
Binding UMM Business Documents to a Business Document Ontology

Birgit Hofreiter
Faculty of Computer Science, University of Vienna, Liebiggasse 4, 1010 Vienna, Austria

University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
birgit.hofreiter@univie.ac.at

Abstract
UN/CEFACT’s modeling methodology (UMM) is used to
develop business collaboration models independent of the
IT-platform. The information being exchanged is modeled
by class diagrams. It is expected that later on these class
diagrams are mapped to business document standards.
Since it is hard to predict which standards will be dominant
in the future, we do not propose direct mappings from
UMM business information class diagrams to the specific
business document languages. Instead we propose an
ontology layer to represent the information identified in
UMM. This ontology layer is based on UN/CEFACT’score
components. For this purpose we have developed an RDFS
schema (RDFS) for the core components meta model. Fur-
thermore, we define a mapping from the UMM class dia-
gram to the core component RDFS.

1 Motivation

The development of any good system of a certain size
requires a well defined analysis and design process. For the
specific focus of developing B2B systems, the United
Nation’s Centre for Trade Facilitation and Electronic Busi-
ness (UN/CEFACT) has developed the UN/CEFACT mod-
eling methodology (UMM) for analyzing both dynamic
and structural B2B aspects [UN06]. A UMM model con-
centrates on the business aspects only. It is not bound to a
specific platform. In order to implement a B2B system a
UMM model must be transformed to platform specific
specifications. This means the dynamic aspects will be
transformed to a business process modelling language (e.g.
BPEL, BPSS). We describe these mappings in [HoHu04]
and [HoHK06]. The structural aspects will be mapped to
business document standards which is a focus of this paper.

This leads to the question which business document
standard should be supported? Although most implementa-
tions run on UN/EDIFACT, all latest implementations are
based on XML. Therefore, a mapping to an XML-based
business document standard is preferred. Unfortunately,
plenty of these business document standards exist.
Although some of the business document standards have
become the first choice within a vertical industry, there are
still some competing efforts. Popular business document

standards include those of market place providers, like
Commerce One’s xCBL and Ariba’s cXML, the Open
Application Group’s OAGI interconnecting ERP systems,
OASIS’s UBL and domain-specific solutions like Rosetta-
Net in the IT sector. An overview of business document
standards is provided in [Li00].

After the e-commerce hype only a few new business
document standards appeared and there is a trend that some
standards merge or disappear. Today we are not in a stable
situation and it is hard to forecast which will be the most
commonly accepted business document standard in the
long run. For example, five years ago xCBL was one of the
most accepted business document standards. Today its sup-
port is rather limited.

Instead of developing a mapping from UMM class dia-
grams to a specific business document language, of which
we do not know how it will look like tomorrow, we prefer
an approach that will survive industry trends. Therefore,
we propose a business document ontology layer that is first
of all independent of the XML-schema of a business docu-
ment language. This ontology layer is based on UN/
CEFACT’s core components. We use RDFS to describe the
core components based ontology. Furthermore we use
RDF’s XML serialization to denote the ontology in a
machine-readable format. This is a precondition that the
mapping from UMM class diagrams to our business docu-
ment ontology is useful for a further transformation to a
business document language of choice.

The remainder of this paper is structured as follows: In
section 2 we show how the core components-based busi-
ness document ontology works. By the example of a quote
in our purchase order management case study, we demon-
strate a mapping from a UMM class diagram to our busi-
ness document ontology in section 3. In section 4 we
define what is required for a mapping from the business
document ontology to a business document language.

2 Related Work

The rapid growth in information volume makes it more
and more difficult to find, organize, access and maintain
the information required by users. The Semantic Web pro-
poses enhanced information access based on machine-pro-
cessable meta-data. This resulted in an increased interest of
computer scientists in ontologies. However, the term ontol-

ogy is used for a much longer time in philosophy. There
ontology means the study of being or existence as well as
the basic categories thereof. In computer science, an ontol-
ogy is the attempt to formulate an exhaustive and rigorous
conceptual schema within a given domain, a typically hier-
archical data structure containing all the relevant entities
and their relationships and rules within that domain. Ontol-
ogies are commonly used in artificial intelligence and
knowledge representation. T.R. Gruber has described an
ontology as “a formal, explicit specification of a shared
conceptualization” [Grub93]. A conceptualization is an
abstract, simplified view of the world that we wish to rep-
resent. It should be shareable and re-usable.

An ontology is always developed for a certain purpose.
As a result, ontologies developed independently for differ-
ent purposes will differ significantly from each other. An
ontology which is subject-independent is known as a foun-
dation ontology or upper ontology. An upper ontology is
limited to concepts that are meta, generic, abstract, and
hence are general enough to address (at a high level) a
broad range of domain areas.

