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Abstract—Efficient resource management is an important
requirement for many process-oriented applications. Typically,
work items are assigned to resources through their work lists.
There are many reasons for reordering work items in a resource’s
work list. For process scheduling, for example, swapping process
instances constitutes a mean to keep due times. At the same time,
reducing the throughput time of the global process is typically
not the primary goal. For process optimization, in turn, the
implications of reordering work items on the overall temporal
performance of the process might be crucial. In this paper,
we investigate how reordering work items affects performance
parameters that are typically associated with a first-in-first-out
processing mechanism at resources. The analysis is conducted
for single process tasks and for typical control flow patterns
such as sequence as well as parallel and alternative branchings.
It is shown that the implications on the global throughput
time are less than expected, while the effects on instance-
based parameters strongly depend on the control-flow pattern
in which the reordering mechanism is implemented. The results
are supported by means of a simulation.

I. INTRODUCTION

Efficiently managing resources is a crucial requirement for
almost any enterprise and is, in principle, a particular strength
of business processes that are implemented through a process-
aware information system (PAIS) [1], [2]. At the core of the
PAIS, the process engine executes process instances during
runtime. The work items to be performed for each process
instance are assigned to the resources through their work lists.
Note that work lists also realize a temporal alignment of
instances. How the assignment of items to resources is realized
depends on the chosen processing strategy1. It defines the
logic according to which the process instances are processed,
including the mapping of activities on resources and batching
attributes. Of particular interest is the order in which the
instances are processed.

Most of today’s workflow engines implement a default pro-
cessing strategy that is strongly oriented towards the temporal
order of the work items [4]. Following a temporal order mostly
means implementing a first-in-first-out logic. According to this
approach, the entry with the earliest arrival time is the head
of the work list (queue) and processed first. From a global
point of view, this means that the order of the instances stays
structurally equal throughout the whole workflow execution.
However, there are scenarios in which a fixed first-in-first-out

1Different strategies are described by means of resource patterns [3].

logic turns out to be not the optimum approach. This holds
especially true for environments with defined due times or
for advanced mechanisms like exception handling. Simulation
results show that for almost all workloads rules such as earliest
due date first are statistically significantly better than the
commonly used FIFO rule regarding the number of late jobs
[5]. It might also be the case for scenarios in which the order
of the workflow instances influences the performance of the
processing step. All these scenarios require a reordering of the
work items in the resource’s work lists.

We argue that reordering work items potentially has effects
on the overall execution. However, the implications on typical
temporal performance parameters have not been analyzed in
detail. In this paper, we address the following questions:

• How does the reordering of work items in the resource’s
work list affect the temporal performance of the process
execution?
•Which performance variables need to be distinguished? How
do they interrelate?
• Which interdependence occurs with the processes’ basic
incorporated control-flow patterns (single-task, exclusive split,
sequence, parallelization and loop)?

Some of the mentioned questions have been analyzed
implicitly by assessing the performance of specific approaches
which apply a reordering of work items, e.g. as part of
scheduling techniques [5], [6], [7]. However, these findings
focus on the specific target the particular approach follows.

So why do we revisit a basic scheduling problem? At first,
the performance parameters that we analyze in our analysis
are often neglected or only considered in a limited way in
scheduling scenarios (where the number of kept due times
is typically considered more significant) but we believe it
is important to the workflow architect to be aware of the
implications on overall time aspects as well. Second, the
majority of today’s workflow engines are not designed to
handle defined due times at all. Especially in regards of
process optimization and flexibility, reordering work items
more probably represents a mean for exception handling or
the optimization of the resource behavior at critical activities.
To the best of our knowledge, no work that considers the
implications of a reordered work queue systematically on
temporal performance parameters exists at the moment.

This is especially true as research has neglected issues
associated with the resource perspective in favor of the process
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Figure 1. Comparison of non-reordering and reordering approach

perspective [3]. However we consider this an essential question
as the global temporal performance is of vital importance in
nearly any scenario. In this paper, we will elaborate on the
implications of reordering work items on the temporal perfor-
mance variables waiting time, processing time and throughput
time, both on an instance and a global basis.

Our analysis is structured as follows: In Section II we will
explain the basic concept and of reordering work items and
provide background information about existing techniques that
implement such a scheduling logic. The single-task scenario
is analyzed in Section III, while the more enhanced control-
flow patterns, sequence, exclusive-choice, parallelization and
loop are investigated within Section IV. Section IV-E explains
the hierarchical composition of processes and their temporal
performance parameters based on the principle of process
structure trees, while Section V provides an exemplary appli-
cation scenario as well as an evaluation based on simulation
data.

In the discussion (cf. Section VI), we draw a theory-based
conclusion about the applicability of reordering in different
scenarios. Moreover, our assumptions will be discussed: (a)
Work items are not withheld from processing in order to
execute a permutation, (b) tasks do not share resources and (c)
the processing time is not dependent from the order in which
the work items are processed. Related work is demarcated in
Section VII. Finally, Section VIII concludes and shows future
research directions.

II. BACKGROUND

A. Implications of a reordered work list

Figure 1 shows the immediate effects of reordering work
items within the resource’s work list. A workflow instance is
represented by a circle. As workflow instances are specifiable,
in this scenario, a unique name (A, B, C, D, E) is assigned.
The alphabetical order also indicates the arrival time of the
instances, meaning that instance A arrived first and instance E
last. As we consider the resource to start processing just when
the last instance arrives, the instances are transferred to the
resource’s work list. A circle inside the rectangle represents
a work item. Processing a work item means dequeuing it,
performing the actions defined by the process model and
assigning it to the next workflow entity according to the
workflow engine’s rule provider.

On top, a first-in-first-out approach is illustrated. As one
can see, instances are placed in the resource’s work list
according to their entry date, putting the earliest work item
representing instance A first. The lower part represents a
reordering approach. The work items are reordered in an
arrangement (A, D, E, B, C). This alignment could be referred

to a random order. The resulting alignment also determines the
arrival order of instances for the upcoming entity according to
the process model.

There are several approaches which apply a reordering of
work items in the resource’s work lists. In the following, we
illustrate commonly used approaches and techniques which are
promising in terms of the process optimization. For all of them,
the findings of this paper in terms of temporal performance
parameters are valid.

