
Algorithmica manuscript No.
(will be inserted by the editor)

Maximizing a Submodular Function with Viability
Constraints

Wolfgang Dvořák · Monika Henzinger ·
David P. Williamson

Received: date / Accepted: date

Abstract We study the problem of maximizing a monotone submodular func-
tion with viability constraints. This problem originates from computational
biology, where we are given a phylogenetic tree over a set of species and a
directed graph, the so-called food web, encoding viability constraints between
these species. These food webs usually have constant depth. The goal is to se-
lect a subset of k species that satisfies the viability constraints and has maximal
phylogenetic diversity. As this problem is known to be NP-hard, we investigate
approximation algorithms. We present the first constant factor approximation
algorithm if the depth is constant. Its approximation ratio is (1 − 1√

e
). This

algorithm not only applies to phylogenetic trees with viability constraints but
for arbitrary monotone submodular set functions with viability constraints.
Second, we show that there is no (1 − 1/e + ε)-approximation algorithm for
our problem setting (even for additive functions) and that there is no approx-
imation algorithm for a slight extension of this setting.

1 Introduction

We consider the problem of maximizing a monotone submodular set function
f over subsets of a ground set X, subject to a restriction on what subsets

W. Dvořák
Universität Wien, Fakultät für Informatik, Währingerstraße 29, A-1090 Vienna, Austria
Tel.: +43 1 4277 783 21
Fax: +43 1 4277 8 783 21
E-mail: wolfgang.dvorak@univie.ac.at

M. Henzinger
Universität Wien, Fakultät für Informatik, Währingerstraße 29, A-1090 Vienna, Austria

D. P. Williamson
School of Operations Research and Information Engineering, Cornell University, Ithaca, New
York, 14853, USA

are allowed. As discussed below, this problem has been well-studied with con-
straints on the allowed sets that are downward-closed; that is, if S is allowed
subset, then so is any S′ ⊂ S. Here we study the problem of maximizing such a
function with a constraint that is not downward-closed. Specifically, we assume
that there exists a directed acyclic graph D with the elements of X as nodes
in the graph and only consider so-called viable sets of a certain size. A set S is
viable if each element either has no outgoing edges in D or it has a path P to
such an element with P ⊆ S. Such viability constraints are a natural way to
model dependencies between elements, where an element can only contribute
to the function if it appears together with specific other elements.

We are motivated by a problem arising in conservation biology. The prob-
lem is given as a rooted phylogenetic tree T with nonnegative weights on the
edges, where the leaves of the tree represent species, and the weights repre-
sent genetic distance. Given a conservation limit k, we would like to select k
species so as to maximize the overall phylogenetic diversity of the set, which is
equivalent to maximizing the weight of the induced subtree on the k selected
leaves plus the root. This problem, known as Noah’s Ark problem [20], can be
solved in polynomial time via a greedy algorithm [5,14,17].

When it comes the real-world instances the above formalization of Noah’s
Ark problem has been criticized for not considering that the survival of a
species might depend on the survival of other species (see e.g. [18]). If one
does not respect these dependencies a species might become extinct even if
it is selected for preservation, which indeed would result in suboptimal so-
lutions. Moulton, Semple, and Steel [12] introduced an extension of Noah’s
Ark problem which takes into account the dependence of various species on
one another in a food web. In this food web, an arc is directed from species
a towards species b if a’s survival depends on species b. Moulton et al. now
consider selecting viable subsets given by the food web of size k, i.e. a species
is viable if also at least one of its successors in the food web is preserved. Note
that in real life the depth of the food web, i.e., the longest path between any
node in D and a node with no out-edge, is rather small (usually no larger than
30) (see e.g. [3]).

Faller et al. [6] show that the problem of maximizing phylogenetic diversity
with viability constraints is NP-hard, even in simple special cases with constant
depth (e.g. the food web is a directed tree of constant depth).

Since phylogenetic diversity induces a monotone, submodular function on
a set of species, this problem is a special case of the problem of maximizing
a submodular function with viability constraints. There exists a long line of
research on approximately maximizing monotone submodular functions with
constraints. This line of work was initiated by Nemhauser et al. [13] in 1978;
they give a greedy (1 − 1

e)-approximation algorithm for maximizing a mono-
tone submodular function subject to a cardinality constraint. Fisher et al. [8]
introduced approximation algorithms for maximizing a monotone submodular
function subject to matroid constraints (in which the set S must be an inde-
pendent set in a single or multiple matroids). In recent work other types of

2

constraints have been studied, as well as nonmonotone submodular functions;
see the surveys by Vondrak [19] and Goundan and Schulz [9].

In our case, the viability constraints are not downward-closed while most
of the prior work studies downward-closed constraints. One notable exception,
where not downward-closed constraints are considered, are matroid base con-
straints [11]. The viability constraint could be extended to be downward-closed
by simply defining every subset of a viable set to be allowable. However, this
extension violates the exchange property of matroids and thus viability con-
straints also differ from matroid base constraints. Hence we consider a new
type of constraint in submodular function maximization. We show how vari-
ants on the standard greedy algorithm can be used to derive approximation
algorithms for maximizing a monotone, submodular function with viability
constraints; thus we show that a new type of constraint can be handled in
submodular function maximization.

Specifically we first present a scheme of (1 − 1
ep/(p+d−1))/2 - approxima-

tion algorithms for monotone submodular set functions with viability con-
straints, where d is the minimum of the depth of the food web and k, and
p is a parameter of the algorithm. Let n be the number of species and m
the number of edges in the food web then above algorithm’s running time is
in O

(
k · (3pnp+2 + np+1m)

)
, i.e., the running time is exponential in p but is

polynomial for any fixed p. For instance if we set p = d we achieve a (1− 1√
e
)/2

- approximation algorithm.

We further present a variant of these algorithms which are (1− 1
ep/(p+d−1)) -

approximations, but whose running time is O
(
k · (3pn4p+3d−1 + n4p+3d−2m)

)
,

i.e., exponential in both d and p. For fixed d=p this is polynomial and provides
an (1− 1√

e
) - approximation algorithm. However, as the running time heavily

depends on d and p this is only feasible for small values of d. For larger values
of d one has to find the right balance between running-time and approximation
guarantee.

Next by a reduction from the maximum coverage problem, we show that
there is no (1−1/e+ε)-approximation algorithm for the phylogenetic diversity
problem with viability constraints (unless P = NP). However, the reduction
from maximum coverage introduces a food web of linear depth. Thus, we fur-
ther give a reduction from Max Vertex Cover that shows APX-hardness even
for instances with constant depth food webs. Finally we consider a general-
ization of our problem where we additionally allow AND-constraints such as
“species a is viable only if we preserve both species b and species c” and show
that this generalization has no approximation algorithm (assuming P 6= NP)
by a reduction from 3-SAT.

The remainder of the paper is structured as follows. We define the problem
more precisely in Section 2, introduce our algorithms in Section 3, and give
the hardness results in Section 4.