No upper ontology has yet become a de-facto standard.
Different organizations are attempting to define standards
for specific domains. For practical reasons, ontologies
must be expressed in a concrete notation. An ontology lan-
guage is a formal syntax by which an ontology is built.
Over the last years a number of ontology languages have
been developed, both proprietary and standards-based. The
most well-known ontology languages are the following:

The Resource Description Framework (RDF) is a World
Wide Web Consortium (W3C) standard recommendation
for describing machine-processable semantics of data rep-
resented by subject-property-object triples [MaMi04].
RDFS is also a W3C recommendation and provides a
means to define the vocabulary for RDF properties and
specifies the kinds of objects to which these properties may
be applied. This means, RDFS provides a basic type sys-
tem for RDF data models [BrGu02]. DARPA Agent
Markup Language (DAML) was created as part of a
research program started in August 2000 by DARPA, a US
governmental research organization; and Ontology Infer-
ence Layer (OIL) is an initiative funded by the European
Union programme for Information Society Technologies as
part of some of its research projects. DAML and OIL are
standardized schema languages and not data models like
RDF or topic maps [W3C01]. The Web Ontology Lan-
guage (OWL) has been developed by the Web Ontology
Working Group as part of the W3C Semantic Web Activity
and has the status of a recommendation since February
2004 [McGH04]. It is designed for use by applications that
need to process the content of information instead of just
presenting information. The working group proposes that
OWL facilitates greater machine interpretability of Web
content than that supported by RDF and RDFS. XML
Topic Maps (XTM) are a reformulation of topic maps in
XML syntax based on XLink. Topic maps have a long and
complicated history. They originally started as a process to
create a standard SGML DTD for software documentation.

3 A Core Components Based Ontology

The goal of our B2B business document ontology is to
describe the semantic concepts to be represented in docu-
ment types exchanged between business partners
[HoHu02]. It is important that document types are not
developed in isolation from each other. Semantic concepts
that are shared between different document types must be
re-used. This means, e.g., that a line item should be based
on the same concept regardless if it is a quote document
type from one or the other business environment, or a pur-
chase order, an invoice, etc.

In order to develop a business document ontology, two
main approaches are introduced by Ontoprise’s Semantic
B2B Broker [Onto00]: a top-down (Fig. 1a) and a bottom-
up approach (Fig. 1b). A top-down approach is used if no
XML structure of a business document standard is given
and such a structure is secondary. In this case, business
experts will first define a document ontology that describes
their shared understanding of a given business document
type. The conceptual model of this document ontology
builds the foundation of the development of a new business
document standard (represented as DTD or XML schema).
Vice versa, a bottom-up approach takes DTDs or XML
schemas from existing business document standards to
analyze their semantic content. The conceptual models of
all considered business document standards have to be har-
monized in order to define a unified document ontology. A
bottom-up approach is used in [OmFe00] to mediate
between Commerce One’s xCBL and Ariba’s cXML.

The industry-wide recognized development of compo-
nents independent of a business document standard is cur-
rently undertaken by UN/CEFACT. The work started as
part of the ebXML initiative and is called UN/CEFACT’s
core components. It is our goal to take advantage of a
future pool of core components. Hence, our ontology layer
is not defined by reverse engineering of existing business
document standards like in the bottom-up approach.
Instead, our ontology layer is based on UN/CEFACT’s
core components. However, we do not use a pure top-down
approach, because we will not develop a new business doc-
ument standard. We have to mediate the core components-
based ontology layer with existing business document stan-
dards. Since we are coming from top as well as from bot-

Figure 1. 3 ways to develop a Document Ontology

Ontology Ontology Ontology

XSD/
DTD

XSD/
DTD

XSD/
DTD

(a) Top-Down (b) Bottom-Up (c) Middle-out

tom, we call our approach “middle-out”. This approach is
displayed in Fig. 1c.

In the first step we develop an ontology that follows the
UN/CEFACT’s core components specification [UN03].
For this purpose we have developed an RDF schema
(RDFS) [BrGu02] for the core components meta model.
The resulting RDFS is depicted as a graph in Fig. 2 and
listed in the code line 1 to line 52 further below. All boxes
with solid lines are of the RDFS type Class and those with
broken lines are of type Property. It is important to note
that each defined class is also defined as a subtype of Class
and, thus, inherits the concepts of Class. This trick allows
that an instance of this schema, is by itself a schema for
describing business document types.

A core component is defined as a semantic concept that
is shared between different types of business documents. If
a core component is used in a business document type, it is
set into the business context where the document type is
used. Usually, it is adjusted to the needs of the business
context. This happens when a core component becomes a
business information entity. We use the abstract concept of
a building block as a super-class for core component and
business information entity.

A core component is defined as a semantic concept that
is shared between different types of business documents. If
a core component is used in a business document type, it is
set into the business context where the document type is
used. Usually, it is adjusted to the needs of the business
context. This happens when a core component becomes a
business information entity. We use the abstract concept of
a building block as a super-class for core component and
business information entity.