Last-in-first-out [8], [9] is the complement to the first-in-
first-out strategy. According to this approach, the item that has
been added to the list last is handled first. It refers to the stack
data structure and is accessed in opposite order to a queue. The
last-in-first-out strategy is typically implemented in technical
scenarios with a low level of abstraction.

Random-based means that the resource’s work lists do not
implement a certain order criteria. A random-based processing
might be applied if there is a massive oversupply of resources
compared to work items associated with different processing
times of the resources for the same activities.

Due time or scheduling [10] settings are scenarios in which
the processing end of workflow instances is fixed. To meet the
temporal restrictions, it might be reasonable to process work
items based on the priority of their due times. This scenario
occurs for instance in the industry domain where goods need
to be produced in time.

Priority determined processing [11] represents a strategy
according to which instances are processed based on a spec-
ified priority. The priority is typically an instance attribute
or can be evaluated out of other attributes. This approach is
sometimes applied in the service domain, e.g. at telephone
hotlines where the customer value represents the priority.

Dynamic instance queuing acknowledges the fact that the
order of work items often influences the performance of the
processing step [1]. Similar instances are classified based on
artificial intelligence techniques and thus processed in a row.
Scenarios are the industrial domain, in which one needs to
embrace the implications of changeover times; or the domain
of information technology in which techniques such as caching
or multi-threading influence the performance.

B. Temporal performance variables

The most common temporal performance variables in a
workflow system are the waiting time, the processing time and
the throughput time of the instances within the workflow. In a
single-resource activity pattern, instances arrive according to a
certain distribution λ at the node associated to the activity [12].
Work items that represent the instances are then placed into
the respective resource’s work list. According to the scheduling
logic, an order within the work list arises. The resource then
processes the work items corresponding to the order of the
work list and transfers the associated instances to the next
entity of the process model.

The throughput time represents the time from the arrival
of an instance at the node associated to the activity until
the completion of its processing. This duration splits into
the waiting time and the processing time. While the waiting



time specifies the part until the beginning of processing, the
processing time represents the duration when the resource is
busy processing the work item.

We refer to the throughput time for instance i at activity a
as ti,a, the waiting time as wi,a and the processing time as pi,a.
The cumulated throughput, waiting and processing times over
all instances for a certain activity are represented by

∑
i∈I ti,a,∑

i∈I wi,a and
∑

i∈I pi,a. The global throughput time begin-
ning from the first instance until the end of processing of the
last instance for a certain activity is referred to as Ta.

The arrival time is represented by the delay to a certain
constant reference time and is symbolized by di,a for instance
i and activity a. We define di,a > 0, as we expect any instance
to arrive at activity a with a positive delay. If the resource is
busy at the time of the arrival of the first instance, an initial
waiting time will occur. We refer to the duration until the
resource is ready to process the first work item as k.

In order to be able to swap work items without withholding
instances from processing, the work list must contain two or
more items at the same time. This is the case when the i− th
instance arrives before the previous instance i − 1 is started
processing, i.e. di,a < di−1,a + ti−1,a ∀i ∈ I, ∀a ∈ A.
Otherwise, the work item representing the instance that arrived
first is already completed processing when the second instance
arrives. Note that if di,a is equal for all i ∈ I , all instances
arrive at the same time at the specified activity. As the through-
put time is the sum of the waiting time and processing time,
ti,a = wi,a+pi,a as well as

∑
i∈I ti,a =

∑
i∈I wi,a+

∑
i∈I pi,a

are valid. However, as waiting times might overlap,
∑

i∈I ti,a
is not necessarily the same as Ta.

III. SINGLE TASK SCENARIO

In this section, the effects of reordering of work items at
a single resource are discussed.

A. Performance implications in the single task scenario

We will now evaluate the temporal performance variables
introduced in Section II-B in a single-task scenario. This
setting represents one activity with a single resource attached
which can process exactly one work item at a time. The
resource processes its work items according to its work list.
We will show that in this scenario, reordering work items does
not influence the waiting time, processing time or throughput
time both on an instance and a global basis, if the following
assumptions are made:

1) Work items are not withheld from processing in order
to permute items in the work list.

2) The processing time is equal for any instance at the
same activity-resource combination.

Assumption (2) represents a basic principle in almost any
process simulation. It means that all instances share an equal
processing structure for the combination of a certain activity
and resource. The processing time therefore represents a re-
source attribute that is potentially different for any activity the
resource is associated to. In process simulations, the processing
parameters are typically estimated based on of previous values
or expert knowledge. Remember that this assumption neither

restricts different resources associated to the same activity from
having divergent performance parameters nor expects equal
effort for processing different activities.

The resource provides a certain set of processing ability
which distributes over all work items. This means any instance
requires a processing slot throughout the control-flow pattern.
This abstract entity represents the way of the n− th instance
from the arrival at the resource’s work list until the processing
end. Temporal parameters of the slot represent the respective
variables of the instance that is associated with the particular
slot. The slot id s is the number of the slot in ascending
order starting with 1. We consider a processing slot used if
the processing ability offered by this slot was spent for an
instance to pass the activity.

The set of instances within an interval has a certain order
when the work items arrive at the node represented by the
activity to be considered. We refer to this order as the initial
order. The processing slots imply a certain order as well. This
means the processing order results in a mapping of the initial
order on the available slots. We argue there is a bijective
mapping between the set of instances and the set of used slots:

Let X be the finite set of work items that are arranged at
the same time in a resource’s work list, and Y the finite set
of used processing slots available at the resource. We define
f as the mapping of the instances from set X on the slots
from set Y . For any x ∈ X , exactly one y ∈ Y exists, as
a workflow is finished just when any instance has passed the
whole process model. This is the case when all work items
are finished processing by the associated resources. For this,
exactly |x| used processing slots are needed. On the other hand,
for any y ∈ Y , exactly one x ∈ X exists by definition: As a
processing slot is defined as used, if its processing ability has
been spent to pass a work item through an activity, any used
processing slot is associated to a work item. As for any x ∈ X ,
exactly one y ∈ Y exists and vice versa, the set of work
items represents bijective mapping with the used processing
slots. In consequence, the performance of a processing slot
directly represents the performance of the associated work
item, independent from the order in the resource’s work list.