3

2 Phylogenetic Diversity with Viability Constraints

We first give a formal definition of the problem.

Definition 1 A (rooted) phylogenetic tree T = (T,ET) is a rooted tree with
root r and each non-leaf node having at least 2 child-nodes together with a
weight function w assigning non-negative integer weights to the edges. Let XT
denote the set of leaf nodes of T also called species. For any set A ⊆ XT
the operator T (A) yields the spanning tree of the set A ∪ {r}, and by TE(A)
we denote the edges of this spanning tree. Then for any set S ⊆ XT the
phylogenetic diversity is defined as

PD(S) =
∑

e:e∈TE(S)

w(e)

A food web D for the phylogenetic tree T = (T,ET) is an acyclic directed
graph (XT , E). A set S ⊆ XT is called viable if each s ∈ S is either a sink (a
node with out-degree 0) in D or there is a s′ ∈ S such that (s, s′) ∈ E.

Below we exemplify these concepts.

Example 1 Consider the phylogenetic tree given in Figure 1. The root r is
at the top and the set of species X = {A,B,C,D,E} at the bottom. We
omitted names for the two inner nodes. Now we have that PD({A}) = 2,
PD({B}) = 3 and PD({A,B}) = 4. Finally considering the concept of viable
sets. Considering the given food web we have that {A,B}, {A,B,D} are viable
as B is a sink and for A,D one of the successors is included in the set. On the
other hand side the sets {A}, {A,D,E} are not viable as none of the successors
of A is included.

r

A B C D E

1 2

1 2 2 1

3

(a) Phylogenetic Tree

A

B C

D

E

(b) Food Web

Fig. 1 An illustration of Example 1.

Now our problem of interest is defined as follows.

Definition 2 (OptPDVC) The Optimizing Phylogenetic Diversity with Vi-
ability Constraints (OptPDVC) problem is defined as follows. You are given
a phylogenetic tree T and a food web D = (XT , E), and a positive integer k.
Find a viable subset S ⊆ XT of size (at most) k maximizing PD(S).

4

OptPDVC is known to be NP-hard [6], even for restricted classes of phyloge-
netic trees and dependency graphs.

First we study fundamental properties of the function PD.

Definition 3 The set function PD(.|.) : 2X × 2X 7→ N0 for each A,B ⊆ X is
defined as PD(A|B) = PD(A ∪B)− PD(B).

The intuitive meaning of PD(A|B) is the gain of diversity we get by adding
the set A to the already selected species B.

We next recall the definition of submodular set functions. We call a set
function submodular if

∀A,B,C ⊆ Ω : A ⊆ B ⇒ f(A ∪ C)− f(A) ≥ f(B ∪ C)− f(B).

It turns out that PD as defined above happens to be a submodular function.

Proposition 1 PD is a non-negative monotone submodular function [2].

Now consider the function PD(.|.). As PD(.) is monotone also PD(.|.) is
monotone in the first argument and because of the submodularity of PD(.)
the function PD(.|.) is anti-monotone in the second argument.

In the remainder of the paper we will not refer to the actual definition of
the functions PD(.), PD(.|.), but only exploit monotonicity, submodularity
and the fact that these functions can be efficiently computed.

Moreover we will consider a function VE (viable extension) which, given a
set of species S, returns a viable set S′ of minimum size containing S. In the
simplest case where S consist of just one species it computes a shortest path
to any sink node in the food web. Given a food web D and the set PD of paths
that end in leaf node of D, we define the truncated depth 1 d of D as

d(D) = min(max
P∈PD

|P |, k)

i.e., as the minimum of the cardinality of the longest path that ends in a node
without outgoing edges and k. If the food web is clear from the context we just
write d instead of d(D). Note that the problem remains NP-hard for instances
with d = 2, even if PD is additive [6]. Finally we define the costs c(A|B) of
adding a set of species A to a set B

c(A|B) = |VE(B ∪A)| − |B|.

Notice that although B typically will be a viable set this is not required in the
definition.

1 Notice that we use a slightly different definition for d than in [4].

5

Algorithm 1 Greedy, Faller et al.
1: S ← ∅
2: while |S| < k do
3: s← argmax

c(s|S)=1
v({s}|S)

4: S ← S ∪ {s}
5: end while

3 Approximation Algorithms

In this section we assume that a non-negative, monotone submodular function
PD(.) is given as an oracle and we want to maximize PD(.) under viability
constraints together with a cardinality constraint. We first review the greedy
algorithm given by Faller et al. [6] presented in Algorithm 1. The idea is that,
in each step, one considers only species which either have no successors in
the food web or for which one of the successors has already been selected
(adding one of these species will keep the set viable). Then one adds the
species that gives the largest gain of phylogenetic diversity. By the restriction
on the considered species the constructed set is always viable, but we might
miss highly valuable species which is illustrated by the following example.

Example 2 Consider the set of species X = {y, z, x1, x2} the phylogenetic tree
T = ({r} ∪X, {(r, y), (r, z), (r, x1), (r, x2)}, weights w(r, xi) = 1, w(r, y) = 0,
w(r, z) = C with C > 2 and the food web (X, {(z, y)}) (see Fig. 2). Assume
a budget k = 2. As the species y has weight 0, Algorithm 1 would pick x1,
and x2. Hence Algorithm 1 results in a viable set with diversity 2. But the set
{z, y} is viable and has diversity C, which can be made arbitrarily large.

This example shows that the solution computed by the greedy algorithm can
perform arbitrarily bad, because it ignores highly weighted species if they are
“on the top of” less valuable species. Hence one can not give any approximation
guarantee for Algorithm 1.

3.1 A Greedy Approximation Algorithm

By the above observations, to get an approximation guarantee, we have to
consider all subsets of species up to a certain size p which can be made viable

r

y z x1 x2

0 C 1 1

(a) Phylogenetic Tree

y

z

x1 x2

(b) Food Web

Fig. 2 An illustration of Example 2.

6

Algorithm 2
1: Select a set S with |S| ≤ p, c(S|∅) ≤ k and maximal PD(S)
2: G = VE(S)
3: G← ∅
4: while |G| < k do

5: Select a set S with |S| ≤ p, c(S|G) ≤ k − |G| and maximal ratio
PD(S|G)
c(S|G)

6: G = VE(G ∪ S)
7: end while
8: if PD(G) > PD(G) then
9: G ← G

10: end if

and pick the most valuable subset. Algorithm 2 exploits this observation. It
generalizes concepts from Bordewich and Semple [1], which itself builds on
Khuller et al. [10]. In the algorithm G denotes the current set of selected
species; and G denotes the best viable set we have found so far. Lines 3 - 7 of
the algorithm implements a greedy algorithm that in each step selects among
the sets of size ≤ p with costs that are within the remaining budget the most
“cost efficient” subset of species, i.e. the subset S of species that maximizes
the ratio of the increase in PD over the cost of adding S, and adds it to the
solution. But Algorithm 2 does not solely run the greedy algorithm, it first
computes the set with maximal PD among all sets of size ≤ p that can be
made viable. In certain cases this set is better than the viable set obtained by
the greedy algorithm, a fact that we exploit in the proof of Theorem 1.