There exist 3 different types of core components. A
basic core component represents a singular business con-

cept with a unique semantic definition. Each basic core
component is of a certain core component type. A core
component type (e.g. amount type) consists of a content
component that carries the actual content (e.g. 12) plus one
or more supplementary components giving an essential
extra definition to the content component (e.g. Euros).
Note, that content and supplementary components are
nothing else than core components. Core component types
do not have business meaning. An aggregate core compo-
nent comprises other core components that convey a dis-
tinct business meaning together.

In the RDF schema the three different types aggregate
core component (line 24), basic core component (line 31),
and core component type (line 42) are represented as sub-
classes of the class core component (line 4). The property
element type (line 38) is used to assign a core component
type to a basic core component. The composition of a core
component type is defined by the properties content com-
ponent (line 45) and supplementary component (line 49),
referencing basic core components. The property core
component child (line 27) is used to reference the compo-
nents within an aggregate.
[1] <rdfs:Class rdf:ID="BuildingBlock">
[2] <rdfs:subClassOf rdf:resource="http://w3.../rdf-schema#Class"/>
[3] </rdfs:Class>
[4] <rdfs:Class rdf:ID="CoreComponent">
[5] <rdfs:subClassOf rdf:resource="#BuildingBlock"/>
[6] <rdfs:comment>Inherits theLabel and Comment from class Class

</rdfs:comment>
[7] </rdfs:Class>
[8] <rdf:Property ID="remark">
[9] <rdfs:domain rdf:resource="#CoreComponent"/>
[10] <rdfs:range rdf:resource="http://w3.../rdf-schema#Literal"/>
[11] </rdf:Property>
[12] <rdf:Property ID="businessTerm">
[13] <rdfs:domain rdf:resource="#CoreComponent"/>
[14] <rdfs:range rdf:resource="http://w3.../rdf-schema#Literal"/>
[15] </rdf:Property>
[16] <rdf:Property ID="representationTerm">
[17] <rdfs:domain rdf:resource="#CoreComponent"/>
[18] <rdfs:range rdf:resource="http://w3.../rdf-schema#Literal"/>
[19] </rdf:Property>
[20] <rdf:Property ID="objectClass">
[21] <rdfs:domain rdf:resource="#CoreComponent"/>
[22] <rdfs:range rdf:resource="http://w3.../rdf-schema#Literal"/>
[23] </rdf:Property>
[24] <rdfs:Class rdf:ID="AggregateCoreComponent">
[25] <rdfs:subClassOf rdf:resource="#CoreComponent"/>
[26] </rdfs:Class>
[27] <rdf:Property ID="coreComponentChild">
[28] <rdfs:domain rdf:resource="#AggregateCoreComponent"/>
[29] <rdfs:range rdf:resource="#CoreComponent"/>
[30] </rdf:Property>
[31] <rdfs:Class rdf:ID="BasicCoreComponent">
[32] <rdfs:subClassOf rdf:resource="#CoreComponent"/>
[33] </rdfs:Class>
[34] <rdf:Property ID="propertyTerm">
[35] <rdfs:domain rdf:resource="#BasicCoreComponent"/>
[36] <rdfs:range rdf:resource="http://w3.../rdf-schema#Literal"/>
[37] </rdf:Property>
[38] <rdf:Property ID="elementType">
[39] <rdfs:domain rdf:resource="#BasicCoreComponent"/>
[40] <rdfs:range rdf:resource="#CoreComponentType"/>
[41] </rdf:Property>
[42] <rdfs:Class rdf:ID="CoreComponentType">
[43] <rdfs:subClassOf rdf:resource="#CoreComponent"/>
[44] </rdfs:Class>
[45] <rdf:Property ID="contentComponent">
[46] <rdfs:domain rdf:resource="#CoreComponentType"/>
[47] <rdfs:range rdf:resource="#BasicCoreComponent"/>
[48] </rdf:Property>

subClassOf

subClassOf

range

BasicCoreComponent

CoreComponent

AggregateCoreComponent

CoreComponentType

domain

domain

domain

domain

subClassOf

contentComponent

supplementaryComponent

elementType

domain range

domain range

coreComponentChild

domain
range

Class

PropertyStatement
Legend:

Literal

range

range

range

propertyTerm
domain

Literal

range

remarkrange domain

domain

objectClass

domain

range

range representationTerm

businessTerm

comment

label

Class

subClassOf

Building Block

subClassOf

Figure 2. Meta model for Core Components in RDFS

[49] <rdf:Property ID="supplementaryComponent">
[50] <rdfs:domain rdf:resource="#CoreComponentType"/>
[51] <rdfs:range rdf:resource="#BasicCoreComponent"/>
[52] </rdf:Property>

Each UN/CEFACT core component contains the fol-
lowing dictionary information: A dictionary entry name is
the unique official name of the core component. It corre-
sponds to the RDFS property label. The definition of the
unique semantic business meaning of the core component
is given in the RDFS property comment. Therefore, we do
not have to redefine these two properties in our code. The
property remark (line 8) is used to further clarify the defi-
nition, to provide examples and/or to reference a recog-
nized standard. If there exist further synonym terms under
which the core component is commonly known and used in
the business, the property business term (line 12) is used to
define them. For reasons of completeness, we assign the
properties representation term (line 16), object class (line
20) to core components, and property term (line 34) only to
basic core components as defined in the UN/CEFACT
specification.

