (e.g., is the
maximum response time below X). Note, that the author also utilized the same
concept to perform Quality of Service testing. Hence similar drawbacks apply
at both areas, for example, that the user would end up with two separate mod-
els (e.g., a BPEL and a STS based representation of the specification), which
must be kept in sync and which require a diverse set of skills to be modified
and developed. Hence, both models likely divert or contain different errors and
it would therefore be advisable to assign the development of both models to
independent experts which would also allow to identify vague specifications.

The described robustness testing approaches allow to assess the stability and
robustness of the tested process models, and therefore contribute to the overall
quality of service provided by a process model. We found that robustness testing
frequently concentrates on a rather unspecific way of testing (e.g., messages or
data are mutated randomly).

3.3.6. Conformance testing

The ISO/IEC 13233 standard defines conformance as the ‘fulfillment by a
product, process or service of all relevant specified conformance requirements’
[50, p. 29] while in the ISO/IEC 10641 documents conformance testing is de-
scribed as a ‘test to evaluate the adherence or non-adherence of a candidate
implementation to a standard ’ [51, p. 4]. Hence, conformance testing allows to
determine if a process complies to some specification/constraints.

Conformance testing can be applied, for example, when a process model
is adopted by a user on the fly during its execution while specific elementary
requirements must still be met. [S91] tackles this challenges by providing pre-
defined activity constraint templates (e.g., X must be followed by Y). Hence, a
modeling expert defines some conformance rules which are enforced when the
user applies modifications. However, this approach is only partly connected
to testing and does mainly concentrate on enforcing specific constraints when
process models are modified by hardly trained users (i.e., dynamic modeling).
It would be promising to extend this approach, for example, by transforming
specifications into constraint templates or by analyzing multiple revisions of the
same process model and to automatically extract stable areas as constraints
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because those could build a important foundation also for future process model
revisions. Finally, while the authors state that they wanted to propose a human
centric approach they did not yet conduct a user study to prove the applicability
of their approach in real world scenarios.

However, constraints can also be used to test processes models. Hence,
[S28,S90] propose to specify constraints as a Timed Extended Finite-State Ma-
chine (TEFSM). Subsequently, existing test-cases are executed and the observed
behavior is compared with the TEFSM. This approaches allow to integrate time
into the tests. Hence a more diverse set of constraints is supported which can
take expected or recorded runtime behavior into account, e.g., by checking if a
response is sent after at most 30 seconds.

Another, comparable, automation based approach is proposed in [S44] and
[S4]. However, defining an automation is complex and requires skills that, we as-
sume, are not available at a typical modeling expert. Hence, [S44] proposes that
the constraints are described using UML sequence diagrams. Later, those UML
models are automatically transformed to an automaton. One of the main ad-
vantages of this approach clearly is that a subset of the frequently applied UML
modeling languages is adapted to specify constraints. Hence, the expected users
(i.e., modeling experts) are most likely able to apply the presented approach.

[S143] utilizes Petri Net models to describe the utilized specification, which
also ensures that the required modeling skills are most likely available. The
specification is transformed into a finite state machine and conformance is tested
by generating checking sequences and looking for violations (e.g., states that
should be reached but are not activated). In particular, a fast algorithm to
perform those checks is presented by the authors. However, their approach is
highly specialized and can only be applied on a specific type of petri nets (called
1-safe nets, limiting the applicability of this approach in real world scenarios
where other modeling languages are frequently used) and the authors did not
provide any kind of evaluation.

A tool is presented in [S99] that conducts conformance tests by generating
random test-cases with random data based on a specification which was trans-
formed into a TEFSM. The behavior of the process is observed and compared to
the specification. We assume that the utility of this approach is limited. Why?
First of all it only provides a inefficient test-case generation approach which is
purely random. But most importantly it generates the specification out of the
process model which is later tested (e.g., the timeouts used for the test-cases are
taken from the timeouts specified at the BPEL model). Hence, the generated
test-cases are testing one by one the behavior that is already specified at the
process model and we assume that diversions from the ‘specification’ would only
be observable if the workflow engine itself contains a bug (e.g., all partners are
simulated too, hence, not even errors at process partners could be detected).

[S81], proposes a similar approach, with similar drawbacks, by converting a
specification (Web Service Choreography Interface and Web Service Choreog-
raphy Description Language models (WSCDL)) into a timed automaton. The
UPPAAL model checker is used to check if the observed behavior of the process
model follows the specification (checking only timeouts and message order) dur-
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ing the simulation of random executions. This approach is one of the few which
places more emphasis on integrating partner processes. However, each part-
ner, and also the process under test, must be manually ‘converted’ into timed
automata so that this approach is time intensive, expensive, and can hardly
be applied during the maintenance of legacy processes because time pressure
would, most likely, not allow to manually create a huge number of automatas
for each maintenance task.

The previously described approaches mainly concentrated on the internal
view of a process (e.g., are the messages exchanged in the correct order). How-
ever, a process can also be integrated by external partners. Hence, the external
view must be correctly mapped to the internals. [S89] addresses this challenge
with WebMov, a framework based on Modelio which is capable of modeling/
generating BPEL processes including interface definitions. WebMov utilizes Ac-
tiveBPEL and BPELUnit to check if a process conforms to its WSDL model
(e.g., provided operations or response times). Hence, in regard to testing the
authors only provide minor extensions to existing work (i.e., how to integrate
timings/time). Nevertheless it provides a very detailed evaluation which incor-
porates multiple case studies.

