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Over the last decades, modeling of user mobility has become increasingly important in mobile networking

research and development. This has led to the adoption of modeling techniques from other disciplines such as
kinetic theory or urban planning. Yet these techniques generate movement behavior that is often perceived

as not “realistic” for humans or provides only a macroscopic view on mobility. More recent approaches

infer mobility models from real traces provided by positioning technologies or by the marks the mobile
users leave in the wireless network. However, there is no common framework for assessing and comparing

mobility models.

In an attempt to provide a solid foundation for realistic mobility modeling in mobile networking research,
we take an engineering approach and thoroughly discuss the required steps of model creation and validation.

In this context, we survey how and to what extent existing mobility modeling approaches implement the

proposed steps. This also summarizes helpful information for readers who do not want to develop a new
model, but rather intend to choose among existing ones.

Categories and Subject Descriptors: A.1 [GENERAL LITERATURE]: Introductory and Survey; C.2.1
[COMPUTER-COMMUNICATION NETWORKS]: Wireless Communication; I.6.4 [SIMULA-
TION AND MODELING]: Model Validation and Analysis

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Mobility Modeling, Representativeness, Realistic Models

1. INTRODUCTION
Mobile networks have changed human life considerably by enabling ubiquitous connectiv-
ity and communication for users that are physically mobile. Inherently, wireless network
research and development rely on the characterization of the mobility of network users, in
other words, on mobility models. Mobility characteristics influence the design of mobility
management in infrastructure networks such as a cellular network or a Wi-Fi hotspot area
(handover or hand-off mechanisms for mobile devices). In turn, handover and association
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events are the marks which moving devices leave in the network, cf. [Janecek et al. 2012].
Infrastructure-less wireless networks, namely mobile ad-hoc and opportunistic networks,
even exploit mobility in the sense that network links are established when mobile devices
come within transmission range of one another [Conti et al. 2010; Grossglauser and Tse
2002].

Considering the significant impact of the chosen mobility model on the performance of
mobile systems under investigation [Camp et al. 2002; Kunz et al. 2001; Newport et al.
2007; Yoon et al. 2003], it becomes clear that a solid foundation is needed for developing
valid mobility models.

1.1. Approaches to mobility modeling
Mobility models can be created without the use of observation, based only on assumptions
about certain properties of movement, such as velocity or changes in direction. Traditionally
such models are referred to as synthetic models, which often have only limited agreement
with mobility behavior in the real world. A representative of this group is the random
waypoint mobility model [Broch et al. 1998; Johnson and Maltz 1996] that describes the
movement of individual nodes in straight lines with pauses. Speed, waypoints, and pause
time of nodes are chosen independently at random1. Shortcomings of the random waypoint
model are, e.g., lack of compliance with city topographies or stochastic artifacts, namely,
that the stationary spatial distribution of the nodes resulting from random waypoint mo-
bility models is non-uniform [Bettstetter et al. 2003], and that the average node speed does
not reach a steady state (but consistently decreases over time) if the smallest possible node
speed is chosen as zero [Yoon et al. 2003].

The growing availability of diverse and large-scale mobility traces is an important enabler
for trace-based (data-driven) models. Mobility data are available in infrastructure and ad-
hoc mobile networks, such as marks of handovers in the cellular network or Bluetooth-based
encounters of mobile devices. Other data originate from position and movement tracking
campaigns, e.g., generated by GPS (Global Positioning System), activity tracking, or open
government initiatives. Real anonymized data are made available by network operators
during initiatives such as the cellular data collected in Ivory Coast [Blondel et al. 2012]
and Senegal [de Montjoye et al. 2014] in the context of two Orange D4D challenges, by
governmental census data, transport timetables, etc.2, or by fleet providers who make taxi
traces publicly available, such as the Shanghai traces3 or the San Francisco traces4. Traces
can be simply replayed or stochastic mobility models may be derived from the observed
mobility characteristics. One shortcoming of trace-based models is that traces are collected
in specific environments such as a campus, a theme park, or a conference. As a consequence,
their general applicability is limited.

Together with the advent of trace-based models, the interest in “realistic” human mobility
models, i.e., models “representing things in a way that is accurate and true to life” [Soanes
and Stevenson 2005], has grown in general. Although no commonly accepted definition
of a realistic mobility model exists, this term is widely used intuitively in the mobility
modeling literature, cf. [Jardosh et al. 2003; Kim et al. 2009; Munjal et al. 2011; Schwamborn
et al. 2010; Treurniet 2014; Vogt et al. 2012; Yoon et al. 2006]. All these articles address
the common aim of developing mobility models that capture real-world human mobility
more accurately than early synthetic models by including knowledge about the context of
movement, such as the topography of an area. Questions arise with respect to the spatial
and temporal granularity of movement as provided by the real-world observations, relations

1Standard implementations of the random waypoint mobility model use uniform distributions.
2An overview of available data is given by the Open Knowledge Foundation: http://census.okfn.org/.
3WnSN lab, Shanghai Jiao Tong University: http://wirelesslab.sjtu.edu.cn/.
4Cabspotting project of San Francisco Exploratorium: http://cabspotting.org/.
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to be captured such as social behavior, etc. Realistic models are typically very sophisticated
and there seems to be a need for guidelines on how to develop such models.

While our focus is on human mobility models in the context of mobile networking research,
we would like to mention that human mobility modeling is also considered in other fields,
such as transport modeling [Hensher and Button 2008] or time geography [Miller 2008].
Our findings may also be of interest in these fields, but a detailed discussion is beyond the
scope of this survey.

1.2. Objectives of this survey
Existing related surveys primarily focus on describing and classifying mobility models. Our
main objective is to go beyond that by also providing guidelines for researchers on how to
develop and assess realistic data-driven human mobility models. For this purpose, we first
discuss the foundations of mobility modeling by applying general modeling theory. On this
basis, we structure the process of data-driven mobility modeling into several pivotal steps
from model creation to model evaluation and validation. This engineering approach allows
for a step-by-step quality control of the resulting mobility model.

We connect these guidelines for model engineering to the state-of-the-art in mobility
modeling and illustrate how existing modeling approaches realize important modeling steps.
Therefore, we survey selected representatives of the most important mobility model classes
from the literature. In this part, we put more emphasis on investigating how the proposed
model engineering process is reflected in mobility modeling research than on comparing and
rating existing mobility models as a whole. Nevertheless, the stepwise discussion may be
leveraged to select an appropriate model as well. In particular, for each model engineering
step we summarize whether it is discussed explicitly in representative mobility models,
which different techniques for implementing it have been investigated, and whether any
shortcomings can be identified in existing models. In contrast to earlier surveys, we put a
particular emphasis on the validation of a mobility model.

In Section 2, we start with summarizing existing related survey literature. We then define
basic terminology for human mobility modeling and review the underlying modeling con-
cepts in Section 3. Based on these foundations, we introduce the engineering approach and
detail the different steps required for creating a realistic and representative mobility model.
We consider general approaches for modeling human mobility irrespective of the specific
movement type or application. In particular, pedestrian and vehicular movement are both
covered. In Section 4, we detail the considerations to be made during the planning phase,
the types of input data used for model building, and the modeling restrictions they impose.
In Section 5, we summarize common techniques applied for building a mobility model and
context elements commonly covered by state-of-the-art realistic models. Finally, in Section 6
we discuss the validation step and how it is implemented in existing mobility models.

2. RELATED SURVEYS
In the past, several surveys have been presented that give pointers to important aspects of
mobility models in the domain of networking. These surveys represent the state-of-the art
at the time of their compilation.

In the survey of Camp et al. [2002], which represents the view of more than a decade
ago, the authors review and discuss several synthetic mobility models. Major findings are
that the (simulated) performance properties of ad-hoc network protocols such as packet
delivery ratio, end-to-end delay, average hop count, and protocol overhead strongly depend
on the mobility model used in the simulation. Realism of synthetic traces is recognized as
an important issue, however, no clear terminology or comprehensive guidelines to follow are
provided. The discussion is focused on speed and direction of mobile nodes, on the avoidance
of unrealistic movement such as sudden stops or sharp turns, and on restrictions employed
by the mobility model such as roads. For entity mobility, the authors recommend the use
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of the random waypoint mobility model, or alternatives such as the random walk mobility
model or the Gauss-Markov mobility model as these models allow for investigating general
statistical properties of mobile network protocols. However, concerns are stated with respect
to clustering properties of the random waypoint mobility model or the strict straight move-
ment between waypoints of the random walk model. As mobility models exhibit different
strengths and weaknesses, this survey further recommends to expose a network protocol
either to a model combining the strengths of the discussed models, or to multiple mobility
models in series.

As more real data have become available, more recent surveys focus on analyzing trace
data and describing their use. Aschenbruck et al. [2011] give an overview of publicly available
trace data sets and the dependency of node movement on several aspects such as past
movement, other nodes, and geographic restrictions. Moreover, several trace generating
tools are described. The main challenges for trace-based analysis are identified as time-
based variations, data filtering, limited generalization, the required amount of data, and
that the majority of models is not validated by any measure.

A more novel aspect in mobility modeling is the inclusion of social relations as discussed
by Musolesi and Mascolo [2009]. Besides providing a survey of mobility models that in-
clude hybrid synthetic and trace-based models, a distinctive feature of this survey is the
inclusion of models that utilize information from social networks. These models are based
on the tendency of humans to form communities and make in particular use of social ties
that are extractable, e.g., from online social networks. To capture social ties, a connectivity
graph can be constructed starting from an interaction graph that quantifies the number
and duration of node interactions. Based on the connectivity graph, a mobility model is
derived expressing the likelihood of nodes joining at other nodes’ locations. In a related
survey including social relationships, Karamshuk et al. [2011] classify the nature of human
movements along the spatial, temporal, and social dimension. In order not to be limited
by a specific data set in trace-based models, the authors focus on synthetic models, which
aim to reproduce driving forces for individual mobility such as social attitude, location
preferences, and regular schedules. To cover also perceivable regularity in a person’s move-
ment the authors present the concept of human mobility patterns. By including the scale
of mobility (building-wide, city-wide, or world-wide), hierarchical mobility modeling is in-
troduced, which is used to classify existing models along the levels. An important but open
question remains concerning the understanding of the correlations between the different
statistical properties of human movement. For example, the authors consider heavy-tailed
inter-contact times, which seem to emerge in the majority of models and could thus be seen
as a common related side-effect.