The RDF library of core components must be populated
with all core components currently being developed by
UN/CEFACT. Each core component will be expressed as
an RDF model that follows the RDFS of the core compo-
nents’ meta model. The code line 53 to line 108 demon-
strates the population of the RDF library by the means of
the aggregate core component product service details. A
representation of this core component as UML class could
be represented as follows:

The resource representing this aggregate core compo-
nent (line 97) is marked #000155 according to its UN/
CEFACT core component ID. This represents only the
fragment identifier of a URI uniquely identifying core
components. The unique identifications (UID) assigned to
core components are used as fragment identifier. The label
of the resource is equal to the data dictionary entry name
product service details (line 98). The comment states the
definition of the product service details (line 99). The busi-
ness term good which is commonly used to refer to product
service is assigned to it (line 100). Each of the components
aggregated within product service details is assigned as
core component child (line 102 to line 107).

As an example, we have a detailed look on the compo-
nent product service identifier. This basic core component
is defined in line 65 to line 71. Its identifier is #000156
(line 65). It is referenced in the coreComponentChild state-
ment of the aggregate core component service product
details (line 102). Similarly to aggregate core components,
the product service identifier captures label, comment and

objectClass (line 66 to line 68). Since it is a basic core
component it also carries a propertyTerm (line 69) and is
assigned to a specific type (line 70). Since product service
identifier is of type identifier the elementType statement in
line 70 references the ID #000101 of the core component
type identifier type (line 62). In the example code we just
show the label of the core components type (line 63) and
ommit to present all its other characteristics.

All the other basic core components that are children of
the product service details (and correspond to the attributes
in Fig. 3) are rudimentarily outlined in line 72 to line 96.
All their data types are defined in line 53 to line 64.

[53] <cc:CoreComponentType rdf:ID="000066">
[54] <rdfs:label xml:lang="en">DateTime.Type</rdfs:label>
[55] </cc:CoreComponentType>
[56] <cc:CoreComponentType rdf:ID="000089">
[57] <rdfs:label xml:lang="en">Code.Type</rdfs:label>
[58] </cc:CoreComponentType>
[59] <cc:CoreComponentType rdf:ID="000090">
[60] <rdfs:label xml:lang="en">Text.Type</rdfs:label>
[61] </cc:CoreComponentType>
[62] <cc:CoreComponentType rdf:ID="000101">
[63] <rdfs:label xml:lang="en">Identifier.Type</rdfs:label>
[64] </cc:CoreComponentType>
[65] <cc:BasicCoreComponent rdf:ID="000156">
[66] <rdfs:label xml:lang="en">ProductService.Identifier</rdfs:label>
[67] <rdfs:comment>A character string used to uniquely identify and

distinguish a product/service.</rdfs:comment>
[68] <cc:objectClass>ProductService</cc:objectClass>
[69] <cc:propertyTerm>Identification</cc:propertyTerm>
[70] <cc:elementType cc:CoreComponentType="#000101"/>
[71] </cc:BasicCoreComponent>
[72] <cc:BasicCoreComponent rdf:ID="000157">
[73] <rdfs:label xml:lang="en">ProductService.Type.Code</rdfs:label>
[74] ...
[75] <cc:elementType cc:CoreComponentType="#000089"/>
[76] </cc:BasicCoreComponent>
[77] <cc:BasicCoreComponent rdf:ID="000158">
[78] <rdfs:label...>ProductService.Description.Text</rdfs:label>
[79] ...
[80] <cc:elementType cc:CoreComponentType="#000090"/>
[81] </cc:BasicCoreComponent>
[82] <cc:BasicCoreComponent rdf:ID="000159">
[83] <rdfs:label ...>ProductService.Start.DateTime</rdfs:label>
[84] ...
[85] <cc:elementType cc:CoreComponentType="#000066"/>
[86] </cc:BasicCoreComponent>
[87] <cc:BasicCoreComponent rdf:ID="000160">
[88] <rdfs:label ...>ProductService.End.DateTime</rdfs:label>
[89] ...
[90] <cc:elementType cc:CoreComponentType="#000066"/>
[91] </cc:BasicCoreComponent>
[92] <cc:BasicCoreComponent rdf:ID="000163">
[93] <rdfs:label ...>ProductServiceClassification.Identifier</rdfs:label>
[94] ...
[95] <cc:elementType cc:CoreComponentType="#000101"/>
[96] </cc:BasicCoreComponent>
[97] <cc:AggregateCoreComponent rdf:ID="000155">
[98] <rdfs:label xml:lang="en">ProductService.Details</rdfs:label>
[99] <rdfs:comment>A thing or substance produced by natural process

or manufacturer and or a provision or system of supplying a need.
</rdfs:comment>