[S125] instead converts the process into an Open Nets model which is used to
generate tests. The exchanged test messages are observed and compared to the
public process interface. This approach mainly concentrates on optimized test-
case generation, for example, by limiting test redundencies. However, it only
supports Open Nets models and while the authors assume that it is possible
to translate more common modeling languages such as BPMN into Open Nets
they were not able to show or prove it. Finally, the presented testing approach
does not support to verify data aspects.

Input/Output Symbolic transition systems are utilized in [S97,S98] to con-
duct black box conformance tests. Hence, the process gets converted into a STS
to generate a SET. Each process partner is categorized in one of three groups,
namely, observable (messages can be observed), controllable (messages can also
be modified), and hidden (messages cannot be observed) to deal with control-
lability issues. The actual conformance test is conducted by stimulating (with
manually defined test data) and monitoring the process and comparing the ob-
served messages with the SET which is therefore used as a specification. Note,
that [S98] is mainly ignoring test-case generation or test data and does mainly
discuss how the communication between process partners can be observed and
utilized for testing.

[S97] in contrast provides a much more complete approach but can, most
likely, not be used for testing process models because the process models that
are tested (BPEL) are also utilized as a form of specification which is only
marginally extended. Hence, the approach provides the most value in scenarios
were, e.g., a specification was implemented in some sort of programming lan-
guage based on a specification which was modeled in BPEL. The applicability
of this approach could be extended, for example, by providing ways to describe
and test a more detailed specification which allows to specify important details
beyond the ones that can are already be integrated into BPEL models.
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[S96] also uses a STS. The process and the desired behavior are indepen-
dently modeled/converted as/to STS models and then these models are com-
pared. Because this approach has two independent models it does not suffer
from the disadvantages discussed for [S97]. Additionally it is one of the rare
testing approach that can integrate real world partner processes into the tests
which allows to generate more realistic test scenarios and test results (e.g, for
testing cross-organizational scenarios). However, we assume that existing mod-
eling experts most likely do now know (without additional training) how to
model STS models. Finally, this and the previous approaches (i.e., [S97,S98])
were not able to prove that their model transformation approach (e.g., BPEL
process model into STS) is sound and that the generated STS model does lead
to similar results as if the original BPEL model would have been used during
testing - which probably reduces the test quality.

Another approach for conformance testing, in addition to monitoring the pro-
cess’s behavior/exchanged messages, is to record and analyze logfiles. Hence,
[S119] proposes to record the exchanged messages and to compare them with
local (describing a single process/partner) and global conformance rules (com-
munication between multiple partners). The conformance rules are modeled
as timed automatons and describe, for example, that message X must follow
10 minutes after message Y. The current approach only supports a posteriori
analysis which increases the delay between step execution and response. Hence,
adding real time analysis capabilities is a promising extensions to enable quick
reactions during ongoing model executions.

A framework called XTEMP is proposed in [S121]. XTEMP allows to store
and query XML based messages using a custom scripting language. Hence,
conformance reports can be generated for monitored process models based on
conformance rules which are represented by XTEMP scripts. The presented
approach does only partly concentrate on conformance checking and mainly
strives to generate management reports (e.g., the extracted indicators are not
compared to an specification to detect derivations).

[S120] proposes to extract a basic set of conformance rules directly from
process models. Subsequently, additional custom rules can be added by domain
experts. The generated conformance rules are then used to analyze recorded
event logs. The authors focus on the care domain. However, we assume that
their approach would also be applicable in other domains. But therefore it
must become easier to add custom extensions to the automatically generated
conformance rules and the soundness of the automatic transformations must be
proven.

We found that conformance testing allows to efficiently check if specific spec-
ifications are met by a process through testing the internal behavior or the exter-
nal view provided for potential partners. However, we noticed that the proposed
approaches are not able to combine the observed information of multiple process
model instances or process models. Hence, if a constraint would be that, e.g., a
manual approval for a specific transaction limit (e.g., $1,000) is required then a
currently undetectable ‘workaround’ could be to split up the large transaction
into smaller chunks. Hence, the existing approaches need to improve their data
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aggregation and analyzation skills especially when monitoring process instance
data and other process model runtime properties.

3.3.7. Regression testing

Regression testing focuses on ‘retesting of a system or component to verify
that modifications have not caused unintended effects’ [39, p. 295]. However, a
major part of the identified regression testing approaches concentrate on test-
case prioritization. Why? Because, prioritization techniques allow to execute
test suites in a more focused and more effective manner (e.g., by selecting tests
which cover the modified process parts).

[S20] compares guards of the previous and the modified version of the process
model to identify tests which must be deleted (they cover obsolete paths), mod-
ified (to follow the adapted paths), or created because a new path was added.
However, existing tests are not prioritized. However, the proposed approach
only identifies effected test-cases and other approaches must be used to create
or adapt the existing paths. Especially adapting paths is an interesting area
which is currently not addressed by existing work because mostly the tests are
simply removed, therefore manual test adaptations are lost, and new tests must
be generated.

Additionally, [S19] proposes to check all process partners for modifications.
Afterwards only those regression tests are executed that cover at least one mod-
ified partner. [S19] also recognized that the list of chosen tests maybe must be
adapted dynamically because of partner modifications which take place during
test runs. Additionally multiple challenges related to concurrent process model
execution paths are discussed and solved. To detect changed partners the whole
partner process (or even the sourcecode of the partners implementation) must
be available. We assume that this is rather unlikely in real world scenarios.

[S11] recommends three different strategies to address dynamically changing
test situation. For example, it can be checked if each test follows the expected
execution path. If not then most likely a partner has changed and, therefore,
returned a different value. Hence, it’s necessary to identify tests which likely
cover the missed sub-execution paths. The authors show the efficiency of their
approach by conducting a comprehensive evaluation. In [S15–S18] the authors
are proposing approaches that combine multiple information pieces (the process
model, WSDL interface, and XPATH rules) to calculate a test-case prioritiza-
tion.