In the following, we will calculate the waiting, process-
ing, and throughput time for the s − th slot. According
to assumption (1), no work items will be withheld from
processing if the resource turns idle. This means the workflow
execution at one resource can be split into intervals of the
resource being nonstop busy and those in which the resource
is idle. The occurrence of an idle time represents the end
of a busy interval; the next instance to be processed marks
the beginning of a new busy interval. For each busy interval,
di < di−1 + ti−1 ∀i ∈ I for is true. Such an interval is
shown for activity a in the following evaluation of temporal
performance parameters. Note that we will omit index a for
clarity.

First slot: The instance associated with slot 1 arrives at time
d1. As described above, slot 1 needs to wait until the resource
has the capacity to process it, which takes k time units. This
means the processing start is at d1 + k. The throughput time
for slot 1 is the sum of the waiting time (k) and processing
time p1. In consequence, the processing end is the throughput
time (t1 = w1 + p1 = k + p1) added to the arrival time d1.



Table I. PERFORMANCE PARAMETERS FOR THE PROCESSING SLOTS

j arrival wj p-start pj tj p-end

1 d1 k d1 + k p1 w1 + p1 d1 + t1
2 d2 d1 + t1 − d2 d1 + t1 p2 w2 + p2 d2 + t2
3 d3 d2 + t2 − d3 d2 + t2 p3 w3 + p3 d3 + t3
(...)
s ds ds−1 +

ts−1 − ds

ds−1 +
ts−1

ps ws + ps ds + ts

Second slot: The processing starts when the instance from
slot 1 is finished, which is at d1+t1. The waiting time evaluates
as the difference between processing start and arrival at the
node, which is d1 + t1 − d2 (remember our assumption di <
di−1 + ti−1 ∀i ∈ I so that at least two work items are in the
work list at the same time). The throughput time for slot 2 is
the sum of the waiting time (d1+ t1−d2) and processing time
p2. In consequence, the processing end is the throughput time
(t2 = w2 + p2) added to the arrival time d2.

s-th slot: The processing starts when the processing of the
previous slot s− 1 is finished. The processing of the previous
slot is evaluated as the sum of the previous slot’s arrival time
and its throughput time, which results in ds−1 + ts−1. The
waiting time of the s-th slot evaluates as the difference between
processing start (ds−1+ts−1) and arrival at the node (ds, which
is ds−1 + ts−1 − d2). The throughput time then evaluates as
the sum of waiting time and processing time ts = ws + ps =
ds−1 + ts−1 − d2 + p2.

An overview over the the arrival time (arrival), processing
start time (p-start) and processing end time (p-end) as well as
the waiting time wj , processing time pj and throughput time
tj for the slots is shown in Table I.

The global throughput time between the arrival at the first
instance and the processing end of the s-th work item Ts is∑s

j=1 pj (Equation 1). This means the global throughput time
until the s-th slot is the sum of the processing times of the
work items associated to all slots that have been processed
so far. With assumption (2) comprised, the global throughput
time is s · p for intervals where the resource is nonstop busy.

Ts = ds + ts − d1 = ds + ws + ps − d1

= ds + ds−1 + ts−1 − ds − d1

=

s∑
j=1

dj −
s∑

j=2

dj − d1 +

s∑
j=1

pj =

s∑
j=1

pj
(2)
= s · p

(1)

The information about the waiting time, processing time
and throughput time of the s-th slot allows us to evaluate the
cumulated totals as well. Equation 2 shows that the cumulated
waiting time over all slots of an interval is s ·k+(s−1) ·d1−∑s

j=2 ds+
∑s

j=1((s−j) ·pj). While the cumulated processing
time is

∑s
j=1 pj , the cumulated throughput time over all slots

evaluates as s·k+(s−1)·d1−
∑s

j=2 ds+
∑s

j=1((s−j+1)·pj)
(as shown in equation 3).

Any slot is associated to an instance being processed
by the resource. The characteristics of this instance influ-
ences the temporal performance. However, equations 2 and
3 show that the cumulated waiting time, processing time and
throughput time are only dependent from the associated work
item in terms of its processing time. If assumption (2) is
valid, i.e. the processing time is constant for any instance
at the same activity (resp. resource), the cumulated totals do

not depend at all from the instance that is associated with
the slot. In this case, the cumulated waiting time would be
s · k + (s − 1) · d1 −

∑s
j=2 ds + (s−1)·s

2 · p, the cumulated
processing time would be s · p and the cumulated throughput
time evaluates as s · k + (s− 1) · d1 −

∑s
j=2 ds +

s·(s+1)
2 · p.

s∑
j=1

wj = w1 +

s∑
j=2

(dj−1 + tj−1 − dj) = k + d1 − ds +

s∑
j=2

tj−1

= k + d1 − ds +
s∑

j=2

(wj−1 + pj−1)

= s · k + (s− 1) · d1 −
s∑

j=2

ds +
s∑

j=1

((s− j) · pj)

(2)
= s · k + (s− 1) · d1 −

s∑
j=2

ds +
(s− 1) · s

2
· p

(2)

s∑
j=1

tj =
s∑

j=1

wj +
s∑

j=1

pj

= k + (s− 1) · d1 −
s∑

j=2

ds +
s∑

j=1

((s− j) · pj) +
s∑

j=1

pj

= s · k + (s− 1) · d1 −
s∑

j=2

ds +

s∑
j=1

((s− j + 1) · pj)

(2)
= s · k + (s− 1) · d1 −

s∑
j=2

ds +
s · (s + 1)

2
· p

(3)

As for the bijective mapping of the work items on the used
processing slots and for the independence of the processing
slots from a certain work item, all the performance parameters
are valid for any order of the work items.

This means if there is more than one item in a resource’s
work list at the time another item is added, the set of work
items can be reordered without having any effect on the
cumulated waiting time, processing time and throughput time
over all instances as well as on the global throughput time
compared to a first-in-first-out logic.