[100] <cc:businessTerm>Good</cc:businessTerm>
[101] <cc:objectClass>ProductService</cc:objectClass>
[102] <cc:coreComponentChild cc:CoreComponent="#000156"/>
[103] <cc:coreComponentChild cc:CoreComponent="#000157"/>
[104] <cc:coreComponentChild cc:CoreComponent="#000158"/>
[105] <cc:coreComponentChild cc:CoreComponent="#000159"/>
[106] <cc:coreComponentChild cc:CoreComponent="#000160"/>
[107] <cc:coreComponentChild cc:CoreComponent="#000163"/>
[108] </cc:AggregateCoreComponent>

Figure 3. UML Class for Product Service

Besides product service details all the other core com-
ponents must be described by RDFS and provided in a
library. Currently, UN/CEFACT is in the process of deliv-
ering a first full set of core components. In the future, these
are the ones that must be available for real world use. For
demonstration purposes we use the preliminary set of core
components as issued by UN/CEFACT.

4 From a UMM Class Diagram to the Business
Document Ontology

The core components stored in a core components
library are the foundation for building business document
types. In order to develop a business document type the
question is which core components are used and how are
they assembled? In order to identify the core components it
is a good idea to start with UMM. The UMM model
defines the business information being exchanged during a
business transaction. The business process oriented
approach guarantees that the business information is kept
to the minimum necessary. The resulting business docu-
ment semantics are modeled in a class diagram. This class
diagram is already built from classes that correspond to
core component semantics. Therefore, classes and their
attributes give a hint to those core components that must be
selected from the library in order to build the correspond-
ing business document type.

Core components are by definition free of a business
context. Business document types are always used in a cer-
tain business context. Accordingly, a building block actu-
ally used in a business document type is not called a core
component anymore. This building block is now called
business information entity. A business information entity
adopts a core component to the business context of its
usage and, thus, is always based on a core component. A
business document type is always an assembly of business
information entities. This means that it is necessary to
describe the relationships of the business information enti-
ties within the assembly. Therefore, it is necessary to
define how business information entities are associated
with other ones.

In order to meet these requirements we have to extend

our meta model of Fig. 2. The necessary extensions are
depicted in Fig. 4 and are listed in code line 109 to line
135. A business information entity is defined as a subclass
of the abstract concept building block (line 109). Accord-
ingly, building block is the abstract super class for both
core component and business information entity. A busi-
ness information entity is based on a core component.
However, it is not necessary that it is directly based on a
core component. This means that a business information
entity might be based on another business information
entity. Hence, the property based on points to the abstract
building block a business information entity is based on
(line 112). This allows to point to both a core component
and a business information entity.

The property associated with is used for referencing the
business information entity to which an association exists.
Nevertheless, the property does not directly point to
another business information entity. For a business infor-
mation entity instance it is important to define how many
instances of the related business information entity are
associated with it. RDFS by itself does not support the
specification of lower and upper limits for statements of a
certain type. To overcome this limitation we define the
class component (line 121). The property associated with
points to a component (line 117). Component carries the
min (line 124) and the max (line 128) property to define the
lower and upper bound of the related business information
entity. Of course the component must point to the business
information entity that is related to the business informa-
tion entity in question. We define on which building block
a component is based upon. For this purpose, we use the
property based on (line 112) again. Thus, the domain of
based on is not only business information entity (line 113),
but also component (line 114).

The next constraint we have to consider is that not all of
the attributes of a class are relevant in a certain business
context. This type of constraint leads to the fact that a busi-
ness information entity is not used exactly as the underly-
ing core component. For this purpose we define the
property includes (line 132) that is used to define the chil-
dren of an business information entity. Similarly to the
associated with property, the property includes does not
directly reference the included core components or busi-
ness information entities. It points to a component which in
turn references the included building block (core compo-
nent or business information entity). We have already
explained that a component specifies the minimum and
maximum occurrence of the included building block. A
maximum value of 0 signals that the attribute is not used.

[109] <rdfs:Class rdf:ID="BusinessInformationEntity">
[110] <rdfs:subClassOf rdf:resource="http://w3.../rdf-schema#Class"/>
[111] </rdfs:Class>
[112] <rdf:Property rdf:ID="basedOn">
[113] <rdfs:domain rdf:resource="#BusinessInformationEntity"/>
[114] <rdfs:domain rdf:resource="#Component"/>
[115] <rdfs:range rdf:resource="#BuildingBlock"/>
[116] </rdf:Property>