The next theorem will analyze the approximation ratio of Algorithm 2.

Theorem 1 For all integers p ≥ 1 Algorithm 2 gives a (1 − 1
ep/(p+d−1))/2

approximation.

As for p ≥ k the algorithm enumerates all possible solutions and thus is optimal
in the following analysis we will assume that p ≤ k. To prove Theorem 1, we
introduce some notation. First let O ⊆ X denote the optimal solution. We
will consider a decomposition DO of O into sets O1, . . . , Odk/pe of size ≤ p. By

decomposition we mean that (i)
⋃dk/pe
i=1 Oi = O and (ii) Oi ∩ Oj = ∅ if i 6= j.

Moreover we require that |VE(Oi)| ≤ p+d−1 and
∑
i |VE(Oi)| ≤ k

p (p+d−1).
Next we show that such a decomposition DO always exists.

Lemma 1 There exist dkp e many pairs (O1, B1), . . . , (Od kp e
, Bd kp e

) such that

O =
⋃

1≤i≤d kp e
Oi, Oi ∪Bi is viable, |Oi| ≤ p, |Bi| ≤ d− 1 and

∑
i |Oi ∪Bi| ≤

k
p (p+ d− 1).

Proof The optimal solution O is a viable subset of size at most k. Consider
the reverse graph G of D projected on the set O i.e. G = (O,E− ∩ (O ×O)),
and add an artificial root τ that has an edge to all roots of G (the sinks of D).
By the definition of d(D) we obtain that in G the longest path starting in τ
is at most of size d+ 1.

Start a depth-first-search in τ and initialize O1, B1 with empty sets. When-
ever the DFS removes a node from the stack, we add this node to the current

7

set Oi, i ≥ 1. When |Oi| = p then we add the nodes on the stack, except τ ,
to the set Bi, but do not change the stack itself. Then we continue the DFS
with the next pair (Oi+1, Bi+1), again initialized by empty sets. Eventually
the DFS stops, then the stack is empty and thus (Od kp e

, ∅) is the last pair.

Notice since the longest path starting in τ is at most of size d + 1, there are
at most d nodes on the stack, one being the root τ and hence |Bi| ≤ d − 1.
Since the DFS removes each node exactly once from the stack, all the sets
Oi ⊆ O are disjoint and all except the last one are of size p. Hence the
DFS produces dkp e many sets Oi satisfying Oi ∪ Bi is viable, |Oi| ≤ p and

|Bi| ≤ d− 1. Finally as, by construction, Bd kp e
= ∅ and |Od kp e| = k mod p we

obtain that
∑d kp e
i=1 |Oi∪Bi| =

∑b kp c
i=1 |Oi∪Bi|+(k mod p) ≤ bkp c(p+d−1)+(k

mod p) ≤ k
p (p+ d− 1). ut

First, we consider the greedy algorithm and the value l where the l-th itera-
tion is the first iteration such that after executing the loop body,

maxOj∈DO

PD(Oj |G)
c(Oj |G) > max|S|≤p,c(S|G)≤k−|G|

PD(S|G)
c(S|G) . If the greedy solution

is different from the optimal one the inequality holds at least for the last iter-

ation of the loop where S = ∅. We define O′l+1 = argmax
Oj∈DO

PD(Oj |G)
c(Oj |G) , i.e. O′l+1

is in the optimal viable set and would be a better choice than the selection of
the algorithm, but the greedy algorithm cannot make G∪O′l+1 viable without
violating the cardinality constraint.

Let Si denote the set S added to G in iteration i of the while loop in
Line 4. Moreover, for i ≤ l we denote the set G after the i-th iteration by Gi,
with G0 = ∅, the set G ∪ S from Line 6 as G∗i = Gi−1 ∪ Si and the “costs”
of adding set Si by ci = c(Si|Gi−1) = c(Gi|Gi−1). With a slight abuse of
notation we will use Gl+1 to denote the viable set VE(Gl∪O′l+1), cl+1 to denote
c(O′l+1|Gl) and G∗l+1 to denote the set Gl∪O′l+1 (Gl+1 is not a feasible solution
as |VE(Gl+1)| > k). Notice that while the sets G∗i are not necessarily viable
sets, all the Gi, i ≥ 0 are viable sets and moreover PD(G) ≥ PD(Gi), i ≤ l.

First we show that in each iteration of the algorithm the set Si gives a
certain approximation of the missing part of the optimal solution.

Lemma 2 For all integers 1 ≤ p ≤ k and 1 ≤ i ≤ l + 1:

PD(G∗i |Gi−1)

ci
≥ p

(p+ d− 1)k
· PD(O|Gi−1)

Proof By definition of Si and O′l+1 for each Oj ∈ DO the following holds:

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤
PD(Si|Gi−1)

c(Si|Gi−1)
for i ≤ l

PD(Oj |Gl)

c(Oj |Gl)
≤
PD(O′l+1|Gl)

c(O′l+1|Gl)

Combining the two inequalities we have

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤
PD(G∗i |Gi−1)

c(Gi|Gi−1)
for i ≤ l + 1

8

Next we use the monotonicity and submodularity of PD (for the first inequal-
ity) and the inequality from above (for the second inequality).

PD(O|Gi−1) ≤
∑

Oj∈DO

PD(Oj |Gi−1) =
∑

Oj∈DO

PD(Oj |Gi−1)

c(Oj |Gi−1)
c(Oj |Gi−1)

≤
∑

Oj∈DO

PD(G∗i |Gi−1)

ci
c(Oj |Gi−1) ≤

PD(G∗i |Gi−1)

ci

p+ d− 1

p
· k

The last step exploits that by Lemma 1
∑
Oj∈DO

c(Oj |Gi−1) ≤ k
p · (p+d−1).

ut

Lemma 3 For 1 ≤ i ≤ l + 1:

PD(G∗i) ≥

1−
i∏

j=1

(
1− p · cj

(d+ p− 1) · k

) PD(O)

Proof The proof is by induction on i. The base case for i = 1 is by Lemma 2.
For the induction step we show that if the claim holds for all i′ < i then it
must also hold for i. For convenience we define Ci = p·ci

(d+p−1)·k .