The special case of vehicular mobility is addressed by the survey in [Härri et al. 2009],
which summarizes models used in vehicular ad-hoc network (VANET) simulators. Important
modeling aspects are the road topology that is created, the intersection policy, multi-lane
structures, or speed limitations. The VANET models covered by the survey use either a car
following mobility model, defining at least acceleration, deceleration, and reaction time in
relation to other vehicles, or a simple model with uniform velocity on the generated paths.
This work is one of the rare cases in which model validation is addressed by comparing the
generated traces either against observed mobility traces or against traces originating from
an already validated model. Concerning evaluation of realism, Fiore et al. [2007] discuss
traffic simulators along with minimum requirements for highway or urban scenarios based
on observed acceleration patterns of different car following models.

In the most recent survey [Treurniet 2014], a taxonomy is provided to classify human
mobility models along important modeling aspects, that are, motion determination (e.g.,
random speed, collision avoidance, etc.), path and target determination (e.g., based on
a random trip), involved group dynamics, and basic characteristics, such as pause time
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characteristics or spatial constraints. Yet this list should be considered as an open list, and
progress in the field might require extending this taxonomy.

In addition to the above mentioned surveys, two books have been published on the topic
of mobility models in recent years. In [Roy 2011], a comprehensive collection of major basic
mobility models is presented. This book focuses on analytical model characterization for
generic use. Differently, in [Santi 2012], mobility models are discussed with respect to their
application in mobile network research. Models are presented for WLAN, wireless mesh,
cellular, vehicular, and opportunistic networks. This application-oriented book allows for
easy identification of candidate mobility models in case the networking context is known.

While the existing surveys and books classify and describe mobility models from several
perspectives, they all approach mobility modeling “as a whole”. Complementary to these
summaries, we introduce a novel engineering approach that zooms into the different steps of
mobility modeling and survey how existing approaches implement each step separately. We
further find that most of the existing surveys already use a notion of realism which is similar
to ours, yet often implicitly includes representativeness. In order to clearly distinguish these
two aspects, we differentiate methodologically between building a representative baseline
mobility model and – on top of this – further improving the realism of the model. Finally,
we also discuss validation aspects in detail, which so far have not received sufficient attention
in the existing literature.

3. THE PROCESS OF HUMAN MOBILITY MODELING
Based on foundations from general modeling theory, we develop a sound concept for mo-
bility modeling. Moreover, we define basic terms and finally propose a generally applicable
process for mobility modeling, which has been inspired by the process of workload modeling
(cf. [Ferrari et al. 1983]).

3.1. Foundations from general modeling theory
From a theoretical modeling perspective (see, e.g., [Stachowiak 1973]), any scientific model
has the following characteristics:

(1) A scientific model is a representation of an original (natural or artificial) system. Note,
that the original system itself can be a model.

(2) A scientific model is not defined uniquely by the original system. Since the model
represents the original system for a specific purpose in a specific context, the modeling
process and its result are influenced by the objective of the investigation and by its
context. From a very general perspective, this might even include influence on the
modeling process by when the model is created, who creates it, and by whom it is used.

(3) A scientific model is always a simplified representation of the original system. This
simplification (or reduction) of reality or another model leads to a loss of information.
Without any simplification, it would not be a model, but the original system itself. Thus,
given the underlying objective and the context of the modeling process, the model does
not represent all properties/features of the original system, but only that subset of the
properties that is considered relevant.

(4) A scientific model has to be valid or representative, i. e., despite the reduction of the
original system, the model has to agree well (enough) with the original system with
respect to a predefined set of relevant criteria. This set of criteria is influenced by the
objective and context of the modeling process. If the model turns out to be invalid or
not representative in this validation process, then it results from a “wrong” reduction
of the original system and may lead to wrong conclusions about the original system.
In this case the model has to be changed, i.e., it has to be calibrated or the modeling
process has to be reformulated. Once a model has been validated, it is the basis for
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further investigations (baseline model). These investigations may include adaptations
and modifications in order to simulate modifications of the original system.

In the following, we apply this theory to mobility modeling.

Realistic

Representative

Observed mobility 
behavior

Baseline mobility model Extended mobility model

ContextContext-free 
modeling

Synthetic mobility traces Synthetic mobility traces

Fig. 1. Schematic view of the mobility modeling process.

3.2. Principles of mobility modeling
A mobility model is a simplified representation of the movement of single or groups of mobile
entities in a given context, primarily the spatial environment, for a specific purpose during
a well defined period of time. The model may consider only one class of mobile entities,
meaning that all entities are statistically behaving in the same way, or it may consider
several classes of mobile entities (multiclass model). Mobile entities may be people, vehicles,
robots, or animals. In this article, we focus on human mobility models due to their practical
importance in mobile networked systems.

A schematic view of realistic mobility modeling is depicted in Figure 1. The first stage
towards a realistic mobility model is to observe human mobility in reality, which results
in mobility data such as mobility traces. Mobility traces usually contain at least location
information along a time line such as time-stamped geo-location data provided by GPS.
From the observed mobility behavior a context-free baseline mobility model is derived. This
model can be used for generating synthetic mobility traces used in a simulation study. For
example, changes in direction, velocity, and mobility range of nodes can be described by the
statistical properties derived from the observation. The baseline mobility model has to be
representative for the observed mobility behavior. This means that the synthetic mobility
traces generated by a representative mobility model have to agree well enough with a set of
observed real-world traces along relevant validation characteristics.

A representative baseline model does not contain explicit information about the context
in which the real-world traces were observed. This context may include the purpose of
movement (e.g., traveling to workplace or school), geographical structures and limitations
(streets, walls, houses, etc.), or e.g., in case of taxi traces, the status of the taxi (occupied,
available, on its way to a customer). To introduce such context, a second model is derived,
which we call extended mobility model. This new model is intended to be more realistic than
the baseline model. A realistic human mobility model is thus an accurate representation
of real-world movement behavior of (groups of) humans with respect to a set of relevant
characteristics. Including more context information about, e.g., roads, traffic lights, social
relations, etc. allows for creating a more realistic model, yet at the cost of simplicity.
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The reasons for introducing this two-stage approach are as follows. Realism may or may
not be an issue for a mobility model, while representativeness always has to be assured. Fur-
ther, introducing context constraints is fundamentally different from the statistical analysis
of traces conducted for creation of the baseline mobility model, as it requires semantic
knowledge about the context of movement.

3.3. Engineering a mobility model
When creating a representative and realistic mobility model, several steps have to be taken.
To provide comprehensive guidance for those steps, we structure the process of realistic
mobility modeling as depicted in Figure 2. The process starts with clarifying the objective
and deciding which fundamental characteristics the model should have including generic
assumptions and requirements, and determining which observations are needed. In the fol-
lowing modeling steps, mobility is characterized, the baseline model is created, and extended
by inclusion of context information. After calibration, the model (with or without extension
by context considerations) has to be validated. We detail each step in one of the following
sections and survey how existing mobility models implement each step.

Observe reality empirically 
(mobility in context, Sec. 4.2)

Create baseline mobility 
model (Sec. 5.2)

Create extended mobility 
model (Sec. 5.4)

Describe context 
(Sec. 5.3)

Validate realism   
(Sec. 6)

Validate represen- 
tativeness (Sec. 6)

State requirements 
(Sec. 4.1)

Use mobility model

Calibrate 
model (Sec. 6)

+

+
- -

Extend?
+

-

Generic assumptions 
(mobility and/or context)

Characterize mobility 
(Sec. 5.1)

Fig. 2. Engineering a mobility model: steps of the modeling process and dependencies (positive/negative
outcomes of a step are indicated by ’+’ and ’–’).
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Fig. 3. Overview of existing mobility models reviewed and grouped according to major features. The chords
in the diagram connect each mobility model to one or more of its major features (bold). The arc length
of each feature corresponds to the number of models to which this feature has been assigned. The letters
G, S, T, and H relate to the assigned group, i.e., generic, survey data based, trace data based, and hybrid
models, respectively.

3.4. Overview of surveyed mobility models
We include major data-driven mobility models in our survey based on a few criteria, namely,
their timeliness and importance for recent mobile networking research (cf. Table IX), as well
as the innovative aspects introduced by the models or the model creation process. Here, our
focus is set on disclosing relevant methods provided by the models.

There are multiple options to present an overview of the surveyed models by group-
ing them along distinct features, cf. [Musolesi and Mascolo 2009; Karamshuk et al. 2011;
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Treurniet 2014]. A fundamental criterion targets the foundations of the model and results in
four classes: (i) models that are not based on any observations (“generic models”), (ii) mod-
els based on mobility traces, (iii) models based on survey data, and (iv) models based on
both traces and surveys (“hybrid models”). Traditional synthetic models fall into the cat-
egory of generic models. As in the literature the term synthetic model also very generally
refers to a “non trace-based” model, we introduce the new term “generic model” which
allows us to distinguish synthetic from survey-based and hybrid models. We make use of
this foundation-driven classification in the remainder of the survey.

In addition, we provide an orthogonal, feature-driven classification by identifying ma-
jor model characteristics originating from the existing mobility modeling literature. This
classification provides an introduction to the selected mobility models and allows for find-
ing models based on features. Figure 3 visualizes the outcome of this classification5 and
Table I lists all models together with the corresponding references. The importance of a
feature can be visually deduced from the corresponding arc length in Figure 3, e.g., spa-
tial gravity, source/destination, and sojourn pattern are the most frequently implemented
features reflecting the spatial and temporal aspects obviously targeted in many of the sur-
veyed mobility models. The features themselves may be grouped into the following classical
categories:

Spatial features. Spatial gravity stands for models describing attraction (and repulsion)
forces of single locations or regions determining the path. An example is the Sheep (and
Maverick) model [Morlot et al. 2010] which reproduces the formation of highly populated
zones during city-wide events. Source/destination models preselect start and end location
of a path, based on land use information or similar, and apply standard algorithms, such as
shortest path, to route entities between source and destination. Whereas source/destination
models actually define the path of each single moving entity from start to end location, spa-
tial gravity models consider multiple attraction and repulsion forces that influence the move-
ment along a path. For example, WHERE (Work and Home Extracted REgions) [Isaacman
et al. 2012] models the commuter mobility between residential and commercial areas of a
city. Models given the feature land use subdivide the analyzed geographical area according
to land use surveys reflecting, e.g., spatial constraints. The model Geographic Preferences
Prediction (GPP) [Calabrese et al. 2010] derives the movement choices of individuals from
the type of geographical areas that are of interest for the collectivity at a give time and
are available in a certain travel distance. Location preferences are a key modeling fea-
ture to determine location targets, e.g., of daily life activities. The Individual-Mobility (IM)
model [Song et al. 2010], e.g., realizes location preferences by incorporating mechanisms for
exploring new locations and preferentially returning to previously visited locations.