So, for the process model the branch coverage is incorporated, while the
WSDL interface is analyzed to see which test covers, for example, the most op-
erations or utilizes the most data fields [S18]; tests which use data with a higher
diversity will also get assigned a higher ranking [S16]. Finally, the XPATH rules
are converted into a XRG graph to apply branch coverage algorithms which
allow to determine how many ‘XPATH branches’ are covered by a test-case
[S15]. [S13,S14] create a ranking based on modified partner bindings, control
flow modifications (e.g., new activities), and modified attributes (hash values of
the bindings/attributes are compared between the old and new process model).
Only tests whose execution path covers a change are executed.
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[S13,S14] and [S12] convert processes into graphs to apply their algorithms.
However, [S12] utilizes a different prioritization technique which is based on
assigning a modification factor to each modified activity and its surroundings.
Subsequently, the tests are ranked by adding up the covered modification factors;
a higher sum then leads to a higher ranking. Another prioritization approach,
based on aspect oriented programming techniques, is proposed in [S117]. Hence,
the process is converted into a Petri Net to automatically weave in elements
that detect changes (e.g., modified partner bindings). Overall this allows to
detect which parts of the process were changed and how. Subsequently, tests
are prioritized that cover those parts.

However, in order to prioritize test-cases, these must first be generated.
Hence, [S14] proposes a regression test generation approach that converts the
process into a graph and then extracts all possible execution paths. We found
that [S14] proposes to solve constraints (e.g., defined as gateways) at each exe-
cution path to generate test input data which would allow test-cases to follow
the expected execution path. But, the authors did not describe how they plan
to solve those constraints and therefore their test generation approach is only
partly ‘operational’. [S118] instead proposes to first analyze a process to identify
modified areas (using an extended annotated service automaton) and then to
adapt a test suite so that it covers those areas. Note, that each process partner
must provide a detailed and complex specification of its internal and expected
behavior and communication. We assume that such a detailed specification will,
most likely, not be available in real world scenarios.

This section provides an overview about current regression testing tech-
niques. Clearly, test generation is not a dominating factor. However, it’s pos-
sible to reuse already presented test generation approaches (cf. Section 3.3.2).
Additionally we found that existing work (i.e., the majority of the identified re-
gression testing work is concentration on test-case selection and prioritization)
lacks flexibility regarding the supported regression test-case selection and prior-
itization user requirements. Hence, the test-cases can currently not be selected
or ordered based on important requirements such as cost (i.e., each call to a pro-
cess partner during a test can cost money) or execution time (i.e., how quickly
the selected test-cases are executed). This limits the usability and efficiency of
the presented approaches and creates an interesting area for future work.

3.3.8. Formal testing

Formal testing approaches utilize formal mathematical models or specifica-
tions such as labeled transition systems or FSAs to conduct process tests. How-
ever, the authors found that also publications without a strong focus on formal
techniques are frequently integrating formal concepts (e.g., model checkers or
LTL) to generate test-cases.

The discovered publications frequently rely on PROMELA. PROMELA is
a formal verification language that is able to describe complex distributed sce-
narios (e.g., process models) which can be used by model checkers to gener-
ate tests based on LTL rules (cf. Section 3.3.2). [S7–S9,S92,S141] rely on
PROMELA, however, the main difference is how each publication creates the
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analyzed PROMELA models. Hence, [S92] has designed a custom intermediate
language which allows to apply their test approach on different modeling lan-
guages. So, the models are transformed into the intermediate language which is
then automatically transformed to PROMELA. However, the described trans-
formation approach is incomplete (i.e., the whole BPEL standard is not sup-
ported) and, as also already mentioned at previously discussed publications, the
soundness of the transformation approach was not proven (this also applies to
the following publications mentioned in this section). [S141], however, proposes
to transform the original process model into an extended finite-state automaton
– which is then converted into a PROMELA model – and to apply predicate
abstraction that converts conditions into boolean states to simplify the models.
Note, that this approach is one of the most complete ones (regarding the sup-
ported process model properties) and which is especially dealing with potential
state explosions that can occur when using SPIN on large and complex process
models.

Additional approaches based on transforming BPEL into PROMELA are
presented in [S8,S9] and [S7] (the last one mainly concentrates on creating a
formal, but still incomplete, representation of BPEL models and only contains
a short ‘discussion’ how such formal models could be used for testing purposes).
Additionally, [S8] lacks a throughly evaluation and only contains a performance
review of the presented approach. Note that [S7] also supports our assumption
that it is important to prove the equality of the original process and its formal
representation in terms of their semantical meaning. Additionally [S7] stated
that this prove is hard and we assume that this is the reason why the identified
transformation based approaches lack this prove and frequently only support
a subset of the transformed modeling language (e.g., BPEL) - which reduces
the efficiency of the affected approaches, e.g., because complex real life process
models likely contain some of the modeling language elements that can not yet
be transformed.

Process algebra, for example, based on LOTOS which is ‘one of the most
expressive process algebra’ [S6, p. 224] is also frequently applied. For example,
[S6] proposes to convert a BPEL process into LOTOS to test for specific prop-
erties such as X must not be followed by Y. However, it still must be defined
how XPath rules can be converted. Note, that the authors mainly concentrate
on the BPEL to LOTOS transformation and, therefore, skip most aspects which
are required to create a complete testing framework. This gab is closed by the
following publications.