PD(G∗i) = PD(Gi−1) + PD(G∗i |Gi−1) ≥ PD(Gi−1) + Ci · PD(O|Gi−1)

= PD(Gi−1) + Ci · (PD(O ∪Gi−1)− PD(Gi−1))

≥ (1− Ci) · PD(Gi−1) + Ci · PD(O)

≥ (1− Ci) · PD(G∗i−1) + Ci · PD(O)

≥ (1− Ci)

1−
i−1∏
j=1

(1− Cj)

 PD(O) + Ci · PD(O)

=

1−
i∏

j=1

(1− Cj)

 PD(O)

ut

Proof (Theorem 1) We first give a bound for G∗l+1. To this end consider∑l+1
m=1 cm. As Gl+1 exceeds the cardinality constraint

∑l+1
m=1 cm > k it fol-

lows that:

1−
l+1∏
j=1

(
1−

p · cj
(d+ p− 1) · (k)

)
≥ 1−

l+1∏
j=1

(
1−

p · cj
(d+ p− 1) ·

∑l+1
m=1 cm

)

≥ 1−
(

1−
p

(d+ p− 1) · (l + 1)

)l+1

≥ 1−
1

ep/(d+p−1)

To obtain second inequality we used the fact that the term
∏l+1
j=1

(
1− c′j

C

)
with

constant C and the constraint
∑l+1
j=1 c

′
j = 1 has its maximum at c′j = 1/(l+1).

By Lemma 3 we obtain PD(G∗l+1) ≥
(
1− 1

ep/(d+p−1)

)
· PD(O), thus it only

remains to relate PD(G∗l+1) to PD(Gl). To this end we consider the optimal
set of size p selected in Line 2 and denote it by So. If the greedy solution

9

has higher PD than So the algorithm returns a superset of G∗l otherwise a
superset of So. Hence, PD(G) is larger or equal to the maximum of PD(G∗l)
and PD(So). From the definitions of G∗l and So it follows that

PD(G∗l+1) ≤ PD(G∗l) + PD(O′l+1) ≤ PD(G∗l) + PD(So).

Now we have that either PD(G∗l) ≥ PD(G∗l+1)/2 or PD(So) ≥ PD(G∗l+1)/2
and thus obtain the following.

PD(G) ≥ max(PD(G∗l),PD(So)) ≥
(

1− 1

ep/(d+p−1)

)
· PD(O)

2

Hence Algorithm 2 provides an
(
1− 1

ep/(d+p−1)

)
/2 - approximation. ut

Theorem 2 Algorithm 2 runs in time O
(
k · (3pnp+2 + np+1m)

)
where n is

the number of species and m the number of edges in the food web.

Proof First notice that computing the function VE can be reduced to a Steiner
tree problem as follows. To compute VE(S) first modify the graph D by (i)
taking all the species in S that are already connected (via nodes in S) to a
sink node in S, and merging these nodes into a single terminal node t, and (ii)
connecting the remaining sink nodes in D to t. For the starting nodes in the
Steiner tree problem we use the species in S that are not viable. In Algorithm 2
when computing VE(G ∪ S), there are at most p starting nodes as the set G
is made viable after each iteration and thus the viable set G is contracted to
the single vertex t. The Steiner tree problem on acyclic directed graphs can
be solved in time O(3jn2 + nm) [16], where j is the number of starting and
terminal nodes. In Line 1 we have to consider O(np) sets S and for each of
them we solve a Steiner tree problem. with at most p starting nodes. So this
first loop can be done in time O(3pnp+2 + np+1m). The number of iterations
of the while loop is bounded by k and in each iteration, in Line 4, we have
to solve O(np) Steiner tree problems with at most p starting nodes. Now as
each iteration takes time O(3pnp+2 + np+1m) we get a total running time of
O(k · (3pnp+2 + np+1m)). ut

3.2 An Approximation Algorithm using the Enumeration Technique

In this Section we use a modification of the enumeration technique as described
in [10], to get rid of the factor 1/2 in the approximation ratio. The idea is to
consider all (viable) sets of a certain size and for each of them to run the greedy
algorithm starting with this set. Finally one chooses the best of the produced
solutions. These sets typically have to contain three objects of interest, in the
case of the maximum coverage problem [10] (cf. Def. 4 below) just three sets
from the collection S and thus the running time there is only increased by
a cubic factor. However, in our setting such an object of interest is a pair
(Oi, Bi), i.e. a set Oi of size ≤ p and a set Bi of size < d making Oi viable.
Thus these three objects result in a set of size of 3p + 3d − 3, increasing the

10

Algorithm 3
1: G ← ∅
2: for each G ⊆ X, G viable, |G| ≤ min(3p+ 3d− 3, k) do
3: while |G| < k do

4: Select a set S with |S| ≤ p, c(S|G) ≤ k − |G| and maximal ratio
PD(S|G)
c(S|G)

5: G = VE(G ∪ S)
6: end while
7: if PD(G) > PD(G) then
8: G ← G
9: end if

10: end for

running time by a factor of n3p+3d−3. Algorithm 3 gives a precise formulation
of the modified algorithm.

Theorem 3 Algorithm 3 is an
(
1− 1

ep/(d+p−1)

)
- approximation algorithm for

OptPDVC which runs in time O
(
k · (3pn4p+3d−1 + n4p+3d−2m)

)
, where n is

the number of species, m the number of edges in the food web and p≥ 1 the
parameter used in Algorithm 3.

The proof of the above theorem is similar to the above analysis for Algorithm 2.
Again let O be the optimal viable set and DO a decomposition of O, given by
Lemma 1. We consider the set G∗0 = O∗1∪O∗2∪O∗3 with {O∗1 , O∗2 , O∗3} ⊆ DO such
that {O∗1 , O∗2} = argmax

{Oi,Oj}⊆DO

PD(Oi∪Oj) and O∗3 = argmax
Oi∈DO

PD(O∗1∪O∗2∪Oi)

and the viable extension G0 = G∗0 ∪B∗1 ∪B∗2 ∪B∗3 . At some point Algorithm 3
will consider G0. We consider this iteration of the for loop in Line 2 and
consider the greedy algorithm. To this end we use the same notation as in
the proof of Theorem 1, the only difference being the definition of the set G0

above. Recall that the value l is defined such that the l-th iteration is the
first iteration such that after executing the loop body, maxOj∈DO

PD(Oj |G)
c(Oj |G) >

max|S|≤p,c(S|G)≤k−|G|
PD(B|G)
c(B|G) .

If |G0| = k then Line 2 of the algorithm enumerates all possible solutions
and will eventually find the optimal solution. So in this case there is no need
to study the greedy algorithm. Hence in the remainder of this section we will
assume that |G0| < k.

Lemma 4 For 1 ≤ i ≤ l + 1, p ∈ {1, . . . , k}:

PD(G∗i |Gi−1)

ci
≥ p

(p+ d− 1)(k − |G0|)
· PD(O|Gi−1)

Proof By definition of Si and O′l+1 for each Oj ∈ DO the following holds:

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤
PD(Si|Gi−1)

c(Si|Gi−1)
for i ≤ l

PD(Oj |Gl)

c(Oj |Gl)
≤
PD(O′l+1|Gl)

c(O′l+1|Gl)

Combining the two inequalities we have

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤
PD(G∗i |Gi−1)

c(Gi|Gi−1)
for i ≤ l + 1

11

Next we use the monotonicity and submodularity of PD (for the first in-
equality), the inequality from above (for the second inequality). We use D′O
to denote DO \ {Oj ⊆ Gi−1}.