B. Exemplary scenario

The findings from the previous section are illustrated based
on a scenario that consists of one activity with an associated
resource. The analysis consists of 5 instances, labeled as
instances A−E. The arrival times as well as di as the delay to
the reference time 0 : 00 are shown in Table II. All instances
share the same processing time p for this activity. We define
p as 60 seconds. The time until the resource is able to process
the first instance (k) is supposed to be 30 seconds.

In the non-reordering approach, instance A is mapped onto
the first slot, instance B onto the second, etc. For the reordering
approach, we assume a mapping as depicted in Table III. This
results in a processing order of instance A, C, D, E, B.

The processing starts and ends, waiting times, processing
times and throughput times are shown in Tables II (non-
reordering approach) and III (reordering approach). It can be
seen that although the mapping of instances on the slots differs,
the cumulated totals are equal. The cumulated waiting time∑s

j=1 wj is s · k + (s − 1) · d1 −
∑s

j=2 ds + (s−1)·s
2 · p =

5 · 30 + 4 · 2 − (11 + 58 + 95 + 175) + 10 · 60 = 419.
The cumulated throughput time over all slots

∑s
j=1 tj is

s · k + (s − 1) · d1 −
∑s

j=2 ds + s·(s+1)
2 · p = 5 · 30 + 4 ·

2− (11 + 58 + 95 + 175) + 15 · 60 = 719.



Table II. TEMPORAL PERFORMANCE PARAMETERS FOR THE
NON-REORDERING APPROACH

slot inst. arrival ws p-start ps p-end ts

1 A 0:02 (2) 30 0:32 (32) 60 1:32 (92) 90
2 B 0:11 (11) 81 1:32 (92) 60 2:32 (152) 141
3 C 0:58 (58) 94 2:32 (152) 60 3:32 (212) 154
4 D 1:35 (95) 117 3:32 (212) 60 4:32 (272) 177
5 E 2:55 (175) 97 4:32 (272) 60 5:32 (332) 157∑

- 419 - 300 - 719

Table III. TEMPORAL PERFORMANCE PARAMETERS FOR THE
REORDERING APPROACH

slot inst. arrival ws p-start ps p-end ts

1 A 0:02 (2) 30 0:32 (32) 60 1:32 (92) 90
2 C 0:58 (58) 34 1:32 (92) 60 2:32 (152) 94
3 D 1:35 (95) 57 2:32 (152) 60 3:32 (212) 117
4 E 2:55 (175) 37 3:32 (212) 60 4:32 (272) 97
5 B 0:11 (11) 261 4:32 (272) 60 5:32 (332) 321∑

- 419 - 300 - 719

IV. ANALYSIS OF CONTROL-FLOW PATTERNS

In this section, we expand the analysis to the commonly
used control-flow patterns sequence, exclusive-choice, par-
allelization and loop (cf. [3]). We show that reordering of
work items potentially has negative impact on the performance
parameters when executed in a parallelization pattern, while
the application in the other patterns is neutral.

All the addressed control-flow patterns are deeply inter-
related in terms of a hierarchical structure. Process structure
trees are a possibility to describe the hierarchical composition
of a process [13], [14]. Both a sequence, parallelization, loop
and exclusive-choice are composed out of other control-flow
patterns (if not composed out of single-tasks). We refer to
these elements, out of which a pattern is orchestrated as
subpatterns. In the lowest level, any of the patterns analyzed
in this work can be described by a single-task. In this context,
determining the temporal performance variables for a certain
pattern means evaluating the impact of this pattern on the
incorporated subpattern.

A. Sequence

The sequence pattern is orchestrated of n consecutively
executed subpatterns (n ≥ 2). Each of these subpatterns
represents either another control-flow pattern or a single-task.
Applying a reordering approach in a sequence pattern means
reordering the work items in the incorporated subpatterns. In
the following, we will first argue that the cumulated waiting
time over all instances for a sequence of two subpatterns
corresponds to the sum of the cumulated waiting times of
first and the second subpattern. Cumulated processing and
throughput time are treated analogously. Based on this, it
can be shown that the sequence’s performance corresponds to
the concatenation of the performance of the two incorporated
subpatterns, but the sequence itself does not influence the
performance. On this basis, we show that this statement is
valid for the concatenation of n subpatterns (n > 2) as well.

We now consider one instance i to be executed for a
sequence pattern consisting of two subpatterns subpattern 1
and subpattern 2. i has throughput time ti,sub1 for subpattern
1 and throughput time ti,sub2 for subpattern 2. Subpatterns
1 and 2 are consecutive. This means that the processing end

time of instance i at subpattern 1 equals its arrival time at
subpattern 2. As the beginning of the throughput time is
defined as the time of the arrival at a certain node, there is
no gap in the throughput time between subpattern 1 and 2.
Therefore, the cumulated throughput time of the instance for
the whole sequence is the sum the instance’s throughput time
for subpattern 1 and 2. In formal terms, for P = {sub1, sub2},∑

sub∈P ti,sub = ti,sub1 + ti,sub2. The cumulated throughput
time over all instances i ∈ I that pass the sequence hence
evaluates as

∑
i∈I

∑
sub∈P ti,sub =

∑
i∈I(ti,sub1 + ti,sub2).

Due to the definition of a sequence, any instance passes
subpattern 1 and subpattern 2 exactly once. Therefore, the cu-
mulated throughput time over all instances can be described as∑

i∈I ti,sub1+
∑

i∈I ti,sub2 as well. This means, the sequence’s
cumulated throughput time over all instances represents the
sum of the first subpattern’s throughput time over all instances
and the second subpattern’s throughput time over all instances.

These considerations can be transferred to a sequence or-
chestrated out of more than two subpatterns. For n subpatterns
(n ≥ 2), two directly linked subpatterns can be interpret as
a subsequence of two subpatterns. For this subsequence, the
statements previously explained are valid. Combining itera-
tively all subpatterns to 2-tuples, one can explain a sequence
of n subpatterns gradually by a sequence of two subpatterns.
Therefore, the cumulated throughput time of a sequence with n
subpatterns (n ≥ 2) is the sum of all incorporated subpatterns’
throughput times over all instances. Formally this means for
the throughput time over all instances I and subpatterns P∑

sub∈P
∑

i∈I ti,sub. This is both true for a reordering and
non-reordering approach.