Temporal features. The aspect sojourn pattern fits to models focusing on the times people
stay in buildings/places (cf. pause times), within reach of network elements, etc., with little
or no consideration of the movement between the sojourns. Periodicity is a further distinct
characteristic addressed by a number of models. The Mixed Queueing Network Model of
Mobility (MQNM) [Chen et al. 2012] describes the arrival and sojourns of users at access
points of a campus WLAN, each represented by a server queue. The Periodic & Social
Mobility Model (PSMM) [Cho et al. 2011] combines the observation that 50% to 70% of
movements can be explained by periodic mobility behavior within bounded regions with
effects of social relationships causing occasional long distance travels.

5Note that for synthetic, generic models known as “random” or “stochastic” models, the used features
characterize the add-on (e.g., spatial gravity emanates from a point of interest or pedestrian interaction
patterns).
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Table I. Overview of reviewed mobility models: mapping of acronyms, names, and references.
Acronym Full name and reference Acronym Full name and reference
Agenda Agenda-based mobility model

[Zheng et al. 2006]
Arrival Arrival-based Framework

[Karamshuk et al. 2012]
CAM Cellular Automata Model [Blue

and Adler 2001]
CCP Campus Contact Patterns

[Srinivasan et al. 2006]
CGTM Coarse-Grained Traces model

[Yoon et al. 2006]
COM Contact Opportunity Model

[Chaintreau et al. 2007]
Community Community-based mobility model

[Musolesi and Mascolo 2006]
Dartmouth Dartmouth model [Kim et al.

2006]
DBS3 Destination-Based Space Syntax

[Vogt et al. 2012]
DiAm Dispatched Ambulance model

[Schwamborn et al. 2010]
Disaster Disaster mobility model [Nelson

et al. 2007]
EPM Entertainment Park Model

[Vukadinović et al. 2014]
GPP Geographic Preferences Predic-

tion [Calabrese et al. 2010]
HCMM Home Cell Mobility Model

[Boldrini et al. 2009]
HGM Hotspot Gravitation Model [Du

et al. 2012]
ICM Inter-Call Mobility Model

[Ficek and Kencl 2012]
IM Individual Mobility model [Song

et al. 2010]
IMMT Integrated Mobility Modeling

Tool [Markoulidakis et al. 1997]
MA Movement Activity Model [Hum-

mel and Hess 2013]
Mall Shopping Mall Mobility Model

[Galati et al. 2013]
ModelT Model T mobility model [Jain

et al. 2005]
mPat Mobility PATterns interference

architecture [Zhang et al. 2014]
MQNM Mixed Queuing Network Model

[Chen et al. 2012]
MWP Markovian Waypoint Model

[Hyytiä et al. 2006]
NBody N-Body mobility model [Zhao and

Sichitiu 2010]
NGM Novel Group Mobility model

[Rossi et al. 2005]
Obstacle Obstacle model [Jardosh et al.

2003]
ODFlow Origin Destination Flow [Cal-

abrese et al. 2011]
PSMM Periodic & Social Mobility Model

[Cho et al. 2011]
Radiation Radiation model [Simini et al.

2012]
SFM Social Force Model [Helbing and

Molnár 1995]
Sheep Sheep (and Maverick) Model

[Morlot et al. 2010]
SLAW Self-similar Least Action Walk

[Lee et al. 2009]
SMM Scalable Mobility Model [Bas-

geet et al. 2003]
SMOOTH SMOOTH mobility model [Mun-

jal et al. 2011]
Square Square mobility model [Desta

et al. 2013]
Street Street content distribution model

[Vukadinović et al. 2009]
SWIM Small World in Motion model

[Kosta et al. 2010]
TMP Twitter-based Mobility Patterns

[Jurdak et al. 2015]
TVC Time-Variant Community

Model [Hsu et al. 2009]
UDel “University of Delaware” simula-

tor [Kim et al. 2009]
WDM Working Day Movement Model

[Ekman et al. 2008]
WHERE Work & Home Extracted REgions

[Isaacman et al. 2012]
WLANM WLAN Mobility model [Tuduce

and Gross 2005]

Group and social features. “Social models” build upon either community structures or ties
between single persons. The movement is governed by spatial gravity (location of assigned
communities) or social gravity (current location of socially close people). Models associated
with the features social communities/ties and social gravity form the group of social
models featuring group dynamics. A more general characteristic that expresses ties between
individuals are contacts, thus, the contact process is a key characteristic described in some
mobility models. Group dynamics are, e.g., modeled by the Novel Group mobility model
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(NGM) [Rossi et al. 2005] which considers relationships between the mobility patterns of
group leaders and followers. The campus contact pattern model (CPP) [Srinivasan et al.
2006] describes the temporal meeting characteristics of students who attend the same classes
on a university campus.

Individual user features. Individual human movement is targeted mainly by models express-
ing pedestrian dynamics, which characterize human (pedestrian) behavior on relatively
small areas, e.g., a street or a city square. Similarly, vehicular driver models comprise indi-
vidual characteristics such as vehicle acceleration or overtaking behavior. In these models
the major dynamics result from the dependencies among the vehicles, such as adapting the
speed to the speed of the vehicle in front and the overall traffic flow. Other user-centric
models are focused on an individual’s agenda/activity. An example pedestrian dynam-
ics model is the Social Force Model (SFM) [Helbing and Molnár 1995] reproducing typical
movement behavior of people in crowded environments, including lane formation with peo-
ple walking in the same direction or oscillatory changes of the walking direction at narrow
passages. In the UDel model [Kim et al. 2009] the movement is governed by an underlying
agenda of daily activities (working, at home, exercise, eating out, etc.) which are assigned
to certain locations representing start- and endpoint of every trip.

Granularity. Macroscopic dynamics express the model’s aim not to model individual
mobility properties, but coarse-grained mobility, such as flows in and out of a city. For
example, the macroscopic model Radiation [Simini et al. 2012] can be applied to model
migration flows as well as mobile calling patterns between states of a country. In contrast,
fine-grained movement features express the focus on detailed mobility characterization
– such as extracted from fine-grained location measurements by the SLAW model [Lee
et al. 2009]. The aspect interpolation represents models that derive fine-grained movement
information by enriching coarse-grained data with additional knowledge and assumptions.
Example are the models Coarse-Grained Traces (CGTM) [Yoon et al. 2006] and Inter-
Call Mobility (ICM) [Ficek and Kencl 2012], which estimate the path traveled in-between
network associations of a mobile device.

Making use of the feature-based classification. The classification is intended to guide the search
for mobility models. By selecting the respective features of interest, candidate models can
be efficiently identified. Then, to assess whether the candidate models are appropriate, our
discussion of model properties along the engineering steps (cf. Figure 2) may be leveraged.
For instance, in case fine-grained movement and location preferences are of importance in
a network study, SMOOTH and SLAW are two representative mobility models addressing
these features (cf. Figure 3). The engineering steps detailed in the following sections can
be used to further evaluate whether these models are appropriate in terms of the modeled
aspects (requirements, assumptions, mobility characterization), the kind of real data sources
used (observed reality), level of realism (context), and validation quality. The outcome of
such an evaluation can be that a model is sufficient or that it seems to be appropriate
but lacks, e.g., the validation step, which has to be added before the model is used in the
network study. In addition to this classification, the first steps of the engineering process in
which basic design choices are taken also provide guidance for selecting candidate mobility
models.

4. PREREQUISITES: STATING REQUIREMENTS AND OBSERVING REALITY
Before creating a mobility model, it is important to clarify the objectives of modeling and
to reflect the way physical mobility may be observed. In this section, we thus describe the
major decisions to take before creating a mobility model and discuss the choices taken by the
different mobility models. For ease of identifying concrete mobility models, we support this
discussion by a classification of the models along the choices (Table II and III). Furthermore,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for 
your personal use. Not for redistribution. The definitive version was published in ACM Computing 
Surveys Volume 48 Issue 3, February 2016 http://doi.acm.org/10.1145/2840722



A:12 Human Mobility Modeling: A Survey and Engineering Guidance

we detail different approaches to observe reality and relate them to existing mobility models
(Table IV).

4.1. Modeling aim and design choices
The modeling aim and the purpose of an investigation in which a mobility model is used
will have a profound influence on the design and the validation of the model. Due to its
long tradition in structured modeling, the classical area of workload modeling [Ferrari et al.
1983] provides well-accepted guidelines for model creation. Moreover, workload modeling
is partially comparable to mobility modeling since it has to be ensured that synthetically
generated test workloads are representative for real workloads. A major concept that we
transfer directly to mobility modeling is the definition of fundamental decisions about mod-
eling aim and design choices, which results in these major categories: modeling view, eval-
uation method, granularity level, mobility classes, and the focus of observation in terms of
concrete aspects of real-world mobility that should be monitored. Tables II and III provide
a categorization of the reviewed models along these categories. We find the following:

Table II. Modeling view and evaluation method: The table relates the major categories of model view and
model evaluation to mobility models implementing the respective category.

Generic Trace-based Survey-based Hybrid

M
od

el
in

g
vi

ew

Physical space CAM Commu-
nity DBS3 Dis-
aster HCMM
HGM IMMT
MWP NGM
Obstacle Ra-
diation SFM
Square Street

CGTM
Dartmouth
ICM Mall
mPat NBody
PSMM SLAW
SMOOTH
TMP TVC

Agenda SMM
UDel WDM

DiAm EPM
GPP MA
ODFlow
WHERE

System view IM MQNM
ModelT Sheep
WLANM

Contact
process

Arrival SWIM COM CPP

E
va

lu
at

io
n

m
et

ho
d

Simulation-
based

Arrival CAM
Community
Dartmouth
DBS3 Disaster
HGM IMMT
NGM Obstacle
SFM SWIM

CGTM Dart-
mouth Mall
ModelT mPat
MQNM NBody
PSMM SLAW
SMOOTH TVC
WLANM

Agenda CPP
SMM UDel
WDM

DiAm EPM
GPP MA
ODFlow
WHERE

Analytical HCMM MWP
Radiation SFM
Square Street
TMP

COM IM Sheep

Modeling view. The intention of the model defines the perspective to take during modeling.
In case the model is intended to be used to evaluate a networked system, the focus is on the
system’s perspective and a system view model might be used in this case to characterize
system-related features, e.g., user density at infrastructure network resources such as access
points. On the contrary, in case mobility is viewed in relation to physical space, character-
istics of the movement itself are to be modeled. The majority of models reviewed considers
mobility in the physical space. Other works reproduce the view of a WLAN network (e.g.,
MQNM [Chen et al. 2012]) or a cellular network (e.g., Sheep [Morlot et al. 2010]). Addi-
tionally, a number of models focusing on the node contact process reproduce sojourns at
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Table III. Modeling design choices: The table relates the categories of major modeling design choices to
mobility models implementing the respective category.