[S31], uses LOTOS and LTL to create Test and Testing Control Notation
behavior trees that can get assigned different types of properties which describe
the expected behavior. Subsequently, counter example based test-case genera-
tion is utilized. Note, that this approach requires a very detailed and through
specification (it must be created in a manual time intensive and therefore ex-
pensive way) which is then transformed into LTL rules. This approach, from
all LOTOS based ones, is the only one which deals with potential state ex-
plosions. Therefore the tester has to manually identify critical process parts
which are then tested while ignoring the remains of the process model. Hence,
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this approach can, by applying this technique, most likely also deal with very
complex and large processes but requires a modeling expert which brings in
a detailed knowledge about the process model and its domain to identify the
relevant critical areas.

Different process algebras are used in [S3] (π calculus is analyzed with the
Open Process Analyzer which is able to check if specific properties are met by
analyzing the possible process states) and [S2] (event calculus, static analysis
is used to check that execution order/data constraints (e.g., variable X must
be below Y) are respected by a process model during its execution). [S3] only
supports static analysis of business process models. Hence, a process model
is analyzes if some possible execution order exists that should, based on the
defined rules, not be possible. [S2], in contrast, supports also runtime analyses.
Hence, the ongoing execution of web service compositions (i.e., comparable to
process models) can be analyzed to check if it is compatible to the defined
specification/rules. We assume that this would also provide an promising basis
to extend the application range of this approach, for example, to adapt it so that
it can also be used for security monitoring. Live monitoring active executions
would also allow to deal with large process models more easily because instead
of simulation and checking all possible executions only the current one must be
considered and which reduces the amount of data which must be analyzed at
once.

Other formal concepts are also applied. Hence, [S5] proposes to convert pro-
cesses into OWL-S ontology models which are then analyzed using BLAST to
generate tests based on the reachability of manually added error states. BLAST
uses a C-like language as input data which must manually be extended and
modified (e.g., by adding checks for variable values and states). Hence, it would
support also complex checks and rules, however, we assume that a typical mod-
eling expert would be overwhelemed by the complexity without an extensive
amount of training. Additionally this approach struggles (i.e., state explosion)
when dealing with complex process models especially when the process model
contains concurrent paths which, we assume, as common in todays process mod-
els. [S158] however, proposes to manually create a formal representation of the
process model using Algebraic Petri Nets. In the following, first order logic
is used to define properties (e.g., reachability, so test-case generation is not
supported) which must hold in every possible state of the process. Algebraic
clustering (calculating states of specific parts of the net separately) or net un-
folding (assigning fixed values to variables to reduce possible variable values
and therefore states) are applied to reduce the amount of states which must
be checked. This approach relies on a advanced model checker and is therefore
able to deal with larger process models than already discussed approaches and
it supports separation of concerns, i.e., that all test data is separately managed
and stored from the original process model under test. However, this narrow fo-
cus also leads to multiple drawbacks. For example, it only supports one specific
flavor of Petri Net models as input data which must be manually created based
on the process model under test. This limits the applicability of this approach
because competing modeling languages, e.g. BPMN, are more frequently in use
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nowadays. Additionally the tested properties must be defined as First Order
Logic rules which likely requires that the modeling experts must be extensively
trained so that they can correctly define the required rules. We assume that
already those two drawbacks reduce the applicability of the presented approach
in real life scenarios.

Formal testing approaches benefit from their strict mathematical definition
and that existing analysis tools and theoretical background can be reused. A
formal description also helps to address nondeterministic modeling languages.
However, those approaches typically require that the process itself is converted
into a formal representation, risking that these models (original process vs.
formal representation) deviate from each other. Additionally, the presented ap-
proaches rely on modeling and specification languages which, as we assume, are
most likely not known by current process modeling experts so that an extensive
amount of training would be required to apply them (e.g., this hinders the dis-
semination of the affected process model testing approaches). It was also found
that the existing formal approaches require extremely detailed specifications to
create LTL rules which are used, e.g., for test-case generation purposes. How-
ever, we assume that typical project specifications or requirement documents
are not detailed enough and must be substantially extended by domain and
modeling experts before this approach can be applied – which is time and cost
intensive.

3.3.9. Additional approaches

This section does not concentrate on a single topic. Instead if provides an
overview about niches which are addressed by a small amount of publications.

One is to mutate a process and then to use the mutants to evaluate test
suites by executing their tests and checking if the mutation is recognized (tests
are failing) or not (cf. [S93–S95]). Here a test suite or testing approach would
be ‘better’ if it finds more faults (i.e., mutations) than the compared test ap-
proaches. However, we found that the existing mutation approaches are only
dealing with BPEL process models and it would be interesting which of the pre-
sented approaches can also be applied (e.g., in adapted forms) on other modeling
languages such as BPMN. A through evaluation of existing BPEL mutation ap-
proaches is presented in [S94]. Other authors apply or calculate the optimal
position of sensors which then communicate with a testing service to determine
the test coverage of test suites, for example, at hidden private processes (cf.
[S86–S88]). However, we assume that it will most likely not be possible in real
world scenarios to edit and annotate the private process models of your partners
with custom elements and sensors (e.g., because the partners want to protect
their confidential business processes from external influences).

Sensors can also be used for testing. Thus, they have to forward relevant
data (e.g., exceptions) [S85]. One disadvantage is that the process model gets
annotated with additional elements which can lead to a diversion from the ex-
pected behavior and also the model becomes more complex and therefore harder
to maintain. Hence, a ‘modification-free’ inspection is helpful which can be
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achieved, for example, by a proxy server which observes and analyses the ex-
changed messages (cf. [S82–S84]).