The correlation for the cumulated waiting time and process-
ing time over all instances is equivalent. The global throughput
time is defined as the time span between the first instance’s
arrival at the first subpattern’s node and the processing end of
the last instance at the last subpattern’s activity. Therefore, the
evaluation of the global throughput time is equal both for a
reordering and non-reordering approach.

Remember that in this analysis, we observed the structural
impact of a sequence control-flow pattern on typical temporal
performance variables. We argue that both for a reordering
and non-reordering approach, a sequence’s cumulated waiting
time, processing time and throughput time represents the sum
of the respective incorporated subpattern’s cumulated values.
This means, one can concatenate several elements using a re-
ordering approach without expecting negative impact through
the concatenation itself. However, this does not mean that
the absolute values of the sequence’s temporal performance
variables are identical between a reordering and non-reordering
approach. The concrete values are the result of the evaluation
of the incorporated subpatterns.

B. Exclusive-choice

The exclusive-choice pattern represents the divergence of
the process execution into several branches, of which each
represents a subpattern. Based on a certain decision function,
any instance passes exactly one branch. In consequence, only
the subpattern associated to the chosen branch is relevant for
the performance of the exclusive-choice pattern. This means
that the exclusive-choice pattern itself does not have any



influence on the temporal performance variables both on an
instance and global basis.

C. Parallelization

For a parallelization pattern, a single thread of execution
is split into two or more branches which can execute tasks
concurrently [15] and are synchronized in the sequel. Each
of the branches represents a subpattern, which can turn out
to be either a single task, exclusive-choice, sequence, loop or
another parallelization.

Contrary to the sequence pattern, the parallelization pattern
incorporates two or more threads that process independently
from each other. However, these threads culminate in a com-
bined performance for the whole pattern. As the instance
execution cannot proceed before the synchronization the thread
or branch with the longest throughput time dominates the
overall performance of the execution of the parallelization
pattern.

On an instance basis, results from the (independent) pro-
cessing of the branches cannot be necessarily delegated on
the parallelization. The reason is that the several branches are
finally merged to a single thread of execution. During the
execution of the parallelization, an instance is associated to
several work items, each for one branch. If the work items are
reordered within the subpatterns, the alignment of the work
items differs between the subpatterns. As the parallelization is
finished just when the execution of any work item associated
to a certain instance is finished, reordering can have negative
impact on the cumulated performance parameters. Compared
to a non-reordering approach, the influence is neutral, if the
reordering is executed synchronous over the work lists of
the resources in the subpatterns. The more asynchronous the
alignment of work items is, the higher is the negative impact
on the cumulated performance parameters. The worst-case
scenario represents an inverse processing order.

The throughput time ti,P for one instance at paralleliza-
tion P is the maximum throughput time of the incorporated
branches ∈ P for the associated work item. This means, ti,P =
max(ti,branch) ∀ branch ∈ P and for the cumulated through-
put time,

∑
i∈I ti,P =

∑
i∈I max(ti,branch) ∀ branch ∈ P is

valid. The throughput time over all instances for any branch
is similar in a reordering and non-reordering approach, if
the respective branches consist out of single-tasks, sequences,
loops and/or exclusive choices (cf. Sect. III, IV-A, IV-B, IV-D).
This means max(ti,branch) is minimum for any instance if the
difference between the throughput times of the subbranches is
minimum. This corresponds to a synchronous processing as
described above.

Figure 2 illustrates this fact in a simple scenario. It shows
a parallelization pattern with two branches, each subpattern
represented by a single task pattern. We assume there are five
instances that arrive at the parallelization pattern in alphabeti-
cal order (A,B,C,D,E) at the same time. The processing
time of both resource 1 and resource 2 is one time unit
per instance. In a non-reordering approach (upper figure), the
order obviously remains the same over the branches. The
parallelization is completed for any instance just at the time the
corresponding subbranches are completed, meaning instance A
one time unit after start, instance B two time units after start
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Figure 2. Comparison of a reordering and non-reordering approach in a
parallelization pattern

until instance E, which is finished five time units after the
processing start. In the lower part of Figure 2, a reordering
scenario using the same parameters is shown. We assume in
the upper branch that the work items remain the order of
the associated instances (A,B,C,D,E), while in the lower
branch, the order is inverted (E,D,C,B,A). In consequence,
the work item associated with instance A is finished processing
by resource 1 only one time unit after start; while processing
it by resource 2 is finished after five time units. Since the
parallelization for instance A is finished at the time when both
resources are finished processing the associated work items,
instance A is completed after five time units. In fact, the first
instance to be finished is instance C after three time units,
instance B and D take four time units each.

Obviously, the cumulated throughput time over all in-
stances is different concerning the reordering and non-
reordering approach, although this is not the case for the
single task scenarios themselves that are incorporated by the
parallelization. If the processing time is constant, the optimum
cumulated throughput time is achieved when the instances
are processed simultaneously. This particularly is the case for
the first-in-first-out logic, but also for any other synchronous
reordering approach over all branches. Any asynchronous
reordering of instances increases the cumulated throughput
time. This is most probably the case if the reordering is
executed independently in the branches of the parallelization.

The global throughput time is the duration between the
arrival of the first instance and the processing end of the
last instance at the parallelization pattern. If the branches
are orchestrated out of single-tasks, sequences, loops and/or
exclusive-choices, the throughput time over all instances for
each branch is similar both in a reordering and non-reordering
approach. In consequence, the maximum cumulated through-
put time of these branches is similar as well. The time when the
branch with the maximum cumulated processing time becomes
unbusy also represents the processing end of the parallelization
in any interval. Therefore, the global throughput time as the
duration between the arrival of the first instance and the
processing end of the last instance is similar in a reordering
and non-reordering approach for a parallelization.

In summary, reordering work items in the subpatterns of a
parallelization pattern potentially has negative impact on the
cumulated waiting time and throughput time over all instances
compared to a non-reordering approach. If this parameter
is important to the workflow director, the application of an
algorithm that implements a reordering logic is not reasonable
in terms of temporal parameters. If one focuses on the global
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throughput time only, meaning it is important when the last
instance is processed, but not when the instances within are
finished, one can also apply a reordering approach without
expecting negative impact on the overall time.