PD(O|Gi−1) ≤
∑

Oj∈D′O

PD(Oj |Gi−1) =
∑

Oj∈D′O

PD(Oj |Gi−1)

c(Oj |Gi−1)
c(Oj |Gi−1)

≤
∑

Oj∈D′O

PD(G∗i |Gi−1)

ci
c(Oj |Gi−1) =

PD(G∗i |Gi−1)

ci

∑
Oj∈D′O

c(Oj |Gi−1)

≤
PD(G∗i |Gi−1)

ci

p+ d− 1

p
· (k − |G0|)

For the last step consider the modified food web graph where (i) all nodes
in G0 are deleted and (ii) for each node that had an edge to a node in G0 all
outgoing edges are deleted, i.e. the node is considered as a species that does not
depend on any other species. Then we can apply Lemma 1 to this graph and the
set O′ = O \ G0 to obtain a decomposition satisfying

∑
Oj∈D′O

c(Oj |Gi−1) ≤
k−|G0|

p · (p+ d− 1). ut

Lemma 5 For 1 ≤ i ≤ l + 1:

PD(G∗i |G0) ≥

1−
i∏

j=1

(
1− p · cj

(d+ p− 1) · (k − |G0|)

) PD(O|G0)

Proof The proof is by induction on i. The base case for i = 1 is by Lemma 4.
For the induction step we show that if the claim holds for all i′ < i then it
must also hold for i. For convenience we define Ci = p·ci

(d+p−1)·(k−|G0|) .

PD(G∗i |G0) = PD(Gi−1|G0) + PD(G∗i |Gi−1)

≥ PD(Gi−1|G0) + Ci · PD(O|Gi−1)

= PD(Gi−1|G0) + Ci · (PD(O ∪Gi−1)− PD(Gi−1))

= PD(Gi−1|G0) + Ci · (PD(O ∪Gi−1)− PD(G0)− (PD(Gi−1)− PD(G0)))

= PD(Gi−1|G0) + Ci · (PD(O ∪Gi−1|G0)− PD(Gi−1|G0))

≥ (1− Ci) · PD(Gi−1|G0) + Ci · PD(O|G0)

≥ (1− Ci) · PD(G∗i−1|G0) + Ci · PD(O|G0)

≥ (1− Ci)

1−
i−1∏
j=1

(1− Cj)

 PD(O|G0) + Ci · PD(O|G0)

=

1−
i∏

j=1

(1− Cj)

 PD(O|G0)

ut

We are now prepared to prove the claimed approximation ratio.

12

Proof (Theorem 3 approximation ratio) We first give a bound for G∗l+1. To this

end consider
∑l+1
m=1 cm. AsG∗l+1 exceeds the cardinality constraint

∑l+1
m=1 cm >

k − |G0| and hence:

1−
l+1∏
j=1

(
1−

p · cj
(d+ p− 1) · (k − |G0|)

)
≥ 1−

l+1∏
j=1

(
1−

p · cj
(d+ p− 1) ·

∑l+1
m=1 cm

)

≥ 1−
(

1−
p

(d+ p− 1) · (l + 1)

)l+1

≥ 1−
1

ep/(d+p−1)

To obtain the second inequality we used that the term
∏l+1
j=1

(
1− c′j

C

)
with

constant C and the constraint
∑l+1
j=1 c

′
j = 1 has its maximum at c′j = 1/(l+1).

By Lemma 5 we obtain PD(G∗l+1|G0) ≥
(
1− 1

ep/(d+p−1)

)
PD(O|G0) and

thus it only remains to relate G∗l+1 to Gl. First as G0 = O∗1 ∪O∗2 ∪O∗3 and by
the definition of O∗1 , O

∗
2 we get PD(O∗3 |O∗1 ∪O∗2) ≤ PD(G0)/3. Next consider

PD(G∗l+1)− PD(Gl) = PD(O′l+1|Gl) ≤ PD(O′l+1|O
∗
1 ∪O∗2)

≤ PD(O∗3 |O∗1 ∪O∗2) ≤ PD(G0)/3

Finally, we can combine our results to obtain the claim:

PD(G) ≥ PD(Gl) ≥ PD(G∗l+1)− PD(G0)/3

= PD(G∗l+1|G0) + PD(G0)− PD(G0)/3

≥
(

1−
1

ep/(p+d−1)

)
(PD(O)− PD(G0)) + 2/3 · PD(G0)

≥
(

1−
1

ep/(p+d−1)

)
· PD(O)

The last inequality is by the fact that 1− 1
ep/(p+d−1) ≤ 2/3 for all p, d ≥ 1. ut

To conclude the proof of Theorem 3 we finally consider the running time
of Algorithm 3.

Proof (Theorem 3 - running time) As discussed in the proof of Theorem 2
computing the function VE is basically a Steiner tree problem and can be
solved in time Õ(3jn2 + nm), where j is the number of starting nodes. In the
algorithm we have to considerO(n3p+3d−3) sets S and for each of them we start
the greedy algorithm. The number of iterations of the while loop is bounded
by k and in each iteration, in Line 4, we have to solve O(np) Steiner tree prob-
lems with at most p starting nodes. As each iteration takes time O(3pnp+2 +
np+1m) we get a total running time of O

(
n3p+3d−3 · k · (3pnp+2 + np+1m)

)
=

O
(
k · (3pn4p+3d−1 + n4p+3d−2m)

)
. ut

4 Impossibility Results

In this section we investigate upper bounds for the approximation guarantees
one can achieve with approximation algorithms for OptPDVC. If we allow

13

arbitrary monotone submodular functions in OptPDVC it is easy to see that
no 1− 1

e+ε-approximation algorithm exists (unless P = NP). This is immediate
by the corresponding result for Max Coverage (with cardinality constraints). In
the following we investigate impossibility results that even hold if one considers
phylogenetic diversity functions.

In Section 4.1 we show that when considering viability constraints there
is no 1 − 1

e + ε-approximation algorithm for OptPDVC even if PD is addi-
tive/modular. However, the hardness proof requires food webs of linear depth.

Thus in Section 4.2 we investigate OptPDVC instances with constant depth
food webs and show that maximizing the phylogenetic diversity is APX-hard.

Finally, in Section 4.3 we consider a straightforward generalization of viabil-
ity constraints, where we additionally allow AND-constraints such as “species
a is viable only if we preserve both species b and species c”, and show the
inapproximability of the phylogenetic diversity under these constraints.

4.1 (1− 1/e)-Hardness for Additive Functions with Linear Depth Food Webs

Towards our hardness result for additive functions, we first give a formal def-
inition of the Max Coverage problem and recall the corresponding hardness
result from the literature.