An alternative could be a public interface where the process partner pub-
lishes events that indicate, for example, which branches are currently covered
so that an external tester can make conjectures how the test suite must be
adapted to cover the whole partner process [S77]. In general, test coverage is
a frequently used test suite quality indicator. Hence, [S76] proposed 4 ways
of measuring the test coverage of Petri Nets. Another indicator, proposed in
[S75], is to extract data invariants and to check if the existing tests are covering
those. Such invariants can also be used for slicing [S73] (i.e., to identify which
process paths/elements modify or are controlled by, e.g., a variable). Note, that
existing approaches are mainly overtaking and adapting coverage calculation
approaches which are already known from the software development domain,
such as branch coverage, def-use, and so on. This might unnecessary limit the
ways how coverage is observed and handled in the process modeling domain.
Hence, it would be promising to analyze if the differences between source code
and process models (cf. Section 3.2) are large enough to justify and successfully
use novel coverage measurement approaches which are independent from the
software development domain.

In general, it’s also interesting to identify which activity must be fixed
to resolve an identified problem. Therefore, [S110,S144] display the user the
outcome of multiple executions and the user marks them as right or wrong.
Those markings are then used to determine the activities which likely lead to
a wrong outcome. However, this requires a substantial amount of time and
in-depth knowledge of the process model and its domain which increases test-
ing costs. Interestingly enough [S110] arguments against realistically testing
cross-organizational scenarios with real process partners because those are not
‘controllable’ and should always be replaced with simulations. However, we as-
sume that this argument is invalid when taking current flexible and dynamic
partner and service landscapes into account. For example, process partners and
their back-end systems can change and fail any time, frequently unnoticed un-
til some processes must be executed for an important customer. Testing the
process models with realistic real world scenarios, data, and the real process
partner systems would be able to detect and address this situation early and
increase the value of the generated test result.

An agent based testing approach is proposed in [S114]. Multiple agents
simultaneously stimulate/observe a process and apply rules to validate the ex-
changed data. However, large parts (even basic components such as test genera-
tion) of the proposed concept were not implemented or evaluation. An extensive
test framework is provided by TASSA [S50] which contains solutions for part-
ner isolation, random data generation, test execution and definition (control and
data flow based) along with a fault injection component. Note, that TASSA is,
based on your assumption and findings, currently the most complete and ma-
jor testing framework (e.g., a consistent user interface is provided or multiple
testing approaches and solutions are combined) which we also would recom-
mend for real world projects. Note, that other publications might provide more
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Figure 6: Classification of main testing approaches and their required skills/knowledge.

specialized and also more advanced solutions (e.g., it is missing the support
for concurrent or cross-organizational processes which reduces its efficiency and
test result quality), however, those are frequently only focusing on the scien-
tific community and harder to apply (e.g., an extensive amount of training is
required to learn custom test property description languages). Finally, [S112],
shows how tests can be utilized to guide unskilled users while they are customiz-
ing process templates. However, the presented approach is only sufficient for
enforcing simple control flow based rules. Hence, extending this approach, for
example, to support the description and enforcement of dependences between
multiple process models would be necessary to apply this approach in enterprise
scenarios.

It can be concluded that this section provides an overview of the state of
the art in process testing, its main research areas and, therefore, found answers
for RQ1 to RQ3. Additionally, it was possible to conclude that this new SLR
is providing novel insights by comparing it with existing SLRs and, therefore,
answering RQ0.

4. Classification

Classification is applied to find answers for RQ4.1 and RQ4.2 such that it
becomes possible to identify key research areas, novel research challenges, and
gaps in the process model testing domain.

4.1. Required skills/knowledge

For RQ4.1 the classification compares the discovered publications based
on the dimension ‘Approach’ and ‘Skill/Knowledge’ at Figure 6 to evaluate
if it’s possible that a ‘typical’ modeling expert would be able to apply cur-
rent testing techniques. The vertical axis contains the identified main testing

41



approaches (cf. with Section 3.3) while the horizontal axis consists of the iden-
tified skills/knowledge which are required to apply those testing approaches.
Skills/knowledge were divided in following classes:

Logic indicates that the user needs skills in logic, for example, to define test
properties using LTL.

Modeling skills are required, i.e., a process model can be altered or generated.

Formal techniques are required, for example, to create a formal model that
represents a specification.

Custom language requires that a custom test description language must be
applied.

Detailed understanding means that the user needs in depth knowledge about
the process and its environment and domain.

Detailed models means that the user is required to annotate the models with
fine-grained details, for example, pre- and post-conditions at each activity.

Programming skills are required, for example, to define a simulation of a
partner by describing its behavior in Java.

Only program operation means that it was only required to apply the test
algorithms/tools.

Historical data refers to the ability to utilize historical information such as
process execution log files.

Note, that the number in brackets (cf. Figure 6 and 7) indicate the number
of publications that chose this specific testing approach as their main objective.
The cells indicate the relative amount of publications which require, for example,
a specific approach/skill combination (in percent). The shaded colors visualize
the values (a higher percentage is represented by a darker color).

Figure 6 shows that the published testing approaches typically require man-
ual preparation. However, it’s possible to identify unique characteristics. 69
percent of all regression testing approaches can be applied simply by executing
their algorithms. However 9 out of 10 publications (forming this 69 percent)
are test-case prioritization techniques.

By contrast, detailed models are typically required by performance test-
ing approaches because those utilize information about the expected execution
times. Modeling skills are also frequently expected. However, these are likely
available at modeling experts while the authors assume that the other skills
(except program execution and historical data) are hardly available. But it
must be kept in mind that Figure 6 is counting each required skill individually,
meaning that only 4.7 percent of the discovered publications were only requiring
modeling skills.
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Figure 7: Classification of main testing approaches and their support for upcoming challenges.