D. Loop

A loop pattern expresses the repeated execution of a task or
another subpattern. The loop has either an associated pre-test
or post-test condition that is evaluated at the beginning resp.
end of the loop to determine whether it continues [15]. If the
evaluation of the condition results in the decision not to go on
with the repeated execution, the loop pattern is finished and
the instances are transferred to the next entity as described in
the process model.

Figure 3 shows the basic representation of a loop scenario
with subpattern (black color). As discussed in literature, loop
patterns can be linearized [16] and hence treated as a sequence,
i.e., a repeated processing of n subpatterns, with n being the
number of iterations (cf. Figure 3). The subpatterns, in turn,
might incorporate further subpatterns. This means that all the
results from analyzing the sequence pattern are valid for the
loop as well: The cumulated throughput time over all instances
in set I and subpatterns P is

∑
sub∈P

∑
i∈I ti,sub. As all sub-

patterns are equal, the number of iterations directly influences
the cumulated performance parameters. For n iterations, the
cumulated throughput time over all instances is n ·

∑
i∈I ti,sub.

As for the sequence pattern, the global throughput time does
not depend on the order of the work items. Please note that by
describing a loop by a sequence, we interpret each iteration of
the subpattern as a unique entity with a fixed single resource
attached.

In summary, the analyzed temporal performance parame-
ters for the loop pattern are not dependent of the order of the
work items in the subpattern that is repeated. However, the
actual performance strongly depends on the characteristics of
the applied subpattern as described in the previous sections.
Represented as a process structure tree (cf. Sect. IV-E), the in-
volved patterns within the subpattern in the different layers are
of particular interest. If only sequences, loops and single tasks
are incorporated, reordering work items does not influence the
temporal performance parameters at all. If a parallelization is
involved, the impact described in Sect. IV-C occurs. The effect
then multiplies with the number of iterations.

E. Composition of control-flow patterns

An important question is how to estimate the effects of
reordering work items at composed process patterns. Process
structure trees represent a mean to describe the hierarchical
composition of a certain process [13]. We use a notation that
is based on process structure trees to visualize the relation
between the control-flow patterns and single-tasks in different
application scenarios. Single-tasks are represented by dark
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Figure 4. Sample process structure tree

rectangles, while white rectangles describe the specific control-
flow patterns. Transitions represent the structural aspect of a
process model and capture the relation between the layers of
abstraction.

Figure 4 shows an example of a process structure tree. It
represents a sequence that is orchestrated out of three elements
on the first level: Node 1 represents a parallelization; Activity
4 is a single-task and represents the second element of the
sequence, while the third one is a repeated execution of activity
5 (loop). The parallelization (node 1) consists of two branches.
The first branch of the parallelization is considered node 1.1
and represents activity 1, while the other branch (node 1.2)
represents an exclusive choice out of activity 2 (node 1.3)
and activity 3 (node 1.4). One can see that the single-tasks
representing the activities are the base building block for any
pattern. In the process structure tree, they can be considered
leaf elements.

The overall temporal performance can be evaluated by
consecutively evaluating the performance of the incorporated
patterns, their subpatterns and incorporated single-tasks in a
bottom-up approach regarding the execution order within the
process. This means the waiting, processing and throughput
times are evaluated for each element beginning from the leafs
up to the root pattern.

V. DEMO SCENARIO AND SIMULATION

We will now the evaluate the temporal performance param-
eters for the example from Figure 4. We assume a scenario of
five instances (A, B, C, D, E) that arrive at the same time
at the first node of the process. Furthermore, we expect each
instance to utilize a processing time of one time unit for any of
the single-tasks. For the exclusive-choice, we assume instances
A, B and E to tread the path of activity 2, while instances C
and D pass the node of activity 3. We expect any instance to
run the loop three times. Please note that we assume a different
resource attached to activity 5 for each iteration of the loop. In
any resource’s work list associated to a single-task, the work
items are being reordered on a random-basis. As work items
are not withheld from processing and the processing times are
constant, both assumptions from Sect. III are kept. This means
that all the findings from the previous sections are valid for
this scenario. However, the structural approach to evaluate the
overall performance parameters would be the same if the order
of work items, the arrival times or the performance values were
differently.

Table IV shows the runtime behavior of the instances. For
any element within the process model, the order of the work
list before processing (pre-order) and the order after processing
(post-order) is indicated. The relative time of the arrival resp.
processing end is put in parentheses.



Table IV. RUNTIME BEHAVIOR OF THE INSTANCES IN A
RANDOM-REORDERING APPROACH

# name pre-order (time) post-order (time)

1 paralleliz. ABCDE(0) A(2)-BE(3)-D(4)-C(5)
1.1 activity 1 ABCDE(0) B(1)-A(2)-E(3)-D(4)-C(5)
1.2 excl. choice ABCDE(0) AD(1)-CE(2)-B(3)
1.2.1 activity 2 ABE(0) A(1)-E(2)-B(3)
1.2.2 activity 3 CD(0) D(1)-C(2)

2 activity 4 A(2)-BE(3)-D(4)-C(5) A(3)-E(4)-D(5)-B(6)-C(7)

3 loop A(3)-E(4)-D(5)-B(6)-C(7) A(6)-E(7)-D(8)-B(9)-C(10)
3.1 act. 5 (run1) A(3)-E(4)-D(5)-B(6)-C(7) A(4)-E(5)-D(6)-B(7)-C(8)
3.1 act. 5 (run2) A(4)-E(5)-D(6)-B(7)-C(8) A(5)-E(6)-D(7)-B(8)-C(9)
3.1 act. 5 (run3) A(5)-E(6)-D(7)-B(8)-C(9) A(6)-E(7)-D(8)-B(9)-C(10)

Table V. TEMPORAL PERFORMANCE ASSESSMENT

# name
∑

i∈I wi
∑

i∈I ti T

reorder fifo reorder fifo reorder fifo
1 parallelization 14 10 19 15 5 5
1.1 activity 1 10 10 15 15 5 5
1.2 exclusive-choice 4 4 9 9 3 3
1.2.1 activity 2 3 3 6 6 3 3
1.2.2 activity 3 1 1 3 3 2 2