Figure 4. Meta Model for Business Information Entities

CoreComponent

Class

subClassOf

Building Block

subClassOf

BusinessInformationEntity

basedOn

range

domain

domain

range

subClassOf

Component

min

domain

associatedWith

domain

maxInteger
domainrange

range

includes

domain

range

[117] <rdf:Property rdf:ID="associatedWith">
[118] <rdfs:domain rdf:resource="#BusinessInformationEntity"/>
[119] <rdfs:range rdf:resource="#Component"/>
[120] </rdf:Property>
[121] <rdfs:Class rdf:ID="Component">
[122] <rdfs:subClassOf rdf:resource="Class"/>
[123] </rdfs:Class>
[124] <rdf:Property rdf:ID="min">
[125] <rdfs:domain rdf:resource="#AggregateBusinessInformationEntity"/>
[126] <rdfs:range rdf:resource="#Integer"/>
[127] </rdf:Property>
[128] <rdf:Property rdf:ID="max">
[129] <rdfs:domain rdf:resource="#AggregateBusinessInformationEntity"/>
[130] <rdfs:range rdf:resource="#Integer"/>
[131] </rdf:Property>
[132] <rdf:Property rdf:ID="includes">
[133] <rdfs:domain rdf:resource="BusinessInformationEntity"/>
[134] <rdfs:range rdf:resource="#Component"/>
[135] </rdf:Property>

The model developed so far allows us to assemble busi-
ness document types from existing core components in a
library as well as to create business information entities
that customize the underlying core components to the spe-
cific needs of a certain business context.

In order to demonstrate our approach we take the exam-
ple of a quote document. We assume that a business pro-
cess analyst has followed the UMM and identified the
information depicted in the class diagram of Fig. 5 to be
interchanged during a business collaboration. This class
diagram is reduced to show only those elements we need to
demonstrate our approach and, consequently, does not
show attributes for most of the classes. As mandated by the
UMM this class diagram is already based on classes that
are equivalent to core components. A quick look on Fig. 5
tells us, that we do not only need the information concern-
ing product service details, but also core components for
unit charge price (#000125), line (#000135), and document
details (#000210) - the latter being the base for quote and
quote request. For the transformation process we suppose
that all the necessary core components are stored in the
core components library.

As we said before, as soon as a core component is used
in a business document type it becomes a business infor-
mation entity. Therefore, we first have to select the core
components we need from the library. For each core com-
ponent we create (at least) one business information entity.
A quote is a special type of document. Hence, we select the
core component #000210 document details from the library

and create a business information entity quote that is based
on #000210 (line 136). Similarly, we create a business
information entity quote request that is based on the same
core component #000210 document details (line 141). We
base the business information entity line on the core com-
ponent #000135 line identifier (line 144). Furthermore, we
create a business information entity unit charge price from
the core component #000125 unit charge price details (line
149) and a business information entity product/service
from the core component #000155 product/service details
(line 152). Each of the business information entities used in
the business document has exactly the same structure as the
underlying core component defined in the library.

Having created the five business information entities
quote, quote request, line, unit charge price and product/
service, we have to establish the necessary associations
between them. A quote is made as a response to exactly
one quote request. In the terminology of our business docu-
ment ontology this means a quote is associated with a com-
ponent - named corresponding quote request - that is based
on the business information entity quote request. This com-
ponent is specified exactly one time, since the minimum
and the maximum occurrence is 1 (line 138, line 161 and
line 165). Furthermore, the business information entity
quote is associated with 0 to n components - called quoted
line - that are based on the business information entity line
(line 139, line 166 to line 170).

The business information entity line is associated with
exactly 1 component quoted price for line that is based on
unit charge price (line 146, line 171 to line 175). Finally, a
line is associated with 1 to n components products/service
of line that are based on the business information entity
product/service (line 147, line 176 to line 180). It should be
noted that it is up to the document designer whether an
association is created for both directions or only one. In
absence of names of associations and roles in the UMM
class diagram, it is up to the document designer to give
names to the components that are pointed to by the associ-
ated with property.

In our example the business information entity product
service (line 152) is based on its corresponding core com-
poent (line 153, line 97). However, the business informa-
tion entity uses only 2 out of the 6 children of the core
component. Thus, the business information entity refer-
ences a component for each of the 6 children (line 154 to
line 159). Since our example uses only the product/service
identifier and product/service description text the min and
max property of these components are set to 1 (line 181 to
line 185 and line 190 to line 194). Since the other four
properties are not used in the book example, the corre-
sponding max property is set to 0 (line 186 to line 189 and
line 195 to line 206).

Figure 5. Class Diagram for a Context-Free Quote

QuoteRequest

...

QuoteRequest

...

ProductServiceIdentifier : IdentifierType
ProductServiceDescriptionText : TextType

ProductService

<<references>>

0..n

1

1

1..n

n

1

Quote

...

Quote

...

Line

...

Line

...

UnitChargePrice

...

UnitChargePrice

...