However, we also checked which approaches typically require a complex com-
bination of skills (taking all skills into account except modeling, historical data,
and program execution – we assume that those should not restrict the appli-
cability). We found that integrating testing (each skill is required, on average,
by 41 percent of the concerned publications), formal testing approaches (37
percent), and performance testing (34 percent), require the most complex skill
combination and therefore provide only a limited applicability. Another notice-
able circumstance is that a ‘Detailed understanding’ (in-depth knowledge of the
process) is required frequently, for example, to describe the expected behavior
when a mangled message is sent to the process (for fault testing).

We conclude that specific knowledge sources, especially historical data, are
currently not exploited to their full extent and that current testing approaches
frequently require a multitude of skills.

4.2. Support for upcoming challenges

Figure 7 compares the discovered publications based on the dimension ‘Ap-
proach’ with multiple, important [34], upcoming challenges to evaluate if those
are already supported by existing process testing approaches. Note, that ‘cross-
organizational scenarios’ and ‘legacy scenarios’ were already described in Section
1.

Applying model abstraction/transformation: Current research frequently
proposed solutions which required that the original process model becomes
transformed/abstracted (cf. Section 4.2), for example, to a STS. How-
ever, the applied transformation/abstraction techniques frequently only
supported a limited set of the features (compared which original process
modeling language). In addition, it’s hard to ensure that the transformed
result does not derivate from the original model (cf. [34] and [S7]).
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Figure 7 shows that the support for cross-organizational scenarios is quite
low. However, integration testing and regression testing sticks out. The reason
is that integration testing tests the integration of a process with other partners/
services (cf. Section 3.3.4) and regression testing naturally has to deal with mu-
table partners, for example, to prioritize tests which cover a modified partner
process (cf. Section 3.3.7). But the support for cross-organizational scenar-
ios would also be important for the other approaches because process models
contain more and more cross-organizational scenarios.

Additionally, it was noticeable that legacy scenarios are currently not taken
into account by the discovered testing approaches. Hence, the discovered work
does typically require manual preparation or various skills, which limits the
applicability of the proposed approaches in real live scenarios (cf. Section 1).
Drawbacks and limitations of such end-user prerequisites are currently not dis-
cussed and the challenge to maintain legacy processes is not systematically ad-
dressed.

Applying model abstraction/transformation is a popular approach because
it enables researchers to utlize existing tools/techniques (e.g., model checkers
are used by ‘Formal testing’ approaches). However, its drawbacks (cf. Section
5) aren’t discussed by the discovered publications. But why is ‘Test data gener-
ation’ not using any transformation/abstraction? Because the identified main
data generation techniques (cf. Section 3.3.3) are not benefiting it.

We conclude that specific testing approaches (performance testing (4 pub-
lications), fault (8), and integration testing (7)) are only partially covered by
existing publications and that those are, therefore, still emerging research areas.
Specifically, legacy scenarios (and partly cross-organizational scenarios) are not
addressed by current publications and we conclude that this is hindering the
dissemination and applicability of tests at the process modeling domain.

5. Findings and research challenges

This section discusses findings, research challenges, and gaps in the pro-
cess testing domain which were discovered based on this SLR and the applied
classification.

Legacy process models. The review shows that, current process testing research
does not take legacy process testing scenarios into account and expects the ex-
istence of a supportive user which has to bring in a bunch of knowledge/skills.
Few of the proposed approaches can be applied without manual preparation
(e.g., some test-case prioritization and generation approaches). However, even
these approaches do not explicitly try to address legacy scenarios (e.g., by as-
suming an insufficient documentation, limited access to domain/environmental
information, and a realistic training/skillset of the user). Hence, future work
must take such scenarios into account to support modeling experts when they
are maintaining and refining millions of existing legacy process models.

44



Cross-organizational scenarios. It is essential for testing approaches to support
cross-organizational scenarios in order to unfold their full potential [34]. How-
ever, the conducted classification showed that this was typically not the case (cf.
Section 4.2). But the trend towards interconnected organizations cannot be re-
verted. Hence, process testing research is forced to support cross-organizational
scenarios in future publications to provide a high applicability in real life sce-
narios.

Model transformation and abstraction. Current testing techniques frequently
concentrate on BPEL and its particular characteristics. Hence, to widen and
enhance the applicability of process tests it’s necessary to propose generic so-
lutions (e.g., through intermediate languages, cf. [S92]) or approaches which
address the unique characteristics of other modeling languages (e.g., the pos-
sible nondeterministic behavior of BPMN models). However, when applying
transformation/abstraction (between modeling languages or into intermediate
languages) it must be ensured that the tests still check the original behavior –
a challenge which is currently frequently ignored (cf. Section 4.2).

Skills and knowledge. Current test approaches require a multitude of skills/
information. However, we could not discover a publication which discusses the
implications of such requirements (e.g., that not every user would be able to
apply them without extensive training or that the applicability of tests is limited
in specific scenarios). Such a scenario is the maintenance/advancement of legacy
processes. We assume that in such a scenario time pressure and frequently
changing domains/tasks are immanent.

Taking into account the complexity of current process models and domains
it’s unlikely that – in a reasonable amount of time – a user could gain enough
knowledge to describe, for example, detailed conditions for each activity. There-
fore, research should strive to reduce the amount of skills which are required to
apply the proposed testing approaches and analyze which skills can be assumed
as being existent at a typical user of process tests.

Integrating historical data. Testing research rarely utilizes historical data sources,
for example, to forecast execution times (cf. [S23]). However, historical data
can also be utilized to enhance the quality of the generated test-cases and to
reduce the amount of information which must be provided manually. For ex-
ample, historical data could be used to a) detect the most frequently executed
and therefore probably most important paths, b) apply long time monitoring to
detect derivations from a auto generated behavior fingerprint, and c) to auto-
generate complex test data based on the recorded information.