Definition 4 The input to the Max Coverage problem is a set of domain ele-
ments D = {1, 2, . . . , n}, together with non-negative integer weights w1, . . . wn,
a collection S = {S1, . . . Sm} of subsets of D and a positive integer k. The goal
is to find a set S ′ ⊆ S of cardinality k maximizing

∑
i∈

⋃
S∈S′ S

wi.

Proposition 2 There is no α-approximation algorithm for Max Coverage
with α > 1− 1

e (unless P = NP) [7,10].

Below we give a reduction from the Max Coverage problem to OptPDVC,
and then we show that it is approximation ratio preserving. The idea is to first
model an additive function via phylogenetic tree as follows: We consider each
element i ∈ D as species which has an edge to the root with weight wi. All
the other species which we will use to build the appropriate food web are also
connected to the root but with weight 0, i.e. the do not contribute to the value
of the function. In the food web we have to encode that we may only pick an
element i ∈ D if we also pick one of the set Sj containing i. This is done by
introducing species Sj,1 to Sj,n for each set Sj and connecting i to the nodes
Sj,n for each Sj with i ∈ Sj . Finally, we guarantee that only k of the nodes
Sj,n are selected for viable sets by putting each Sj,n as the top element of a
chain of n species and setting the budget to (k + 1) · n. 2

2 While it is in principle possible to select k + 1 nodes Sj,n, these sets cannot select any
i ∈ D and thus have value 0 and can be neglected.

14

r

1 2 3 4 S1,1 . . . S3,4

w1 w2 w3 w4 0 0

(a) Phylogenetic Tree (T,ET) with weights wi

1 2 3 4

S1,4 S2,4 S3,4

S1,3 S2,3 S3,3

S1,2 S2,2 S3,2

S1,1 S2,1 S3,1

(b) Food Web (X,E)

Fig. 3 An illustration of Reduction 1, applied to D = {1, 2, 3, 4}, S = {S1, S2, S3}, S1 =
{1, 2, 3}, S2 = {2, 4}, S3 = {1, 3, 4}.

Reduction 1 Given an instance (D,S, k) of the Max Coverage problem, we
build an instance of OptPDVC as follows (cf. Fig. 3)

X = D ∪ {Si,j | Si ∈ S, 1 ≤ j ≤ n}
E = {(j, Si,n) | j ∈ Si} ∪ {(Si,j+1, Si,j) | 1 ≤ i ≤ m, 1 ≤ j < n}
T = ({r} ∪X, {(r, s) | s ∈ X})

we =

{
wi if e = (r, i), i ∈ D
0 otherwise

k′ = (k + 1) · n

Lemma 6 Let (D,S, k) be an instance of the Max Coverage problem and let
(T , (X,E), k′) be the instance of OptPDVC given by Reduction 1. Let W > 0.
Then there exists a cover C ⊆ S of size k with w(C) ≥ W for (D,S, k) iff
there exists a viable set A of size k′ = (k + 1) · n with PD(A) ≥W .

Proof ⇒: First assume that there is a cover C of size k with w(C) = W . We
construct a viable set A of size k with PD(A) ≥W . The set A′ = {Si,j | Si ∈
C, 1 ≤ j ≤ n}∪

⋃
Si∈C Si is a viable set of size ≤ k ·n+n. Clearly PD(A′) = W

and if |A′| = k′ we set A = A′ and are done. If |A′| < k′ we can construct a
viable set A of size k′ with PD(A) ≥W by adding arbitrary viable species.
⇐: Assume there is a viable set A of size (k + 1) · n with PD(A) = W .

We construct a cover C of size k with w(C) ≥ W . There are at most k + 1
elements Si ∈ S such that Si,n ∈ A. This is by the fact that if Si,n ∈ A
then also Si,1, . . . , Si,n−1 ∈ A. Now consider the case where there are exactly
k + 1 such elements. Then we already have (k + 1) · n species in A and thus
no x ∈ D is contained in A. But then PD(A) = 0 as only the edges (r, x)
with x ∈ D have non-zero weight. Assuming W > 0 we thus have at most k
elements Si ∈ E such that Si,n ∈ A and further as A is viable for each x ∈ A
there is an Si,n ∈ A such that x ∈ Si. Hence C ′ = {Si | Si,n ∈ A} is of size
at most k and covers all x ∈ A∩D, i.e. w(C ′) = W . Now by adding arbitrary
Si ∈ S we can construct a cover C of size k with w(C) ≥W . ut

15

Theorem 4 There is no α-approximation algorithm for OptPDVC with α >
1− 1

e (unless P = NP), even if PD is an additive function.

Proof Immediate by Proposition 2, Lemma 6 and the fact that Reduction 1
can be performed in polynomial time. ut

Notice that in the above reduction the depth d of the food web graph is
not bounded by a constant and in fact is linear in |X|.

4.2 APX-Hardness for OptPDVC with Constant Depth Food Webs

Using a result for Max Vertex Cover on bounded degree graphs, we can show
APX-hardness of OptPDVC with constant depth food webs. 3

Definition 5 The input to the Max Vertex Cover is a graph G = (V,E) (with
bounded degree) together with a a positive integer k. The goal is to find a set
S ⊆ V of cardinality k that covers a maximum number of edges, where an
edge is covered if it is incident to at least one node in S.

Proposition 3 Max Vertex Cover is APX-hard for bounded degree graphs. In
particular there is no PTAS unless P = NP [15].

Below we give an reduction of Max Vertex Cover to our OptPDVC problem.
The main ideas are as follows (see also Fig. 4). Given a graph G = (VG, EG)
with max. degree Γ , for each node v of the graph we make Γ many copies
v1, v2, . . . , vΓ . Then we build a phylogenetic tree with a root node r, inner
nodes that correspond to the edges EG and the copies of nodes v ∈ VG as leaf
nodes. Each of the inner nodes is connected to the root via an edge of weight
1 and as child-nodes it has one of the copies of each of the two nodes incident
to the corresponding edge in G. Again the child-nodes are connected via an
edge of weight 1. Moreover, each of the nodes v1, v2, . . . , vΓ is connected to
at most one of the inner nodes and those not connected to an inner node are
connected to the root via an edge of weight 1.

Then we build the food web graph of depth Γ + 1 such that for each v
an optimal solution either picks all copies v1, v2, . . . , vΓ or none of them. To
achieve this we have to introduce additional nodes, which we can add to the
phylogenetic tree such that they do not contribute to the phylogenetic diversity
themselves, by setting the corresponding edge weights to 0.