2 activity 4 3 0 8 5 5 5

3 loop 0 0 5 5 7 7
3.1 activity 5 (run1) 0 0 5 5 5 5
3.1 activity 5 (run2) 0 0 5 5 5 5
3.1 activity 5 (run3) 0 0 5 5 5 5

To determine the cumulated waiting time and throughput
time both on an instance and global basis, we will proceed
as described in Sect. IV-E: For each of the three incorporated
branches, the temporal performance parameters are evaluated
in a bottom-up approach. For the parallelization, first the
performance of activities 2 and 3 is evaluated, which is then
merged to the performance for the exclusive-choice, which is,
again, merged with the performance of activity 1 to the paral-
lelization. The performance of the second element represents
the performance of its leaf element activity 4, while the third
branch is the repeated execution of activity 5.

Table V shows the cumulated waiting time and throughput
time over all instances as well as the global throughput time for
each element in the process model both in the reordering and
non-reordering approach. According to a bottom-up approach,
the performance of activities 1, 2 and 3 as the leafs of part
one of the sequence are evaluated first. It becomes obvious
that all the performance parameters are equal for the reordering
and non-reordering approach (as proven in Sect. III). Activities
2 and 3 are merged to the exclusive-choice, which does not
influence the results as well (cf. Sect. IV-B). However, when
merging the two branches of the parallelization, the cumulated
waiting time and processing time differs. As described in Sect.
IV-C, the different alignment of work items within the two
branches in the reordering context results in extended waiting
times, which finally increase the throughput times as well.

The second part of the overall sequence, activity 4, rep-
resents a single-task scenario. According to Sect. III, the
temporal performance does not differ between a reordering
and non-reordering approach for single-tasks. However, in this
case, the structure of the incoming work items is different
due to the inhomogeneous processing during the preceding
parallelization. If activity 4 was analyzed solely, there would
not be any difference as a result of a different alignment of
the resource’s work list. The repeated execution of activity 5
(loop) represents the last part of the sequence. As described

in Sect. IV-D, reordering of work items does not affect the
temporal performance parameters. This is also the result of
the application scenario at hand.

The global throughput time of the exemplary scenario
is 10 time units both in the reordering and non-reordering
approach. However, the cumulated waiting and processing time
differ as a result of the parallelization implemented in the
application scenario. The results of this example correspond
with the findings from the previous sections: Work items can be
reordered without having any effect on the global throughput
time. For the temporal performance parameters at an instance
basis, one needs to distinguish between the different control-
flow patterns. For the parallelization, a different alignment
from the first-in-first-out logic results in a worse performance.
The results from the other elements, meaning the single-tasks,
exclusive-choice and loop, are not affected by reordering work
items.

The process from Fig. 4 was also executed in a tool-based
simulation with a more comprehensive set of parameters2:
Different from the previous example, we don’t assume all the
instances to arrive at the first node at the same time. In total,
128 instances traverse the process. The number of iterations
in the loop differs between the instances as well. We expect
a processing time of 6 time units (tu) at activity 1, 4 tu at
activity 2, 8 tu at activity 3, 12 tu at activity 4 and 15 tu at
activity 5.

We execute the simulation twice: In the first run, instances
are not reordered in the resource’s work lists at all. For the
second run, instances are being reordered. However to ensure
full comparability, the arrival time as well as the traversed
branch for the exclusive-choice pattern and the number of
iterations in the loop are equal for the same instance in both
scenarios. As work items are not withheld from processing in
order to reorder, we defined the distribution of arrival times in
a way that the resources don’t have the capacity to process all
instances in time and therefore, queues of work items arise.

In Sect. III and IV, we proved that the global throughput
time is not affected by a reordering of work items. The
cumulated totals for the waiting time and throughput time
over all instances depend on the specific control-flow patterns
that are incorporated. As the current scenario includes a par-
allelization, we expect a better cumulated throughput time for
the non-reordering approach than for the reordering approach.
The simulation results confirm these expectations. The global
throughput time T , meaning the time frame between the
arrival of the first instance at activity 1 and the processing
end of the last instance at activity 5 is 2750 tu both for the
reordering and non-reordering simulation run. The cumulated
throughput time over all instances and activities is 133831
tu for the non-reordering approach and 136567 tu for the
reordering approach, which represents a difference of 2.04%.
The difference is a result of the waiting times for the join of
the two branches of the parallelization.

The simulation shows that our theorems are valid for a
scenario with a comprehensive set of parameters as well. Again
we see that reordering of work items has no impact on the

2The simulation data sets with the corresponding process models can be
found at http://cs.univie.ac.at/wst/research/projects/project/infproj/1060/.



Table VI. OVERVIEW OF THE INFLUENCE OF REORDERING WORK
ITEMS WITHIN DIFFERENT CONTROL-FLOW PATTERNS ON THE TOP LEVEL

Control-flow pattern
∑

i∈I wi
∑

i∈I pi
∑

i∈I ti T

Single-task neutral neutral neutral neutral
Sequence neutral neutral neutral neutral
Exclusive-choice Effects depend from the subpattern of the executed branch
Parallelization negative neutral negative neutral
Loop neutral neutral neutral neutral

global throughput time and little impact on the cumulated
totals. Without applying a reordering within the parallelization,
all relevant temporal performance indicators were equal.

VI. DISCUSSION

In our analysis, we argued that the influence of reordering
work items on temporal performance parameters that are
typically associated with the first-in-first-out logic depends on
the specific context they are applied in as well as from the goals
that are pursued. Reordering work items in the resource’s work
list does not have any influence on the global throughput time,
i.e. the time between the appearance of the first instance and
the processing end of the last instance, independent from the
workflow pattern it is applied in.

When focusing on the instance basis, one needs to dis-
tinguish between the different control-flow patterns. For the
single-task scenario as well as for the sequence and loop,
all temporal performance parameters are equal both for the
reordering and non-reordering approach. When work items are
reordered within a parallelization, the cumulated throughput
time and waiting time over all instances will most probably
be higher than in a first-in-first-out processing approach. All
results are shown in Table VI.