Comprehensive account of process views. A process model typically contains
different views which focus on various properties such as control flow, data flow,
resources, and organizational properties. However, the current process testing
research mainly concentrates on the first two ones and leaves the resource and
organizational view behind. Hence, the questions arise, if and how those views
can be covered and utilized by test approaches.
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Figure 8: Overview of the discovered evaluation approaches.

Applied evaluation approaches. Figure 8 provides an overview of the evaluation
techniques which were applied by the discovered process testing publications.
Therefore it structures the Y axis into three evaluation approaches concentrating
on the user, the practical applicability of the proposed approaches and technical
aspects. The ‘Evaluation complexity’ section provides a quantitative overview
of the utilized evaluation data (e.g., ‘Only motivation’: only a motivational ex-
ample was provided, ‘Only performance’: only a performance evaluation was
conducted, or ‘Amount’: how many process models were used during the evalu-
ation). The X axis shows the source of the utilized evaluation data, for example,
‘Ad-hoc’ indicates that the publication used ad-hoc process models or ‘Real sce-
nario’ indicates that some real life process model was used that is not publicly
available. ‘None’ indicates that no evaluation was presented.

It can be deducted from this figure that current research is frequently not
providing a comprehensive evaluation (16.3 percent not even provided an eval-
uation or motivational example). Instead a typical process testing publication
only used a limited amount (1-2) of processes (49.6 percent) to evaluate an
approach, only provided a motivational example (26.1 percent), or a perfor-
mance evaluation (four percent). The performance evaluations were normally
only ‘proving’ that the proposed techniques can be applied on X processes in Y
minutes without comparing these to different algorithms. We also found some
publications whose authors discussed opinions/experiences instead of conduct-
ing a full-blown evaluation. The evaluations itself frequently relied on ad-hoc
process models which the authors have designed specifically for their evaluation
section. However, there was also a noticeable amount of publications which
re-used existing examples (e.g., from a different publication) or standardized
models which allows to compare different approaches. One solution could be to
create a platform were process models, test-cases, and evaluation results can be
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shared between authors.
It was also noticeable that current process testing approaches are not con-

ducting user evaluations (e.g., interviews or questionnaires). Hence, the usabil-
ity of the proposed approaches in real life scenarios is often unproven. One step
in the right direction would be to conduct more case studies. However, the
discovered case studies are typically using ad-hoc process models. This finding
was surprising, because we expected that case studies should be based on real
live scenarios.

Misuse-cases. It became obvious that a considerable amount of the discovered
publications was focusing on applying tests to check if a process supports a
specific property or use-case (e.g., is the expected message returned after sending
X). So, a typical process testing publication checks if some expected behavior
is supported. But, it would also be interesting to ensure the non-existence of
specific behavior (e.g., to prevent misuse-cases or to guarantee with tests that
a fixed unintended feature is not ‘resurrecting’ in future versions).

Overall it can be concluded that process testing is a challenging research
field. However, this listing does not claim to be complete and therefore we
assume that new challenges will arise.

6. Discussion of limitations and threats to validity

This section discuss limitations and potential threats to validity of this SLR.

Excluded areas. This SLR concentrated on discovering and analyzing process
model testing publications. However, while designing this SLR the authors chose
to a) ignore security testing approaches because there was a recent publication
of a SLR in that area (cf. [6]) and b) of approaches which are not testing the
process models itself but instead some source code based representation to check
the conformance between code and model. [52]).

Limitation of search. Due to the wide-spread utilization of processes it became
necessary to limit the search (cf. Section 2.2) to specific sections of the searched
publications (title, abstract, and keywords). For example, a full text based
search after process and test generates more than 220,000 results on Google
Scholar alone. This decision also slightly limited the possible search engines
because, for example, Google Scholar does not allow to specifically search the
abstract of the indexed publications. However, this SLR still includes more
than seven different literature databases, conducted a detailed manual search,
and applied snowballing. Therefore, we are confident that this SLR covers the
most important sources and publications.

Presented ideas and algorithms. This SLR elaborates the ideas, algorithms, and
foundations of the discovered publications. However, an extensive elaboration
would go beyond the scope of this study. Hence, we would like to refer the
interested reader to the cited literature.

47



Manual categorization. A manual categorization always struggles with the in-
herent problem of a potential bias. Hence, we discussed each publication until an
agreement was reached and investigated automatic categorization tools. How-
ever, we found that text mining is not suitable for our problem (cf. [6]) because
the wording changed significantly over the years and the classified information
was frequently not described using extractable keywords.

Classification. We are aware that the classification section can (for the sake of
brevity) only present some selected examples to generate an overview and to
identify research challenges. However, we also created additional analyzes and
found that those were not contradicting the presented results.

7. Conclusion and future work

This SLR provides a holistic view on process model testing. Therefore, 153
publications between 2002 and 2013 were examined, analyzed, and classified.
Section 5). Related to our research questions we found that:

RQ0 We became confident – by searching and analyzing existing SLRs – that
this SLR is the most complete SLR on the process testing topic and that
it covers novel research questions (cf. Section 3.1.1).

RQ1 This SLR indicates that existing research is interconnected with the soft-
ware development domain. Therefore, the community is reusing existing
definitions which have already proven their usefulness. However, the most
recent publications suggest that the process testing community is currently
on its way to abstract itself from its roots by publishing more unique ap-
proaches.

RQ2 We found a rich set of different approaches which address ten main objec-
tives (cf. Section 3.3) and that the majority of the discovered publications
can be mapped onto one of those. However, there were also some distinct
publications which address objectives such as mutation testing.