Reduction 2 Given an instance (G = (VG, EG), k) of the Max Vertex Cover,
with Γ being the maximum degree of G. For each node we assume an arbitrary

3 The authors are grateful to an anonymous reviewer who pointed them to the Max Vertex
Cover problem.

16

a b

c d

(a) Graph G

r

f1 f2 f3 f4 b3 a3 d2 d3 a′1 a′2 . . . d′3

a1 b1 a2 c1 c2 b2 c3 d1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

(b) Phylogenetic Tree (T,ET).

a1 a2 a3

a′3

a′2

a′1

b1 b2 b3

b′3

b′2

b′1

c1 c2 c3

c′3

c′2

c′1

d1 d2 d3

d′3

d′2

d′1

(c) Food Web (X,E)

Fig. 4 An illustration of Reduction 2, applied to the Graph G given in (a) with ∆ = 3.

order on the incident edges. We build an instance of OptPDVC as follows

X = {vi, v′i | v ∈ VG, 1 ≤ i ≤ Γ}
E = {(vi, v′Γ) | v ∈ VG, 1 ≤ i ≤ Γ} ∪ {(v′i, v′i−1) | v ∈ VG, 2 ≤ i ≤ Γ}
T = ({r} ∪ EV ∪X,ET)

ET = {(r, f) | f ∈ EG} ∪ {(r, v′i) | v ∈ VG, 1 ≤ i ≤ Γ} ∪
{(f, vi) | f is the i-th incident edge of v} ∪
{(r, vi) | v has degree smaller than i}

we =


1 if e = (r, vi), v ∈ VG, 1 ≤ i ≤ Γ
1 if e = (f, vi), f ∈ E, v ∈ VG, 1 ≤ i ≤ Γ
1 if e = (r, f), f ∈ E
0 otherwise

k′ = 2k · Γ

Lemma 7 Let (G = (VG, EG), k) be an instance of Max Vertex Cover with
maximal degree Γ , and let (T , (X,E), k′) be the instance of OptPDVC given
by Reduction 2. There exists a vertex cover of size k that covers W many edges
iff there exists a viable set A of size k′ with PD(A) ≥W + k · Γ .

Proof ⇒: First assume that there is a vertex cover S of size k with W many
incident edges. Now we can define a viable set A = {vi, v′i | v ∈ S, 1 ≤ i ≤ Γ}.
It is easy to verify that A is indeed viable and |A| = 2k · Γ = k′. For PD(A)
we first have the contributions of the edge in T that are incident to the nodes
in A which is 1 for nodes vi and 0 for nodes v′i, in total k ·Γ . Second, for each

17

edge (u, v) in G that is covered by S one of the corresponding nodes ui, vi′ is
in A. Thus in T the inner node f correspond to (u, v) has a child node in A
and the edge (r, f) contributes 1 to PD(A). Hence, PD(A) = W + k · Γ .
⇐: Assume there is an optimal viable set A of size k′ with PD(A) =

W + k · Γ . We first prove the following claim.
Claim: For each v ∈ VG either all {vi, v′i | 1 ≤ i ≤ Γ} are contained in A

or none of them.
Consider the sets Av = A ∩ {vi, v′i | 1 ≤ i ≤ Γ} of nodes corresponding

to v and included in A. As A is a viable set, as soon as we have one vi in
A all v′i are in A. Moreover, as A is optimal also a species v′i is only in A if
at least one of the corresponding vi is in A. Thus if Av is non-empty then
Γ + 1 ≤ |Av| ≤ 2Γ . We have that (i) PD(Av) ≤ 2(|Av| −Γ), as each vi can at
most cover two edges of T (both with weight 1) and the v′i do not contribute
to PD at all. Towards a contradiction let us assume there is an v ∈ A with (ii)
|Av| < 2Γ . As, by definition of k′, we can always find a viable set such that
all Au, u ∈ VG are either of size 2Γ or empty, there must be a set U ⊂ VG of
nodes such that (a) Au 6= ∅ for all u ∈ U and (b) in total at least |Av| many
nodes of

⋃
u∈U{ui | 1 ≤ i ≤ Γ} are not included in

⋃
u∈U Au (but all nodes⋃

u∈U{u′i | 1 ≤ i ≤ Γ} are included). That is we can consider A \ Av and
add |Av| many of these uncovered nodes while maintaining viability. While
by excluding Av the diversity drops by less than |Av| (by (ii) |Av| < 2Γ and
thus by (i) PD(Av) < |Av|) for each node added we increase the diversity by
at least 1. In total we increased the diversity, while maintaining viability, a
contradiction to the optimality of A which concludes the proof of the claim.

Given the claim we can define a set cover S = {v | v ∈ VG, v1 ∈ A} that
is of size k. Now consider PD(A), which is composed of two parts. First, the
contribution from the edges (in T) that are incident with nodes in A. By the
structure of A (given in the Claim) there are Γ · k many nodes vi in A and
each of them contributes 1. Thus their total contribution is Γ · k. Second, the
contribution by the edges (in T) from the root to some inner node which has
a child in A. As PD(A) = W + k · Γ these inner nodes contribute W and as
each of them contributes 1 there are W many such nodes. We next show that
S covers at least W edges. Consider an inner node f and the corresponding
edge in G. We know that in T one child ui of f is included in A but then u ∈ S
and by construction u is incident to the edge f , i.e. the edge f is covered by
S. Hence, S covers at least W many edges. ut

Theorem 5 OptPDVC is APX-hard for constant depth food webs. In partic-
ular there is no PTAS unless P = NP.

Proof Immediate by Proposition 3, Lemma 7 and the fact that Reduction 2 can
be performed in polynomial time. Also notice that in the condition PD(A) ≥
W+k ·Γ in Lemma 7 (i) Γ is a constant as we consider bounded degree graphs
for Max Vertex Cover and (ii) that for an optimal vertex cover/viable set W is
at least k. i.e., we can cover at least k edges. Thus, each (1− ε) approximation
(resp. each PTAS) for OptPDVC would give a (1−Γ · ε) approximation (resp.
a PTAS) for Max Vertex Cover. ut

18

r

t x1 x̄1 cx1 . . . x4 x̄4 cx4 c1 c2 c3

1 0 0 0 0 0 0 0 0 0

(a) Phylogenetic Tree (T,ET) with weights wi

t

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

cx1 cx2 cx3 cx4

(b) Food Web (X,E)

Fig. 5 An illustration of Reduction 3, applied to the propositional formula ϕ = (x1 ∨ x2 ∨
x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).

4.3 Inapproximability of OptPDVC with Generalized Viability Constraints

Finally let us consider a straightforward generalization of viability constraints.
So far we assumed that a species is viable iff at least one of its successors
survives, but one can also imagine cases where one node needs several or even
all of its successors to survive to be viable. In the following we consider food
webs where we allow two types of nodes: (i) nodes that are viable if at least one
successors survives and (ii) nodes that are viable only if all successors survive.

We will show that in this setting no approximation algorithm is possible
using a reduction from the NP-hard problem of deciding whether a propo-
sitional formula in 3-CNF is satisfiable. A 3-CNF formula is a propositional
formula which is the conjunction of clauses, and each clause is the disjunction
of exactly three literals, e.g. ϕ = (x1∨x2∨x3)∧(x2∨¬x3∨¬x4)∧(x2∨x3∨x4).
The main idea behind Reduction 3 is that we can build a food web such that
a specific species is in a viable set iff the given formula is satisfiable.