Generic Trace-based Survey-based Hybrid
Le

ve
lo

f
gr

an
ul

ar
ity

Finest
granularity

CAM Com-
munity DBS3
Disaster HGM
IMMT MWP
Obstacle SFM
Street Square

CGTM Dart-
mouth ICM
Mall NBody
PSMM SLAW
SMOOTH

Agenda UDel
WDM

DiAm EPM MA

Aggregated
granularity

Arrival HCMM
IMMT NGM
Radiation
SWIM

COM IM
ModelT mPat
MQNM NBody
Sheep TMP
TVC WLANM

CPP SMM
UDel

GPP ODFlow
WHERE

M
ob

ili
ty

cl
as

se
s

Single-class Arrival CAM
Community
DBS3 HCMM
HGM NGM
MWP Obstacle
Radiation SFM
Square Street
SWIM

CGTM COM
Dartmouth
ICM IM
Mall ModelT
mPat MQNM
NBody Sheep
SMOOTH
SLAW TMP
WLANM

Agenda CPP DiAm EPM
GPP ODFlow
WHERE

Multi-class Disaster IMMT PSMM SMM UDel
WDM

MA

F o
cu

s
of

ob
se

rv
at

io
n

Movement
paths

NBody
mPat SLAW
SMOOTH
TMP

DiAm EPM MA

Network
connections

CGTM Dart-
mouth ICM IM
ModelT mPat
MQNM Sheep
TVC WLANM

GPP ODFlow
WHERE

Contacts COM Mall
NBody PSMM

CPP

Daily routines Agenda CPP
SMM WDM
UDel

DiAm EPM
GPP ODFlow
WHERE

meeting points disregarding movement paths in-between, such as SWIM [Kosta et al. 2010]
and CPP [Srinivasan et al. 2006].

Evaluation method. Whereas the evaluation method practically depends on the aspects
modeled, the choice of evaluation method might restrict character and complexity of the
model. Analytical evaluation usually requires a simpler representation than simulation-
based evaluation; while low complexity might be a requirement for the solvability of the an-
alytical model, a simulation model allows more details of reality. Often, model assumptions
reflect the simplifications introduced for the sake of analytical tractability, such as constant
velocity or uniformly distributed waypoints. Square [Desta et al. 2013] and HCMM [Boldrini
et al. 2009] introduce such simplifications. As seen in Table II, analytical models are either
generic models or are based on traces, whereas simulation-based evaluation can be found
in each model group. Models may be also built for both analytical and simulation-based
evaluation such as in the case of Street [Vukadinović et al. 2009], where a street topology
is modeled analytically as a queueing network and, at the same time, movement rules for
street segments allow also fine-grained simulation.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for 
your personal use. Not for redistribution. The definitive version was published in ACM Computing 
Surveys Volume 48 Issue 3, February 2016 http://doi.acm.org/10.1145/2840722



A:14 Human Mobility Modeling: A Survey and Engineering Guidance

The fundamental decisions about the aim and evaluation of the model determine basic
model properties and design choices. It is worth mentioning that these properties are not
all independent of one another.

Level of granularity. Mobility models characterize movement with a particular resolution;
the following major levels of model granularity have been identified:

— Finest granularity – microscopic mobility modeling level: movement paths of single en-
tities in physical space are modeled. Inherently, most fine-grained models can be cate-
gorized as physical space models. Exceptions are, e.g., fine-grained models introducing
a cell structure such as CAM [Blue and Adler 2001], in which cells of 0.21 m2 size are
occupied by one node at a time.

— Aggregated granularity – mesoscopic and macroscopic mobility modeling level: fine-
grained physical paths of single entities can be abstracted to a higher, aggregated level.
The aggregation of homogeneously moving entities to groups or flows is sometimes re-
ferred to as mesoscopic modeling, whereas the aggregation of location details is often re-
ferred to as macroscopic modeling. Aggregating homogeneously moving entities is done
in group mobility models (e.g., NGM [Rossi et al. 2005]), which describe people who
might travel together in public transport vehicles or who form “flocks” in crowd be-
havior [Laube et al. 2008], and in flow mobility models (e.g., ODFlow [Calabrese et al.
2011]), which may aggregate large quantities of vehicles moving in the same direction on
a road segment. Location details can be aggregated to coarser geographic regions (e.g.,
WHERE [Isaacman et al. 2012], Radiation [Simini et al. 2012]) or to a cell structure (e.g.,
SWIM [Kosta et al. 2010]). System view models, such as MQNM [Chen et al. 2012], and
contact process view models, describe mobility at an aggregated level as movement details
are abstracted.

The UDel model [Kim et al. 2009] includes both levels of granularity since (aggregated)
demographic dynamics of the city are modeled in combination with characterizing the phys-
ical movement itself. Note that an abstraction from the finest granularity level to an aggre-
gated level is always possible, whereas the reverse direction requires additional information
or assumptions. Which level to take is a design decision depending on the purpose of the
model. For example, for investigating data traffic at specific points of interest, modeling at
the aggregated level of points of interest may suffice. In contrast, fine-grained modeling is
needed for studying short-range device-to-device connections.

Mobility classes. Models can incorporate either a single or multiple mobility types. Mul-
tiple mobility model classes result from heterogeneous mobility patterns that should be
represented by the model. Major examples of different mobility classes included in one
model are: (i) work/residential/leisure [Basgeet et al. 2003; Ekman et al. 2008], (ii) out-
door/indoor [Ekman et al. 2008; Kim et al. 2009], (iii) individual/public transport [Ekman
et al. 2008; Kim et al. 2009], (iv) civilians/first responders [Nelson et al. 2007], and (v)
periodic/purpose-driven movement such as in PSMM [Cho et al. 2011], where nodes fol-
low basically periodic patterns while occasionally conducting specific purpose travels (e.g.,
long distance visits of friends/family). Conceptually there are two methods for identifying
model classes, they are either defined a priori or inferred from the observation, e.g., by using
unsupervised pattern recognition or clustering techniques such as used in [Chen et al. 2011].

Focus of empirical observation. The focus of observation is not only determined by the pur-
pose of the model, but also depends on the model’s granularity and mobility classes. In
a pedestrian class, it might be the fine-grained walking trajectories of people that are fo-
cused on, while for modeling at an aggregated level from a system perspective, data about
association events of access points might be collected. We group the foci of the empirical
observations appearing in the literature into (i) movement paths, (ii) network connections,
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(iii) contacts, and (iv) daily routines, based on which type of empirical data is selected
for model building. Inherently, an observation focus on movement paths results in (or is
required for) fine-grained models. Yet in some cases refinement has been done for coarse-
grained network traces (which will be discussed in Section 4.3). Most existing survey models
and some hybrid ones characterize movement behavior triggered by the sequence of daily
activities, determining all trips. Trace-based models can be grouped into models that focus
on movement trajectories with preferably high resolution, models that use network associa-
tion information, and models merely relying on contact data as this allows to study ad-hoc
data exchange opportunities.

An additional decision to take is whether and to which extent a model should address re-
alism. The creation of realistic mobility models by including context and their validation are
discussed in detail respectively in Sections 5.4 and 6. By introducing boundary conditions,
the observation may be temporally or spatially limited and, as a consequence, constrains
the mobility model. For example, only working day or rush hour mobility, or the mobility
in particular geographic areas may be of interest. Spatial and temporal boundaries concern
mainly data collection by empirical observation and data selection and will be discussed in
the following subsection.

The planning phase is of particular importance when selecting a suitable existing model
for a certain purpose. The categorizations in Tables II and III raise not only awareness
for the implications of certain design choices on the nature of a model, but also help to
quickly narrow down the pool of candidate models. For example, in the following cases the
categorizations along level of granularity and mobility classes are helpful: If a mobility model
should be used within a user-level network simulation, mobility models on the macroscopic
level do not provide enough detail and can thus be excluded from the selection process. Or
someone might be looking for a mobility model capable of covering the entirety of mobile
network users in a city while at the same time allowing him to account for different types
of mobility impacting network demands, such as public transport travelers browsing the
Internet or streaming video versus individuals driving a vehicle.

4.2. Empirical observation of reality
Before a mobility model can be created, movement behavior has to be understood. To
reach this aim, recent mobility modeling approaches chose empirical observation of real
movement [Aschenbruck et al. 2011; Musolesi and Mascolo 2009]. Whereas basic mobility
characteristics are observed to create a representative baseline mobility model, the context of
movement is also included when creating a realistic extended mobility model (cf. Figure 1).
Inherently, each observation can capture only certain aspects of real movement and context,
which leads to a loss of information about reality.

Observation of mobility results in mobility traces, data from traffic studies, or network
usage traces. In the following, we briefly introduce the notion of mobility trace and describe
how data are gathered and transformed; Table IV classifies the surveyed models along how
data are gathered, how observation is limited, and whether data are transformed before
they are used for model creation.

Mobility traces. Observation of moving entities in the real world results in mobility traces.
When describing the movement of a mobile entity with finest granularity, we define a three-
dimensional spatial representation of a mobile entity’s movement. Figure 4 shows a 2-D
projection of such a continuous movement path of an entity on an area and its potential
discrete representation. The continuous path can be approximated by a polygonal path
and time-discretization based on either equally-sized intervals or certain events such as a
change in velocity or direction. This polygonal path can be described by a sequence of
tuples ~x(ti) = (x, y, z)ti

, giving x-, y-, and z-coordinates at time ti which are connected by
straight line segments. It is worth mentioning that an approximation of a time-continuous
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movement path can never be a complete representation and thus modeling errors already
arise here. The length of the interval between ti and ti+1 depends on the modeling context
or simply on the available data. Moreover, the length of this time interval determines the
minimum length of sojourn times that can be captured.

ti

ti+1

ti+2

ti+3

ti+4

ti+5

ti+6

ti+7Time

Space

continuous path
discrete approximation

Fig. 4. Schematic view of a continuous path (2-D projection) and its discrete approximation as a space-time
polygonal path describing the movement path of a mobile entity.

From the polygonal path representation a vector ~a(ti) can be derived as equivalent repre-
sentation, where each ai(ti) is composed of characteristics, such as direction of movement,
velocity, or even encounters with other mobile entities for the path segment between ti and
ti+1 and, in case of event driven modeling, dwell time at ti. The mobility trace of an obser-
vation may thus feature the sequence of positions of the polygonal path and a multiple of
other derived features.