RQ3 By subdividing the discovered publications based on their main objective
it became clear that the most frequently addressed topic is test-case def-
inition with 31 publications (cf. Section 3.3). Note, that additional pub-
lications could also implicitly cover this topic; but those are not counted
at this category if test-case generation is not their main objective. Con-
formance testing also got a top position assigned with 21 publications.
However, the least frequently addressed topic is performance testing with
four publications.

RQ4 In terms of RQ4 a mixed picture emerges. It was found that current pro-
cess testing approaches typically require a multitude of skills and knowl-
edge, while at the same time auto generated knowledge sources, such as
historical data, were not fully exploited. Additionally, an encouraging
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trend towards the support for cross-organizational scenarios and test ap-
proaches which do not require model abstraction were recognizable. How-
ever, further improvements could still be made, by creating process testing
approaches which keep legacy scenarios in mind. We conclude that cur-
rent process testing approaches are on the right track to address upcoming
challenges, but there are still many points remaining were a substantial
improvement is possible (cf. Section 5).

In future work, we plan to strengthen the process model testing domain by
focusing on the unique characteristics and requirements of the process model-
ing community (e.g., by addressing modeling languages which are less strongly
rooted at the software development domain). Further, we want to tackle open
research challenges and problems which were outlined in this paper. There-
fore, we will, for example, concentrate on developing process testing approaches
which utilize the full potential of historical data and comparable data sources
which are auto generated by process aware information systems.
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[S35] L. Bentakouk, P. Poizat, F. Zäıdi, A formal framework for service or-
chestration testing based on symbolic transition systems, in: Testing of
Software and Communication Systems, Springer, 2009, pp. 16–32.

[S36] I. Rauf, M. Z. Z. Iqbal, Z. I. Malik, Model based testing of web service
composition using uml profile, Model-based Testing in Practice (2009)
75–84.

[S37] C. Mao, Towards a hierarchical testing and evaluation strategy for web
services system, in: Software Engineering Research, Management and Ap-
plications, IEEE, 2009, pp. 245–252.

[S38] F. De Angelis, A. Polini, G. De Angelis, A counter-example testing ap-
proach for orchestrated services, in: Software Testing, Verification and
Validation, IEEE, 2010, pp. 373–382.

[S39] W. Hummer, O. Raz, O. Shehory, P. Leitner, S. Dustdar, Testing of data-
centric and event-based dynamic service compositions, Software Testing,
Verification and Reliability 23 (2013) 465–497.

4



[S40] M. Karam, H. Safa, H. Artail, An Abstract Workflow-Based Framework
for Testing Composed Web Services, in: Computer Systems and Applica-
tions, IEEE, 2007, pp. 901–908.

[S41] Z. J. Li, W. Sun, Z. B. Jiang, X. Zhang, BPEL4WS Unit Testing: Frame-
work and Implementation, in: Web Services, IEEE, 2005, pp. 103–110.

[S42] V. Stoyanova, D. Petrova-Antonova, S. Ilieva, Automation of Test Case
Generation and Execution for Testing Web Service Orchestrations, in:
Service-Oriented Systems Engineering, IEEE, 2013, pp. 274–279.

[S43] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, J. Wang, Pattern Based
Property Specification and Verification for Service Composition, in: Web
Information Systems, Springer, 2006, pp. 156–168.

[S44] J. Simmonds, M. Chechik, S. Nejati, E. Litani, B. O’Farrell, Property Pat-
terns for Runtime Monitoring of Web Service Conversations, in: Runtime
Verification, Springer, 2008, pp. 137–157.

[S45] J. Yu, J. Han, S. O. Gunarso, S. Versteeg, A Business Protocol Unit Test-
ing Framework for Web Service Composition, in: Advanced Information
Systems Engineering, Springer, 2013, pp. 17–34.

[S46] G. Zhang, R. Mei, J. Zhang, A Business Process of Web Services Testing
Method Based on UML2.0 Activity Diagram, in: Intelligent Information
Technology Application, IEEE, 2007, pp. 59–65.

[S47] U. Farooq, C. P. Lam, H. Li, Towards Automated Test Sequence Gener-
ation, in: Australian Software Engineering Conference, IEEE, 2008, pp.
441–450.

[S48] A. Stefanescu, S. Wieczorek, M.-F. Wendland, Using the UML Testing
Profile for Enterprise Service Choreographies, in: Software Engineering
and Advanced Applications, IEEE, 2010, pp. 12–19.

[S49] D. Petrova-Antonova, S. Ilieva, I. Manova, D. Manova, Towards automa-
tion design time testing of web service compositions, e-Informatica 6
(2012) 61–70.

[S50] S. Ilieva, V. Pavlov, I. Manova, D. Manova, A framework for design-
time testing of service-based applications at bpel level, Serdica Journal of
Computing 5 (2011) 367–384.

[S51] F. Belli, A. T. Endo, M. Linschulte, A. Simao, Model-based testing of web
service compositions, in: Service Oriented System Engineering, IEEE,
2011, pp. 181–192.

[S52] C.-H. Liu, S.-L. Chen, X.-Y. Li, A WS-BPEL Based Structural Testing
Approach for Web Service Compositions, in: Service-Oriented Systems
Engineering, IEEE, 2008, pp. 135–141.

5



[S53] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schifanella, Verifying
the conformance of web services to global interaction protocols: A first
step, in: Formal Techniques for Computer Systems and Business Pro-
cesses, Springer, 2005, pp. 257–271.

[S54] S. Jehan, I. Pill, F. Wotawa, SOA Grey Box Testing - A Constraint-Based
Approach, in: Software Testing, Verification and Validation, IEEE, 2013,
pp. 232–237.
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