Remember that Table VI shows the effects of the control-
flow patterns on the top level of a process structure tree,
i.e. the patterns are interpret as self-contained workflow el-
ements. However, control-flow patterns are often nested, i.e.
one control-flow pattern incorporates others. In this case, all
the involved subpatterns need to be evaluated. To put it in a
nutshell, if no parallelization pattern is involved, one can apply
any combination of subpatterns without expecting an impact
on performance parameters through the reordering of work
items. If a parallelization is involved, the reordering will most
likely have negative influence on the cumulated waiting time
and processing time.

For our analysis, the following assumptions have been
made: (a) Work items are not withheld from processing in
order to execute a permutation, (b) tasks do not share resources
(c) the processing time is not dependent from the order in
which the work items are processed. These assumptions leave
room for further investigations.

1) Extension of swapping work items: Reordering instances
is only possible if there are two or more associated work
items in the resource’s work list at the same time. This is the
case when the resource does not have the capacity to handle
all work items in time and hence, a queue arises. However,
one could withhold work items from processing even if the
resource is not busy in order to generate a work list of two
items. This could be a promising approach for scenarios
with strict due times or in terms of exception handling.

However, pursuing this logic will definitely have negative
impact on the temporal performance parameters compared to
a non-reordering approach. Further research on the extent of
the consequences on the temporal variables seems valuable.

2) Extension of resource allocation: In the paper at hand,
we analyzed scenarios in which the resource behavior is
deterministic for the single task it is associated to. This is
the case for scenarios with one or more resource per task as
well as for batch-processing scenarios. However, one could
also think of alignments in which resources are associated to
several tasks, i.e. the tasks share their processing capacity. For
an evaluation of temporal performance parameters, the work
lists of all the resources need to be respected, as it might
be valuable to apply the processing capacity for one task in
order to have extended permutation possibilities for another
work list.

3) Implementation of dynamic instance queuing: For our
evaluation, we assumed that the processing times are not de-
pendent from the order in which the work items are processed.
However, this assumption is not true for some scenarios, as the
processing of similar instances often enables a better process-
ing performance. Parameters like changeover times in indus-
trial scenarios or the gaining of routine by humans influence
the efficiency of work. The dynamic instance queuing approach
takes advantage of this effect by evaluating the similarity of
instances applying artificial intelligence techniques [1]. This
algorithm also makes use of reordering techniques for work
items. In future work, we will investigate the performance
parameters on dynamic instance queuing.

VII. RELATED WORK

Reordering work items in resource’s work lists relates
to several topics that have been addressed by contemporary
literature. We consider our work transcendent to the following
research areas:

Time aspects in workflow systems: During the last decade,
the management of temporal aspects for workflows has at-
tracted considerable research efforts across different dimen-
sions [17]. Different approaches address this issue [18], [19],
[20], [21], [10], [22]. Approaches can be divided into those
which capture time aspects at design time (in order to predict
certain parameters like the throughput times) and those which
are applied at runtime. At design time, for example, it has
been investigated how to cover uncertainty of processing and
critical paths. At runtime, adherence of the process instances
to imposed time restrictions such as deadlines is monitored.
All these questions become more challenging when consid-
ered for process choreographies [17]. An analysis of existing
approaches based on time patterns can be found in [23]. All
these approaches share the characteristic that - according to
the specific scenario - a certain target is defined, implemented
and ultimately assessed. The work presented in this paper,
however, investigates the implications on global targets such
the throughput time. That means, we approve the need to focus
on the main targets, but we argue that one should also involve
secondary targets or be at least aware of the consequences on
the temporal parameters evaluated in this paper when applying
scheduling mechanisms that apply a reordering of work items.



Scheduling approaches: Scheduling mechanisms aim to
handle scenarios in which the due times of instances are fixed,
i.e. certain end times are defined at which the processing
needs to be completed. Several approaches exist to address
the problem of keeping the due times. The work of Son et
al. [6] aims at maximizing the number of workflow instances
satisfying the given deadline by determining the necessary
number of resources. It first evaluates the critical activity,
which is considered the task whose delay directly affects the
overall processing time and based on this conclusion, the
need for resources is evaluated. However, most of the work
addresses the problem of finding a correct execution sequence
for the workflow tasks; [24], [25], [26] created an algebra to
describe constraints in workflows which culminate in modern
scheduling techniques applied in today’s production planning
systems. Flockhart et al. [7], e.g., offer an approach to optimize
results expressed through completion times by repeatedly
reordering work items for which the analysis from this paper
can be applied. All these approaches have in common that
work items are reordered. The promising character of this
approach is described by [5], who argue that for almost all
workloads rules such as earliest due date first, and guess and
solve are statistically significantly better than the commonly
used FIFO rule regarding the number of late jobs.

Workflow resource patterns: These patterns aim to capture
the various ways in which resources are represented and
utilized in workflows [3]. Of particular interest for the topic of
this paper is the System-Determined Work Queue Content. This
pattern represents the ability of the workflow engine to order
the content and sequence in which work items are presented to
a resource for execution. Modeling these techniques has been a
topic of interest as well. Especially what concerns the support
for BPEL, serious research and implementation efforts have
been undertaken [27].

VIII. SUMMARY

This paper systematically analyzed the effects of reorder-
ing instance executions on the temporal performance of the
process. The analysis started from considering the reordering
for single tasks to commonly used process patterns, i.e.,
sequence, exclusive choice, parallelization, and loops. For the
process patterns, the “top level” was analyzed, i.e., the effects
on, for example, a sequence of subpatterns. The subpatterns
can be single tasks or again process patterns. It was shown
that reordering does not affect the temporal performance for
the single task scenario as well as for the sequence and
loop pattern. For exclusive-choices, the effects depend on
the subpatterns of the chosen branch. For parallelization,
reordering will most likely lead to negative effects on the
temporal performance. All results were theoretically deduced
and illustrated by a example scenario. Moreover, the results
were evaluated based on a simulation. Though the results
of this analysis might seem partly intuitive, their systematic
consideration and results provide valuable input for further
consideration for, e.g., process optimization based on queuing.
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