Gathering data. Data for model building may already be available through public sources
or earlier studies, or have to be collected within an empirical observation campaign. In
any case data are commonly anonymized to adhere to privacy concerns. Possible problems
when using data from other sources are restrictions in granularity or context view, or even
completely unknown context. A common problem in particular for network connection data
is the lack of network elements’ location information. For example, mobile cellular data (e.g.,
Reality Mining data [Eagle and Pentland 2006]) often provide no more than the cell tower
IDs as location information, which precludes deriving mobility information at a fine-grained
level, but serves system-view models well. Even when location information is provided, this
information is often blurred or coarsened to protect privacy. Notable concepts for degrading
the quality of location information by introducing noise include data obfuscation [Duckham
and Kulik 2005], which has been proposed in the context of individuals authenticated (and
thus not anonymous) for location-based services, and releasing data in differentially private
manner such as proposed in [Mir et al. 2013] for mobility traces generated based on the
WHERE model [Isaacman et al. 2012]. Coarsening is often done by spatial grouping of
similar (sub-)trajectories [Abul et al. 2008; Görnerup et al. 2015] or by aggregating user
locations. Example data sets are the D4D challenge data [de Montjoye et al. 2014] blurring
cell tower locations by assigning random coordinates within a tower’s Voronoi region and
the Telecom Italia challenge data [Douglass et al. 2015] aggregating the network activities
of all users located in the same cell of a grid structure spanning a city. A popular public
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online archive for mobility data is the CRAWDAD repository [Yeo et al. 2006]; a survey of
trace data sets is presented in [Aschenbruck et al. 2011].

When designers of mobility models carry out their own data collection campaigns, they
can better control which data is collected and more relevant features can be measured.
However, mobility observation experiments are time intensive, require the consent and will-
ingness of individuals, and provide insights solely into the specific settings of the experiment.

Table IV. Mobility data: The table summarizes the type of data used by each mobility model as well
the limits and data transformation applied in the respective modeling approach.
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Data gathering
Trace data

Geo-location data • • • • • • •
WLAN network data • • • • • • •
Cellular network data • • • • • • • •
Bluetooth data • •
Social appl. data • • •
Transport check-ins •

Survey data
Activity surveys • • • • • •
Mobility statistics • • •
Census data • • •

Limitations
Spatial limitation

City, country • • • • • • • • • • • • • • •
Campus, conference • • • • • • • • • •
Theme park, shop • • • •

Temporal limitation • • • • • •
Special data selection • • • • • •
Re-scaling

Refinement • • •
Location aggregation • • • • •
Entity aggregation •

Mobility trace data can be differentiated into geo-location data, data gathered through
WLAN-, cellular-, and Bluetooth networks, and location check-in data from location-based
(social) applications:
— In geo-location traces (currently, mainly GPS-based traces) an arbitrary position on earth

is defined by geographic coordinates for a point in time. For GPS, position accuracy of
2− 10 m can be assumed (tens of centimeters when using, e.g., differential GPS). Major
models based on geo-location traces are SLAW [Lee et al. 2009] and EPM [Vukadinović
et al. 2014].

— In contrast, WLAN and mobile cellular data specify an area given by, e.g., the transmis-
sion range of an access point or cell (segment) size featured by a base station, where the
moving entity is located at a point in time. The accuracy greatly varies with the range of
the base station – e.g., in 2G/3G cellular networks from a few hundred meters in dense
urban areas up to tens of kilometers in flat rural areas. To improve the accuracy, some
cellular data include position estimation based on triangulation such as in GPP [Cal-
abrese et al. 2010]. Both, WLAN and cellular data, are geographically restricted to a
region or country as they are collected by regional network operators. Mobile cellular
data are often based on CDR (call detail record) data that, however, capture mobility
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only when communication activity is present, such as a call, text messaging, or data
transfer. Drawing conclusions for human movement about a population in its entirety
may not be possible and mobility models may remain biased. Example models based on
CDR data are ODFlow [Calabrese et al. 2011] and WHERE [Isaacman et al. 2012].

— Bluetooth network traces can be either connections with stationary Bluetooth devices
(position known), or between Bluetooth devices – usually without position measurements.
Contact process models based on Bluetooth data are COM [Chaintreau et al. 2007] and
Mall [Galati et al. 2013].

— Social application data can contain point in time logs for check-ins at locations, as avail-
able in location-based social applications like Foursquare [Song et al. 2010; Cho et al.
2011], or location information for geotagged user entries on social media platforms like
Twitter [Jurdak et al. 2015]. In addition, these data can provide friendship and follow-
ership network graphs such as used in PSMM [Cho et al. 2011] or semantic information
extracted from the content of the user entry [Frank et al. 2013].

— Public transport check-in traces are a type of data which has been introduced most
recently. They are collected by means of contactless smart cards serving as identifier for
a traveler entering a transportation means or a subway station (e.g., see mPat [Zhang
et al. 2014]).

In addition to trace-based data, survey data can be leveraged to extract aspects of mobility.
Daily routines are mostly deduced from time use studies, as well as worker meeting stud-
ies [Kim et al. 2009; Zheng et al. 2006]. Time tables of students combined with interviews
how regularly they attend lessons serve a similar purpose [Srinivasan et al. 2006]. Census
data provide resident population [Song et al. 2010] and employment population [Kim et al.
2009] figures for geographic areas as well as statistics about daily commuting distances [Cal-
abrese et al. 2011; Isaacman et al. 2012], etc. These data are usually semantically richer
than trace data, but spatially and temporally coarser, and might depend on the accuracy
of human memory (cf. the discussion on transport demand data in [Cottrill et al. 2013]).
Thus, they usually allow modeling mobility on an aggregated level, while additional data
are required to model the movement between waypoints. Additional survey data are pedes-
trian and traffic statistics [Calabrese et al. 2011; Kim et al. 2009] for modeling velocity,
distance-speed relations, vehicle density, etc., or theme park visitor statistics [Vukadinović
et al. 2014]. A drawback of survey data in general might be the low update frequency as
surveys are often conducted in intervals of several years. Another possible drawback of sur-
vey data, their availability, has been improved recently, e.g., due to open data initiatives.
An advantage over other data types is that survey data often cover the whole population of
an area or a country and are thus unbiased towards special groups, such as mobile phone
users currently involved in calls or volunteers participating in a study.

Limitations. In many models, limitations of the observation in space and/or time are
present due to practical limitations or study aims.

— Spatial limitations refer to restrictions depending on the environments in which data are
collected. Not surprisingly, WLAN and Bluetooth traces are collected in closed scenarios
such as a campus, conference, shopping mall, whereas the spatial range of geo-location
and cellular data varies heavily and can be a whole country (cf. mobile phone data of
Senegal [de Montjoye et al. 2014]). Survey data are available for a geographic region,
typically a city or a country.

— Temporal limitations are existent in several mobility models. Some models focus only on
working hours, i.e., night-time or weekend traces are not collected (or eliminated). Trace
sets collected during mass gathering events such as the “Fête de la Musique” in Paris for
the Sheep model [Morlot et al. 2010] or a concert and football match in Rome [Calabrese
et al. 2011], have been used for modeling peak network loads.
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In absence of real data, synthetic data may be used. Generic models based on social commu-
nities, such as Community [Musolesi and Mascolo 2006], utilize randomly generated social
relationship graphs, which can be replaced by real-world social network data as these data
become more and more available. Synthetic graphs/matrices showing social connections are
often generated by means of the Caveman model [Watts 1999]. While synthetic data can
be comparatively easy generated by using existing models, it is usually difficult to achieve
representativeness.

4.3. Data cleaning, selection, and transformation
Preparing “raw” empirical data sets for model building often includes data cleaning, selec-
tion along temporal/spatial limits, and transformation such as re-scaling. Typical cleaning
tasks are eliminating positioning errors or smoothing the ping-pong phenomenon [Yoon
et al. 2006], which refers to undesired handovers between two base stations back and forth
happening in a short period of time when the mobile device resides, e.g., at the border of
two cells. Special selection procedures applied by mobility modeling (cf. Table IV) include
selecting cellular network users with a sufficiently high number of connections to reduce
phases with unknown position (granularity-based selection) [Calabrese et al. 2010], remov-
ing stationary WLAN users [Kim et al. 2006], or selecting taxi cars active at the same time
period [Zhao and Sichitiu 2010].

Re-scaling means either down- or up-scaling the size in space or time. When down-scaling
temporal granularity, the sampling intervals are enlarged. For example, if positions were
measured in irregular intervals of 1–30 s, the intervals could be equalized by maintain-
ing values in gaps of, e.g., 1 min. Increasing the time resolution, on the other hand, can
be achieved by interpolating between measured values. Spatial re-scaling can occur when
transferring absolute into relative coordinates (physical distances to points of interest). In
many of the surveyed papers, these data transformations are not discussed explicitly. How-
ever, data transformations have been carried out for publicly available mobility data sets.
Examples are the NCSU data [Rhee et al. 2009] with temporal and spatial re-scaling –
this data set has been used for the models SLAW [Lee et al. 2009] and SMOOTH [Munjal
et al. 2011]. Refining coarse-grained traces to finer-grained trajectories is applied in [Ficek
and Kencl 2012; Kim et al. 2006; Yoon et al. 2006]: ICM [Ficek and Kencl 2012] estimates
trajectories between two consecutive calls (handled by base stations with a distance larger
than 3 km) based on known inter-call trajectories of other users. The CGTM model [Yoon
et al. 2006] maps transitions between APs installed in different buildings to movements onto
known pathways in between. Examples of coarsening traces based on location aggregation
are given in, e.g., [Basgeet et al. 2003; Calabrese et al. 2011; Simini et al. 2012]: Since
SMM [Basgeet et al. 2003] describes the mobility between “area zones” of a city, locations
are abstracted to four zones spanning the whole city area and its surroundings: city center,
urban, suburban, and rural areas. In ODFlow [Calabrese et al. 2011], a grid structure con-
sisting of rectangular cells with 500 m edge length is introduced to model the user density
based on mobile phone data. For the evaluation of the Radiation model [Simini et al. 2012],
call detail records are aggregated to the total number of phone calls between each pair
of cities. Entity aggregation, in particular the group forming of nodes, is implemented in
the generic (non observation-based) model NGM [Rossi et al. 2005], and NBody [Zhao and
Sichitiu 2010].

5. CREATING THE MOBILITY MODEL
After clarifying modeling aim and selecting data sets, the core of mobility modeling, model
creation can take place. Based on the collected data sets the baseline mobility model de-
scribing movement is constructed. By adding context, the extended mobility model is created
and realism is introduced. We use again a categorization approach to relate the surveyed
mobility models to modeled mobility features (Table V) and context characteristics (Ta-
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ble VI). The categories allow us to get a quick overview of important modeling aspects, the
discussion emphasizes the most important methods, and the tables provide references to
the mobility models implementing methods related to the respective category.