[136] cc:BusinessInformationEntity rdf:ID="Quote">
[137] <cc:basedOn rdf:resource="http://my.../cc-libary#000210"/>
[138] <cc:associatedWith rdf:ID="#CorrespondingQuoteRequest"/>
[139] <cc:associatedWith rdf:ID="#QuotedLine"/>
[140] </cc:BusinessInformationEntity>
[141] <cc:BusinessInformationEntity rdf:ID="QuoteRequest">
[142] <cc:basedOn rdf:resource="http://my.../cc-libary#000210"/>
[143] </cc:BusinessInformationEntity>
[144] <cc:BusinessInformationEntity rdf:ID="Line">
[145] <cc:basedOn rdf:resource="http://my.../cc-libary#000135"/>
[146] <cc:associatedWith rdf:ID="#QuotedPriceForLine"/>
[147] <cc:associatedWith rdf:ID="#ProductServiceOfLine"/>
[148] </cc:BusinessInformationEntity>
[149] <cc:BusinessInformationEntity rdf:ID="UnitChargePrice">
[150] <cc:basedOn rdf:resource="http://my.../cc-libary#000125"/>
[151] </cc:BusinessInformationEntity>
[152] <cc:BusinessInformationEntity rdf:ID="ProductService">
[153] <cc:basedOn rdf:resource="http://my.../cc-libary#000155"/>
[154] <cc:includes rdf:ID="#ProductServiceIdentifier"/>
[155] <cc:includes rdf:ID="#ProductServiceTypeCode"/>
[156] <cc:includes rdf:ID="#ProductServiceDescriptionText"/>
[157] <cc:includes rdf:ID="#ProductServiceStartDateTime"/>
[158] <cc:includes rdf:ID="#ProductServiceEndDateTime"/>
[159] <cc:includes rdf:ID="#ProductServiceClassificationIdentifier"/>
[160] </cc:BusinessInformationEntity>
[161] <cc:Component rdf:resource="CorrespondingQuoteRequest">
[162] <cc:basedOn rdf:resouce="#QuoteRequest"/>
[163] <cc:min>1</cc:min>
[164] <cc:max>1</cc:max>
[165] </cc:Component>
[166] <cc:Component rdf:resource="QuotedLine">
[167] <cc:basedOn rdf:resouce="#Line"/>
[168] <cc:min>0</cc:min>
[169] <cc:max>unbounded</cc:max>
[170] </cc:Component>
[171] <cc:Component rdf:resource="QuotedPriceForLine">
[172] <cc:basedOn rdf:resouce="#UnitChargePrice"/>
[173] <cc:min>1</cc:min>
[174] <cc:max>1</cc:max>
[175] </cc:Component>
[176] <cc:Component rdf:resource="ProductServiceOfLine">
[177] <cc:basedOn rdf:resouce="#ProductService"/>
[178] <cc:min>1</cc:min>
[179] <cc:max>unbounded</cc:max>
[180] </cc:Component>
[181] <cc:Component ref:resource="ProductServiceIdentifier">
[182] <cc:basedOn ref:resource="http://my.../cc-libary#000156"/>
[183] <cc:min>1</cc:min>
[184] <cc:max>1</cc:max>
[185] </cc:Component>
[186] <cc:Component ref:resource="ProductServiceTypeCode">
[187] <cc:basedOn ref:resource="http://my.../cc-libary#000157"/>
[188] <cc:max>0</cc:max>
[189] </cc:Component>
[190] <cc:Component ref:resource="ProductServiceDescriptionText">
[191] <cc:basedOn ref:resource="http://my.../cc-libary#000158"/>
[192] <cc:min>1</cc:min>
[193] <cc:max>1</cc:max>
[194] </cc:Component>
[195] <cc:Component ref:resource="ProductServiceStartDateTime">
[196] <cc:basedOn ref:resource="http://my.../cc-libary#000159"/>
[197] <cc:max>0</cc:max>
[198] </cc:Component>
[199] <cc:Component ref:resource="ProductServiceEndDateTime">
[200] <cc:basedOn ref:resource="http://my.../cc-libary#000160"/>
[201] <cc:max>0</cc:max>
[202] </cc:Component>
[203] <cc:Component ref:resource="ProductServiceClassificationIdenti-
fier">
[204] <cc:basedOn ref:resource="http://my.../cc-libary#000163"/>
[205] <cc:max>0</cc:max>
[206] </cc:Component>

5 Language Binding for Business Document
Standards

Our business document ontology should be used in a
next step to provide language bindings to corresponding
document types in a business document language. Since
our “middle-out” approach and a bottom-up approach only
differ in the way the ontology is built, the problem of
defining a language binding remains the same. Thus, our
framework considers the language binding defined in the
bottom-up approach in [OmFe00].

The basic concept of this language binding is depicted
in Fig. 6. It is based on the definition of a common concep-
tual model for document types of different business docu-
ment standards. The conceptual models are described in
RDFS. Thus, a mapping between the business document
language’s DTD or XML schema on the one side and the
conceptual data model on the other side is required. This
mapping on the schema level is defined by the means of
XSLT. On the instance level, an incoming document is
abstracted from its XML serialization and translated into
its RDF data model. Vice versa, in order to create an outgo-
ing document, the RDF data model of the target business
document language is serialized according to the target
XML format.