Reduction 3 Given a propositional formula ϕ in 3-CNF over propositional
variables V = {x1, . . . , xn} with clauses c1, . . . , cm build the following instance
(T,ET), (X,E) and weight we (cf. Fig. 5) :

X = {c1, . . . , cm} ∪ {x, x̄, cx | x ∈ V} ∪ {t}
T = ({r} ∪X, {(r, s) | s ∈ X})

we =

{
1 e = (r, t)

0 otherwise

E = {(cx, x), (cx, x̄) | x ∈ V} ∪ {(ci, x) | x ∈ ci} ∪ {(ci, x̄) | ¬x ∈ ci}
∪ {(t, ci), (t, cx) | 1 ≤ i ≤ m,x ∈ V}

k = 2 · |V|+m+ 1

The species {c1, . . . cm} ∪ {x, x̄, cx | x ∈ V} are viable in the traditional sense
and t is viable iff all its successors survive. More formally, a set S ⊆ X is viable
if (i) for each s ∈ S either s is a sink or there is a s′ ∈ S with (s, s′) ∈ E and
(ii) if t ∈ S it holds for all s′ with (t, s′) ∈ E that s′ ∈ S.

19

Lemma 8 Given a propositional formula ϕ and the instance (TC, (X,E), k)
of OptPDVC given by Reduction 3. Then ϕ is satisfiable iff there exists a viable
set A of size ≤ k with PD(A) > 0.

Proof ⇒: Let α be a truth assignment satisfying ϕ, i.e. α(ϕ) = 1. Then it
is easy to verify that A = {x | x ∈ V, α(x) = 1} ∪ {x̄ | x ∈ V, α(x) =
0} ∪ {c1, . . . cm} ∪ {cx | x ∈ V} ∪ {t} is a viable set of size k = 2 · |V|+m+ 1
with PD(A) = 1.
⇐: If there is a viable subset A′ with PD(A′) > 0 there is also a viable

set A ⊃ A′ of size k = 2 · |V| + m + 1 and PD(A) > 0, because |X| is of size
3 · |V|+ m + 1. We show that the truth-assignment α setting each s ∈ A ∩ V
to 1 and each s ∈ V \ A to 0 satisfies ϕ. As PD(A) > 0 we clearly have
that t ∈ A. Now as A is viable and we have an AND constraint on t also
{c1, . . . cm} ∪ {cx | x ∈ V} ⊆ A. By cx ∈ A we obtain that for each x ∈ V
either x ∈ A or x̄ ∈ A, but not both of them (as the budget only allows |V|
further species). Finally as ci ∈ A we have that for each clause there is either
an x ∈ C with α(x) = 1 or a ¬x ∈ C with α(x) = 0. Thus each clause ci is
satisfied by α, i.e. α(ci) = 1, and hence also α(ϕ) = 1. ut

Now assuming that there is an approximation algorithm for OptPDVC
with generalized viability constraints we would immediately get a procedure
deciding 3-CNF formulas: apply Reduction 3 to the formula, compute PD
using the α-approximation algorithm, and return satisfiable if PD is positive.

Theorem 6 It is NP-hard to decide whether an instance of OptPDVC with
generalized viability constraints has a viable set S with PD(S) > 0. Thus no
approximation algorithm for the problem can exist unless P = NP.

Proof Immediate by Lemma 8, and the fact that Reduction 3 can be performed
in polynomial time. ut

Acknowledgments

A preliminary version of this paper has been presented at the 21st European
Symposium on Algorithms (ESA’13) [4].

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.

References

1. Magnus Bordewich and Charles Semple. Nature reserve selection problem: A tight ap-
proximation algorithm. Computational Biology and Bioinformatics, IEEE/ACM Trans-
actions on, 5(2):275–280, 2008.

2. Magnus Bordewich and Charles Semple. Budgeted nature reserve selection with diver-
sity feature loss and arbitrary split systems. Journal of mathematical biology, 64(1-
2):69–85, 2012.

20

3. Olga Chernomor, Bui Quang Minh, Flix Forest, Steffen Klaere, Travis Ingram, Monika
Henzinger, and Arndt von Haeseler. Split diversity in constrained conservation prioriti-
zation using integer linear programming. Methods in Ecology and Evolution, 6(1):83–91,
2015.

4. Wolfgang Dvořák, Monika Henzinger, and David P. Williamson. Maximizing a sub-
modular function with viability constraints. In Hans L. Bodlaender and Giuseppe F.
Italiano, editors, Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, volume 8125 of Lecture Notes in
Computer Science, pages 409–420. Springer, 2013.

5. Daniel P. Faith. Conservation evaluation and phylogenetic diversity. Biological Con-
servation, 61(1):1–10, 1992.

6. Beáta Faller, Charles Semple, and Dominic Welsh. Optimizing Phylogenetic Diversity
with Ecological Constraints. Annals of Combinatorics, 15:255–266, 2011.

7. Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

8. M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for
maximizing submodular set functions – II. Mathematical Programming Study, 8:73–87,
1978.

9. Pranava R. Goundan and Andreas S. Schulz. Revisiting the greedy approach
to submodular set function maximization. Working Paper, Massachusetts Insti-
tute of Technology, 2007. Available at http://www.optimization-online.org/DB HTML/

2007/08/1740.html.
10. Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage prob-

lem. Information Processing Letters, 70(1):39–45, 1999.
11. Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-

monotone submodular maximization under matroid and knapsack constraints. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pages 323–332. ACM, 2009.

12. Vincent Moulton, Charles Semple, and Mike Steel. Optimizing phylogenetic diversity
under constraints. Journal of Theoretical Biology, 246(1):186 – 194, 2007.

13. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions — I. Mathematical Programming, 14:265–294,
1978.

14. Fabio Pardi and Nick Goldman. Species choice for comparative genomics: being greedy
works. PLoS Genetics, 1(6):e71, 2005.

15. Erez Petrank. The hardness of approximation: Gap location. Computational Complex-
ity, 4:133–157, 1994.

16. Tsan sheng Hsu, Kuo-Hui Tsai, Da-Wei Wang, and D. T. Lee. Two variations of the
minimum steiner problem. Journal of Combinatorial Optimization, 9(1):101–120, 2005.

17. Mike Steel. Phylogenetic diversity and the greedy algorithm. Systematic Biology,
54(4):527–529, 2005.

18. C. Martijn van der Heide, Jeroen van den Bergh, and Ekko van Ierland. Extending
weitzman’s economic ranking of biodiversity protection: combining ecological and ge-
netic considerations. Ecological Economics, 55(2):218–223, 2005.

19. Jan Vondrák. Submodular functions and their applications. SODA 2013
plenary talk. Slides available at http://theory.stanford.edu/∼jvondrak/data/
SODA-plenary-talk.pdf.

20. Martin L. Weitzman. The Noah’s ark problem. Econometricay, 66:1279 – 1298, 1998.

21