5.1. Characterizing mobility
In general, the movement of a node starts at a location, which might be selected randomly or
based on the context of the location – e.g., locations considered as “home” or “meeting point”
of a social community to which the node is assigned (cf. Section 5.3). Then, a node commonly
traverses several waypoints to eventually reach an end location. The characteristics of this
movement are the basis of model creation (and at a later stage they will be used for model
validation). They are extracted by statistical analysis and data mining methods.
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Fig. 5. Common direct mobility characteristics in the space and time domain.

Single mobility characteristics. The properties of movement found in mobility data sets can
be quantified by means of distinctive mobility characteristics, which are features describing
one aspect of movement. A mobility characteristic can be a direct description, such as
velocity, or an indirect description of movement, such as the frequency of location revisits.
An overview of direct mobility characteristics is given in Figure 5; models referring to these
characteristics are summarized in Table V.

The most common direct characteristics are velocity and sojourn time (a.k.a. pause time,
dwell time, or waiting time). The location of a sojourn is defined by waypoints or indirectly
by the flight length (or jump size), which is the length of a path traveled between two
consecutive pause times, and the direction. Change of direction is rarely modeled explicitly
as it often results from heading to the next waypoint (which might also be the destination
location) or from a topological map. The flight time is the time the entity moves between
two waypoints. Characteristics describing an entire trace are travel time, movement range,
and path length. With respect to the time dimension, which is often represented by sojourn
times and flight times, it has to be mentioned that these time intervals are often not modeled
explicitly. In discretized-time models nodes might chose a new location in each time slot,
while several (mostly open) mobility models assume continuous movement without sojourn
phases. Instead, some of these open models include an acceleration/deceleration pattern,
which can be considered to be similar to the move/sojourn pattern.
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Aggregated mobility characteristics. Aggregated characteristics describe properties derived
from multiple trajectories. Transition probabilities determine changeovers between areas,
such as city districts in macroscopic models (e.g., in SMM [Basgeet et al. 2003], mPat [Zhang
et al. 2014], WHERE [Isaacman et al. 2012]), WLAN access points (ModelT [Jain et al.
2005] and WLANM [Tuduce and Gross 2005]), campus hotspots (Dartmouth [Kim et al.
2006]), or attractive points in the city during mass gatherings (Sheep [Morlot et al. 2010]).
In social-based models, transition matrices of movements to other cells express the cell’s
social attraction (HCMM [Boldrini et al. 2009]) or popularity and distance from home cell
(SWIM [Kosta et al. 2010]). Note that the weight for each area is in many cases derived
from context information (cf. Section 5.4). Time-variant transition probabilities are modeled
in IM [Song et al. 2010] suggesting that the probability for exploring additional locations
is decreasing over time while “preferential returns” become more likely. Arrival times and
rates are commonly modeled for either a point of interest, such as subway stations [Kim
et al. 2009] or streets [Vukadinović et al. 2009], or the whole study area is open in case
of open mobility models6, like Square [Desta et al. 2013]. Related to arrival rates, the
Sheep model [Morlot et al. 2010] pictures the filling and scattering dynamics of randomly
formed concentration areas of human gatherings. When mobility is abstracted to contacts
the pure contact process might be modeled based on the characteristics inter-contact time
and contact duration [Chaintreau et al. 2007].

5.2. Creating a baseline mobility model
When modeling mobility, all relevant aspects of movement have to be described along se-
lected mobility characteristics. Depending on the model type, the respective mobility char-
acteristics may be basic direct movement characteristics (waypoints, flight length, pause
time, etc.) but may also express social structures and group dynamics along contact charac-
teristics (contact time, inter-contact time). To capture the variability of the characteristics,
stochastic processes and derived distribution functions are employed.

Distribution functions and statistical patterns. For quantifying mobility characteristics, each
characteristic may be assigned a distribution function derived from its empirical probabil-
ity density function (PDF). If the type of distribution function is known (e.g., from the
literature), a pre-defined distribution function may be selected and its parameter setting
might be adapted to the data set. Otherwise, the data are analyzed and the empirical PDF
may be fitted to a set of possible distribution functions following a maximum likelihood
estimation method. In this case, it is tested which distribution out of the set is the “best”
fitting distribution by means of a goodness-of-fit test. If a characteristic has a specific value
pattern that does not follow a standard distribution function, the empirical distribution
function itself might be applied. However, it is preferable to utilize a known distribution
function for the sake of reproducibility of the model.

Sample insights into distribution functions observed by several real data studies are that
flight length and pause times follow truncated power law distributions (see IM [Song et al.
2010], SLAW [Lee et al. 2009], SMOOTH [Munjal et al. 2011]). For contact processes, also
inter-contact times have been found to follow a truncated power-law distribution [Chain-
treau et al. 2007] (this insight can be used for modeling but also for validation). In SLAW,
waypoints are modeled as “fractal points” to induce truncated power law flights. This allows
to implement attraction to popular places [Lee et al. 2009]; the mobility range of nodes is
considered to be heterogeneous.

6We use the notion open mobility model for models enabling nodes to arrive and depart from the study area
at any time. These models differ from the majority of models featuring a constant node number during the
entire period modeled.
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Table V. Mobility characterization: The table relates the categories of mobility characterization and model
creation to mobility models implementing the respective category.
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Common model components. When creating a model, the following components are com-
monly addressed:

— Generic models – a common practice is that mobility models incorporate generic models
(such as RWP), for movements within closed spaces (e.g., city square [Desta et al. 2013],
cell [Boldrini et al. 2009], shop [Galati et al. 2013]) or for single node groups, like in the
Sheep model [Morlot et al. 2010] where a fraction of nodes follows a Random Waypoint-
based “maverick” movement, i.e., the nodes are moving independently and not following
the group movement. Several generic models are extensions of others, such as HGM [Du
et al. 2012], which is a random walk model with entities gravitating towards a hotspot if
they arrive in its vicinity.
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— Shortest path algorithms are applied when assigning source and destination locations
to nodes. The locations assigned might be locations of, e.g., home, work, and leisure
places in activity-driven models [Ekman et al. 2008; Kim et al. 2009; Zheng et al. 2006].
The assigned locations might also be randomly selected locations, chosen by uniform
selection [Jardosh et al. 2003], or chosen such that destinations are more likely to be
centrally located in the street grid [Vogt et al. 2012].

— Location probabilities – instead of modeling mobility characteristics, predictive models
calculate location probabilities for individuals, i.e., the probability that they can be
found in a given location at a given time. For example, PSMM [Cho et al. 2011] pre-
dicts geographic locations for a given weekday and daytime by means of an expectation-
maximization estimation based on the places regularly visited by each person in the
data set. In time geography, possible locations of an entity can be modeled probabilisti-
cally using a space-time volume representation (cf. [Winter and Yin 2011]). For example,
space-time cone representations are based on a known location of an entity, its move-
ment direction and maximum speed. A space-time prism model [Winter and Yin 2010]
describes the set of all points, which lie between two known locations of an entity and
which can be reached given certain time and space constraints. This modeling method is
adopted by ICM [Ficek and Kencl 2012], which predicts the unknown path taken between
two known locations inferred from cell tower coordinates by means of kernel density esti-
mation. The estimation of the path relative to the cell towers is based on an aggregation
of finer-grained data available for a different set of users.

The newly created baseline mobility model has to be validated against real-world observa-
tions – this validation step is discussed in Section 6.2. The implementation of the baseline
mobility model outputs synthetic traces used first for validation and finally as input for
mobile network simulations. In case a realistic mobility model is aimed for, the model has
to be enriched with context information.

5.3. Describing context
Movement takes place in context, such as in a particular place or at a particular time,
which influences mobility behavior. Table VI summarizes the context categories found in
all surveyed models. The major context categories are geographic, temporal, entity-specific,
relational, and demographic context7.

Geographic context. Geographic context typically includes topological structures derived
from map data, and further single elements, such as street types (highway, pedestrian road,
etc.) and speed limitations, number of lanes, traffic lights, etc. A street topology may be a
simple grid, in indoor environments the corridor topology may be described by a more or less
regular three dimensional grid. These topologies impact the mobility model by restricting
movement.

On an aggregated level, topological structures might be connected to capture transitions
between larger areas such as administrative districts [Basgeet et al. 2003; Simini et al. 2012;
Zhang et al. 2014] or cities, or abstracted to a grid structure [Boldrini et al. 2009; Kosta
et al. 2010]. A transition of a mobile entity to another area may be triggered by its higher
attractiveness due to job opportunities in nearby districts as considered in the migration
pattern model Radiation [Simini et al. 2012] (see demographic context) or by being part of
a social community, e.g., HCMM [Boldrini et al. 2009] (see social context). Points of interest
modeled are mostly locations of work places and homes [Isaacman et al. 2012; Zhang et al.
2014], but also restaurants or general attraction points, such as highly frequented squares
for pedestrians or intersections for vehicles. Points of interest found in generic models are
hot spot areas – generated through node gravitation to attraction points [Du et al. 2012]

7Some trace-based and survey-based models do not consider context.
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Table VI. Mobility context: Types of context found in literature related to mobility models featuring the
respective context type.
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or through a discrete time Markov process model that conditions velocity on the location
of the two ending waypoints of a transition [Hyytiä et al. 2006] – and locations of disaster
events featuring repelling and attracting forces [Nelson et al. 2007].

Temporal context. Typical temporal context characteristics are time of day and day of
week. Many mobility models differentiate mobility behavior along these characteristics.
PSMM [Cho et al. 2011] applies both to predict locations of a user for a specific point
in time. The generic model Community [Musolesi and Mascolo 2006] allows to define differ-
ent relationships for daytime (to colleagues at work), evenings, and weekends (to family and
friends). The time of day may be used to distinguish between normal, rush hour, and busy
hour periods (SMM [Basgeet et al. 2003]), and to schedule activities such as commuting to
work (WDM [Ekman et al. 2008], UDel [Kim et al. 2009], Agenda [Zheng et al. 2006]). All
in all, the temporal context is used to adapt mobility to usual temporal mobility patterns.

Entity context. This context type addresses the individual moving node. Nodes may take
different roles within a model, determining their mobility behavior. The concept of roles can
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be found in [Chen et al. 2012; Ekman et al. 2008; Galati et al. 2013; Kim et al. 2009; Morlot
et al. 2010; Nelson et al. 2007]: WDM [Ekman et al. 2008] and UDel [Kim et al. 2009]
differentiate between car owners, who drive their vehicles on the street grid, and public
transport commuters, who use subways (UDel), buses (WDM), or walk. Roles may also
relate to device usage as defined in MQNM [Chen et al. 2012], where laptop users visiting
one AP and leaving the network afterwards are differentiated from always-on users wearing,
e.g., phones that are constantly roaming between APs. Different social and professional
behavior can be expressed by roles: the Sheep model [Morlot et al. 2010] comprises “sheep
movers”, who follow the crowd of people during mass gathering events, and maverick movers,
who move independently; the Post-Disaster model [Nelson et al. 2007] comprises three roles,
namely civilians, who flee from the disaster event (except a fraction who is curious about the
disaster scene), police, who are attracted by the event, and ambulances oscillating between
the disaster area and the hospital.