Furthermore, the conceptual data model of a business
document language’s document type (expressed in RDFS)
must be mapped to the document ontologies data model of
the same document type (also expressed in RDFS). This
means that the equivalent mapping between the terminolo-
gies requires a transformation from one RDFS model to the
other. The mapping must be described by the means of an
RDFS mapping language.The mappings must be automati-
cally translated into an RDF transformation language. This
transformation language is applied to translate the concep-
tual RDF model of an incoming document into an instance
of the document ontology and, vice versa, to translate an
instance of the document ontology into the conceptual
RDF model of an outgoing document. It follows that all
mappings between different business document standards
will also be managed by mapping each standard to the core
components-based document ontology. Thus, future work
has to concentrate on a RDFS mapping language and the
RDF transformation language.

RDF
Transformation

XSLT
Mapping

e-business
vocabulary
document
type DTD/XSD

e-business
vocabulary
document
conceptual model
in RDFS

ebXML CC
document
ontology
in RDFS

abstract

serialize

Instance
document
in XML

Documents‘
data model
in RDF

transform

transform

Instance of
document
ontology
in RDFS

Figure 6. Binding between Ontology and Documents

6 Conclusion

In this paper we presented an approach to define a busi-
ness document ontology using RDFS. The business docu-
ments are built upon the UN/CEFACT core components
concept. Core components are re-usable building blocks,
which we represent by the means of RDFS. The RDFS
notation of core components provides a basis for a map-
ping to different XML-based business document standards.

An evaluation of our approach according to the set of
quality criterias for ontologies discussed in Gruber
[Grub93] results in the conclusion that we meet every sin-
gle criteria. Clarity requires definitions to be context inde-
pendent. Core components are said to be free of context. In
fact, they are not limited to any business sector. They are
only assigned to the very general domain of „business“.
Coherence demands consistency of the definitions. Core
components are based on a controlled vocabulary in order
to ensure coherence. Extensibility is reached if new con-
cepts can easily be composed without any changes to the
ontological foundations. The usefulness of an ontology
depends on its extensibility. This is very important in
dynamic environments like business. Our ontology pro-
posed might be extended to meet the requirements of future
business processes.

Another criteria is a minimal encoding bias. An encod-
ing bias results when representation choices are made only
for the convenience of notation or implementation. The
development of our ontology was not influenced by any
programming or encoding environment. Finally, Gruber
asks for minimal ontological committment. An ontology
should make as few claims as possible about the world
being modeled, allowing the parties committed to the
ontology freedom to specialize and instantiate the ontology
as needed. In our proposed ontology parties will always
have to specialize and use the ontology as needed in their
business environment.

References

[BrGu02] Brickley, D., Guha, R.: RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Working Draft, 2002,
http://www.w3.org/TR/2002/WD-rdf-schema-20020430

[Grub93] Gruber, T.R.: A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition Vol. 6, No.
2, 1993

[HoHu02] Hofreiter, B., Huemer, C.: B2B Integration - Aligning
ebXML and Ontology Approaches. Proc of the 1st EurAsian
Conf. on Advances in Information and Communication
Technology (EURASIA-ICT 2002). Springer LNCS, Vol.
2510, pp 339-349

[HoHu04] Hofreiter, B., Huemer, C.: Transforming UMM
Business Collaboration Models to BPEL. Proc. of OTM
Workshops 2004. Springer LNCS, Vol. 3292, (2004) 507-519

[HoHK06] Hofreiter, B., Huemer, C., Kim, J.-H.: Choreography
of ebXML business collaborations. Journal of Information
Systems and E-Business Management, Vol. 4, No. 3, Springer

[Li00] Li, H.: XML and Industrial Standards for Electronic

Commerce, Knowledge and Information Systems Vol. 2, No.
4, 2000, pp. 487-497

[MaMi04] Manola, F., Miller, E.: RDF Primer, W3C
Recommendation, February 2004, http://www.w3.org/TR/rdf-
primer/

[McGH04] McGuinness, D.L., van Harmelen, F.: OWL Web
Ontology Language Overview, W3C Recommendation,
February 2004, http://www.w3.org/TR/owl-features/

[OmFe00] Omelayenko, B., Fensel, D.: Scalable Document
Integration for B2B Electronic Commerce, http://
www.cs.vu.nl/~borys/papers/OF_SII4.pdf

[Onto00] Ontoprise, B³ Semantic B2B Broker, http://
www.ontoprise.de, 2000

[UN03] UN/CEFACT TMG: Core Components Technical
Specification – Part 8 of the ebXML Framework, Version
2.01, 2003, http://www.untmg.org/dmdocuments/
CCTS_v201_2003_11_15.pdf

[UN06] UN/CEFACT TMG: UMM Meta Model – Foundation
Module, Candidate for 1.0, Final Working Draft, 2006-06-22,
http://www.unece.org/cefact/umm/
UMM_Foundation_Module.pdf

[W3C01] W3C: DAML+OIL (March 2001) Reference
Description, W3C Note, December 2001, http://www.w3.org/
TR/daml+oil-reference