A likewise prevailing type of entity context are activities. Models viewing mobility accord-
ing to daily routines consider activities such as work, commute, at home, evening, shopping,
eating out, exercise, etc. [Ekman et al. 2008; Hummel and Hess 2013; Kim et al. 2009; Zheng
et al. 2006]. In more specific settings, such activities can be more detailed such as modeled
in the entertainment park model [Vukadinović et al. 2014], which distinguishes between vis-
iting attractions, restaurants, events, or taking rides. Despite the similarities between the
role and the activity concepts, they are not the same: activities can be changed whereas a
role is held permanently.

Relational context. Relational context refers to interactions between mobile entities, or so-
cial relations and ties. Typical interaction model components are mechanisms for collision
avoidance, such as rules for overtaking slower walking pedestrians [Blue and Adler 2001;
Kim et al. 2009] or extrapolating trajectories of surrounding people to adapt direction
and speed accordingly [Vukadinović et al. 2014]. A generic model picturing the lane for-
mation behavior of pedestrians walking in the same direction is the Social Force Model
(SFM) [Helbing and Molnár 1995]. Coordination-related interaction between nodes belong-
ing to a crowd (also called flock) is modeled in the group mobility model NGM [Rossi et al.
2005]. Information about social relations is used to determine either the locations to visit
such as community hotspots or points of interest close to a friend’s place in SWIM [Kosta
et al. 2010] and PSMM [Cho et al. 2011], or to determine which nodes accompany each
other during traveling [Rossi et al. 2005]. The influence of joint activities on movement and
geographic locations has as well been explored by the accessibility modeling domain, e.g.,
from an analytical viewpoint in [Neutens et al. 2010]. An illustrative application of the joint
accessibility concept in urban geography is provided by Farber et al. [2013], who model
the spatio-temporal availability of social interaction opportunities in a metropolitan region
considering land use data and commuter flow statistics as input.

Demographic context. Demographic context might be derived from census-based data as
well as traffic/pedestrian density statistics. Population characteristics are used to extract
mobility characteristics of usual movement, such as commuting to work, etc. In the UDel
model [Kim et al. 2009], the population characteristics number of people living within
a city, commuting by car, and commuting by public transport, are leveraged. Commut-
ing distances and work/home districts are extracted from census data by the macroscopic
model WHERE [Isaacman et al. 2012]. Transitions are further motivated by a region’s at-
tractiveness: in the Radiation model [Simini et al. 2012], transitions to other geographic
regions are based on a region’s job opportunities, which are assumed to be proportional to
the region’s resident population. In some cases, demographic information is used to create
a model complying better to real world observations. Census-based population data are
utilized in ODFlow [Calabrese et al. 2011] to approximate the cellular trace-based model to
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actual population densities. The Square model [Desta et al. 2013] is adapted to pedestrian
populations observed by means of public webcams of squares in three cities.

5.4. Creating an extended mobility model
Including context aims at extending the capabilities of the mobility model to capture real
world phenomena better. By proceeding this way, mobility characteristics might be directly
affected by context. For example, entities must adapt movement to spatial structures such as
circumventing obstacles (change of direction) or adapting to other entities, e.g., by adjusting
the velocity to the current entity density (CAM [Blue and Adler 2001]). Specific context
may only be assigned to some mobility classes in the model, such as sidewalks to pedestrians
and multiple-lane roads to cars [Kim et al. 2009]. Moreover, the model might be extended
with context-dependent changes between mobility classes, e.g., changeovers from walking to
public transport every time a means of transport is available nearby (WDM [Ekman et al.
2008]).

In models defining human activities, context-based adaptation of movement character-
istics may also depend on the specific activity. For example, in the model WDM [Ekman
et al. 2008] the pause time on the way to work is influenced by the traffic situation, whereas
traffic has no influence on sojourn times at dinner or at leisure points of interest.

Finally, a model may be adjusted to its application. For example, if a particular city
area is studied (UDel [Kim et al. 2009]), street map, population data such as inhabitants,
(un)employed people, etc., and transportation schedules of the given city might be input.
To study effects of context changes, context parametrization leaves room for later model
adaption. An example is the macroscopic model WHERE [Isaacman et al. 2012], which
considers shifts in commuting distance triggered by factors such as increasing subway fares.

Typically, there is an open list of optional context parameters to be included in order to
transfer a baseline mobility model into an extended mobility model with increased realism.
By including more context aspects, the extended mobility model also becomes more compli-
cated leading to a potential loss of generality, increased likelihood of modeling errors, and
the need for extensive validation.

6. VALIDATION
Validating a mobility model requires the selection of validation metrics (Section 6.1) for
both the representativeness and the realism validation step (Section 6.2), of validation ref-
erences, and of comparison methods (Section 6.3). The tables in this section again provide
pointers to mobility models making use of the respective validation method. The validation
reference may be real observations (e.g., an additional data set not used for model building)
or another already validated mobility model [Härri et al. 2009]. Comparison methods may
range from visualizing deviations between a model and a validation reference to applying
statistical tests. Comparing the output of a mobility model, namely the synthetic traces,
with a validation reference is termed direct validation. Indirect validation denotes the strat-
egy of validating the response of the networked system under investigation. Figure 6 depicts
the scheme used for direct and indirect validation against observation of the real world.

6.1. Defining validation metrics and adequacy criteria
Mobility and context characteristics may serve as direct validation metrics, whereas network
performance metrics can be leveraged as indirect validation metrics. Adequacy criteria8

determine to which degree these metrics have to comply with expectations in order to
achieve a valid mobility model.

8Definition by Mayes [2009]: “Adequacy criteria provide the required maximum acceptable difference between
the validation experiment and the computational model response features.”
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Direct validation

Reality Mobility model Synthetic mobility traces

Indirect validation

Network simulation

Network performance

Fig. 6. Direct and indirect validation of a mobility model against real world observation.

To validate representativeness, context-independent metrics have to be defined. In princi-
ple, any known mobility characteristic may be leveraged (cf. Figure 5). Among those, major
mobility characteristics are: mobility range defined by a geometric shape, flight length de-
termining the covered distance from one waypoint to the next, overall path length of a trip,
pause and flight time, and start and travel time. Further revisiting location and contact
patterns between devices are features that may be used. Among these metrics, the flight
length is a commonly used validation metric for fine-grained models [Lee et al. 2009; Munjal
et al. 2011]. On coarse-grained level, path length [Chen et al. 2012], daily range [Isaacman
et al. 2012], and number of visited distinct locations [Song et al. 2010] are metrics that have
been selected for validation in the past.

Context-dependent metrics, on the other hand, are needed to evaluate a model’s real-
ism, since the evaluation of movement characteristics under context influence or the effect
of movement on context is targeted. Influencing context may relate to space such as the
topography of a region, time (daytime, season), etc., whereas, e.g., social relations may
be affected by co-location patterns. Investigated effects of movement in context are pedes-
trian or vehicular density at a crossing (CGTM [Yoon et al. 2006]) or at a street segment
(DBS3 [Vogt et al. 2012], UDel [Kim et al. 2009]). Furthermore, the deviation of a pre-
dicted location from the actual location has been used as a metric (PSMM [Cho et al.
2011], ICM [Ficek and Kencl 2012]).

6.2. Validation process – representativeness and realism
Both for validating representativeness and realism, statistical methods are used to evaluate
whether the respective metrics meet the adequacy criteria. Table VII gives an overview of the
validation provided for the surveyed mobility models. A first observation is that many mod-
els do not report on validation of representativeness or realism at all. Particularly generic
models are often compared to other synthetic/generic models to highlight optimized model
properties without connecting the model to empirical observations. To give an example,
it is shown for the Hotspot Gravitation Model (HGM) that in the visual comparison the
resulting trajectories appear more regular than trajectories from other generic models [Du
et al. 2012].

Representativeness. Baseline models are validated by evaluating their representativeness
with respect to context-independent metrics. Validation either leverages built-in metrics
that are features already used for model creation or external metrics, which have not been
used for model creation and allow to take a different perspective when rating the validity
of a mobility model. Whereas built-in metrics allow to validate whether the characteristics
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Table VII. Validation of representativeness, realism, or no validation as implemented by the respective
surveyed mobility models.

Generic Trace-based Survey-based Hybrid

R
ep

re
se

nt
at

iv
en

es
s Built-in metrics ModelT

mPat SLAW
SMOOTH
TMP
WLANM

DiAm

External metrics IM MQNM
TMP

MA
WHERE

R
ea

lis
m

Location-based DBS3 Radiation CGTM Dart-
mouth ICM
mPat MQNM
PSMM Sheep
TVC

UDel GPP
ODFlow
WHERE

Contact-based Community
SWIM

Mall NBody
SLAW
SMOOTH
TVC

WDM UDel EPM

No validation Arrival CAM
Disaster HCMM
HGM IMMT
MWP NGM
Obstacle SFM
Square Street

Agenda CPP
SMM

are well modeled (e.g., statistics are sound), external metrics are needed to rate the actual
compliance of the entire model with the original system. The more independent external
metrics are considered, the more confidence in the model’s validity can be achieved. In
practice, one common context variation originates from the different topologies of pathways
or streets used in simulation. A simple topology is a grid, more advanced topologies may
be defined by multiple lanes, sidewalks, etc. The validation mobility traces may now be
compared to the synthetic traces generated by a mobility model with a specific topology.
One major finding is that in particular the flight length is sensitive to the street structure,
as discussed in [Mayer and Waldhorst 2011]. In this work, a random walk and social model
are exposed to different grid-based graph structures and the resulting inter-contact time
distributions show that the different graph structures have a strong impact on both models.

Realism (and representativeness). Extended mobility models have to be validated both in
terms of their realism and representativeness by comparing context-dependent and context-
independent characteristics of synthetic and expected mobility behavior. In hitherto lit-
erature, more stress has been laid on realism than on representativeness (cf. Table VII),
reflected by location-based and contact-based validation approaches. Most frequently the ef-
fects of the modeled mobility on visited locations or user population is evaluated. Reference
data for location-based realism validations might be WLAN traces [Hsu et al. 2009], GPS
traces [Hsu et al. 2009; Munjal et al. 2011], or statistics such as traffic volume data [Kim
et al. 2009]. The validation of generic mobility models in terms of realism is targeted for
social community-based models such as SWIM [Kosta et al. 2010], for which contact pat-
terns are validated with Bluetooth-based trace data. It can be observed that validating
contact-based realism is often carried out leveraging Bluetooth contact trace data, cf. also
WDM [Ekman et al. 2008], TVC [Hsu et al. 2009], and SMOOTH [Munjal et al. 2011].

Realism versus representativeness. Although realism is often not explicitly differentiated from
representativeness, realism does not automatically imply representativeness. As an example,
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let us assume a fine-grained mobility model which has been created based on GPS traces
of individuals, who move within an urban area as pedestrians or using various means of
transport. The representativeness of the baseline model is validated using the context-
independent metrics direction change and flight length. The model is later extended with
context information by mapping the trajectories to a street topology. The realism of the
extended model is validated by means of context-dependent metrics, such as density at
a pedestrian crossing. Obviously, the mapping onto a street topology may have a strong
impact on the context-independent metrics as, e.g., adapting a trajectory to the course of a
road will affect direction changes and introducing traffic lights will cause more sojourn times
and shorter flights. Thus, it is not clear whether the new trajectories in the extended model
are still representative with respect to direction changes or flight lengths due to the impact
of the context information. Regarding the implication of a negative result of the validation
of representativeness of the extended model, it is an open question whether and under which
circumstances it is reasonable (in view of the modeling aim) to remove context information
distorting representativeness. Alternatively, one might argue that it is reasonable to discard
single trajectories that do not pass both validation runs, while this would distort the node
density, which is a metric for realism in the example above.

6.3. Methods for validation and model calibration
Validation methodology. Several validation approaches are mentioned in recent works, each

having its benefits and weaknesses. Validation usually begins with a visual comparison of
the distribution of validation metrics, which is done for the majority of models surveyed (cf.
Table VIII). However, visual comparison only gives a very basic idea of how well a model
fits a validation reference and what could be a possible cause for a lack-of-fit. Moreover,
visual validation does not allow the designer of a mobility model to make general statements
about the model’s representativeness or, e.g., to quantify and compare the representative-
ness of several models for the same validation references. The reliability of the validation
process can be reinforced by additionally computing the deviation between observed values
of mobility characteristics and those occurring in the synthetic traces. High reliability is
ensured when a standardized statistical test, such as a goodness-of-fit test, is applied. Most
of these tests would, e.g., reject a distribution function exhibiting an inadequate fit without
the need to define a well-chosen threshold. Only a few works perform a goodness-of-fit test –
common tests in use are: the Kolmogorov-Smirnov test [Chen et al. 2012], the mixed-sample
method [Ficek and Kencl 2012], or calculating the Kullback-Leibler divergence [Lee et al.
2012; Meyer et al. 2011] or the AIC (Akaike Information Criterion) [Jurdak et al. 2015].

For comparison data sets or a reference mobility model are needed. A good practice
followed by the discussed models is validation with other data sets that have not been
used in the model building process. An example is the generically formulated Radiation
model [Simini et al. 2012] that is validated with multiple data types, such as census data
and inter-city travels extracted from cellular network data. If one trace data set is applied
for both model building and validation, it is reasonable to split the set into training and test
data such as done for ModelT [Jain et al. 2005] and WLANM [Tuduce and Gross 2005].

As more and more implementations of mobility models are publicly available, it becomes
possible to evaluate models also against other already existing models. This has been done
for SMOOTH [Munjal et al. 2011], whose validation metrics are compared to SWIM [Kosta
et al. 2010], SLAW [Lee et al. 2009], and TLW [Rhee et al. 2008]. mPat [Zhang et al.
2014] is compared to the other coarse-grained models Radiation [Simini et al. 2012] and
WHERE [Isaacman et al. 2012] for different time scales as well as daytimes, which led
to observations such as that all models perform best for morning commuter mobility con-
firming the high predictability of this special mobility case. In another work, the presence
probability at all possible locations between two cell towers estimated by the interpolation
model ICM [Ficek and Kencl 2012] is validated against a space-time prism model [Winter

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for 
your personal use. Not for redistribution. The definitive version was published in ACM Computing 
Surveys Volume 48 Issue 3, February 2016 http://doi.acm.org/10.1145/2840722



A:30 Human Mobility Modeling: A Survey and Engineering Guidance

Table VIII. Validation methodology and data sets, and mobility model calibration as implemented by
the respective surveyed mobility models.
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and Yin 2010] (see Section 5.2). Dedicated to the validation of space-time volume models,
[Kobayashi et al. 2011] provide an analytical tool for assessing the spatial error propagation
from model parameters to prisms and prism-prism intersections, which indicate potential
contacts with other moving entities.

Model calibration. In case of a negative validation result, the model needs to be calibrated in
an iterative process, i.e., the model is adapted and its representativeness or realism is rated
repeatedly until the adequacy criteria are fulfilled. Possible calibration means to improve
a non-representative or unrealistic model are (i) adapting parameter values and ranges,
(ii) adding or discarding parameters, and (iii) changing parameter relations (dependencies).
Most commonly, the term “calibration” is used to refer to the aspect of “parametrization”:
Parameter values of a mobility model are adapted to match a set of traces or a particular
context.

The studied models address calibration by changing particular model parameter values
(or value ranges). Methodologically of interest is the approach presented by Sheep [Morlot
et al. 2010], which adjusts the number of city zones, total number of nodes, maverickness rate
(the probability that a node is not influenced by other nodes), and pause time to create user
densities for three attraction areas in Paris that match the observed total number of sent text
messages derived from GSM traces. Another important representative of model calibration
is demonstrated in the validation of EPM [Vukadinović et al. 2014]. The model is adapted
to properties of the given environment (a theme park) and the mobility observed there. The
study area is adapted according to the theme park map specifying the location of points
of interest such as attraction areas or restaurants. Other context parameters are derived
from visitor statistics (e.g., guest arrival rate) and time schedules (e.g., time of events,
ride durations). Transition probabilities between points of interest and sojourn times are
derived from GPS traces. After calibration, synthetic traces are generated that are the basis
for the contact-based validation of realism. Other works conducting calibration processes
aim at recreating patterns observed in different types of trace data, e.g., by fitting model
parameters (see Radiation [Simini et al. 2012], SMOOTH [Munjal et al. 2011], SWIM [Kosta
et al. 2010], TVC [Hsu et al. 2009]).
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Whereas changing parameter values or value ranges can be easily performed, adding or
removing parameters or relations is more complicated. In particular in case multiple (partly
dependent) forces have to be considered such as social ties and physical environment, more
sophisticated model calibration techniques are needed. This is an open challenge in mobility
modeling research.

7. SUMMARY OF OBSERVATIONS AND TRENDS IN MOBILITY MODELING
Mobility modeling has a long tradition in wireless networking. Table IX gives an overview of
the reviewed mobility models for wireless networking as they appeared in the literature over
time9. We can observe that the first mobility models have been deployed to analyze cellu-
lar networks, e.g., to support capacity planning. Early models could draw on fundamental
concepts from traffic engineering, such as land use forecasting (cf. [Herbert and Stevens
1960]), spatial gravity (cf. [Evans 1973]), or source/destination path computation (cf. [van
Vliet 1978]). Later, finer-grained models have been introduced. Generally, trace-based mod-
els have become predominant in the last few years providing a good foundation for realistic
mobility modeling.

Table IX. Timeline of mobility models presented for wireless networking evaluations. Upper part:
number of presented mobility models using a particular type of data set (both for model building and
validation). Lower part: number of models along distinguishing features of the models. The column
headers give the total number of models published (it should be noted that in several instances a
single model utilizes more than one type of data set).

Year ≤’01 ’03 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15
# Mobility models published 3 2 3 6 3 1 4 6 3 8 3 1 1

D
at

a

Public transport check-ins 1
Social appl. data 1 1 1

Cellular network data 3 1 3 1
GPS data 1 2 1 2 1 1

Bluetooth data 1 1 1 1 1 1
Activity/mobility statistics 2 1 1 1 1 1

WLAN data 2 2 1 1 1
Census data 1 1 2

Generic 3 1 1 2 1 2 1 4 1

D
is

tin
gu

is
hi

ng
fe

at
ur

es

Pedestrian dynamics 2 1 1 1
Source/destination 1 1 1 1 1 1 1 1

Land use 1 1 1 1 1
Spatial gravity 1 1 2 1 1 1 3

Sojourn pattern 2 2 1 1
Social gravity 1 1
Interpolation 2 1

Agenda/activity 1 1 1 1 1
Social communities/ties 1 1 1 1 1

Contact process 1 1 1
Location preferences 1 1 1 1 1

Periodicity 1 1 1 1
Fine-grained movement 1 1 1 1
Macroscopic dynamics 1 1 2 1

In the following, we summarize to what extent the main steps of the mobility model
engineering process are reflected in the current literature as well as trends observed (details
are discussed in Sections 4–6).

9We selected the models with respect to their fundamental novelty compared to models that have been
respectively introduced earlier.
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Empirical observation of reality. First we note that 16 out of all 44 mobility models we sur-
veyed are not based on any empirical observation. In particular early mobility models are
either generic models or rely on nation-wide data collection systems (census data), which
provide demographic and topographic data. We further observe that the availability of data
for mobility and network behavior studies is a driving force for realistic mobility model-
ing. Data gathering and filtering are steps of increasing importance in mobility modeling.
Already in pioneering works in user behavior mining of network data, user mobility anal-
ysis was addressed, e.g., 1999 in the work of Tang and Baker [1999] for a city-wide wire-
less mesh network. In particular the wide availability of WLAN measurements paved the
way for the development of trace-based mobility models. Bluetooth-based contact data and
social/location-based service data enable modeling of social communities and social ties.
However, as Bluetooth data capture only contacts of devices without spatial information,
these data are less often employed for modeling (cf. Table IV), but very useful for validat-
ing contact statistics produced by a mobility model. Models concerned with macroscopic
dynamics on larger areas mostly rely on cellular network data and on census data. With the
growing availability of GPS data, finer-grained traces and trace-based models became feasi-
ble also on larger scale such as a city, state, or a country. Yet a large enough representative
user base for generating these traces has to be assured.

Model creation. State-of-the-art mobility modeling processes as reflected in the current
literature do in general not differentiate between model building and model validation.
They further do not differentiate between building a baseline mobility model first and
extending it later by taking into account specific context information to improve realism. By
differentiating, however, we find that modeling decisions taken become clearer, models can
be better evaluated, and compared with one another. Regarding realism, 8 of the surveyed
models do not include any context, which concerns mostly trace-based models.

Implementations of several models are publicly available. A few simple synthetic models
are implemented in general network simulators (e.g., ns-310 or OMNet++11). More realistic
models are implemented in simulators for special types of mobile wireless networks (see, e.g.,
theONE [Keränen et al. 2009] for opportunistic networks). Moreover, specialized simulators
with the main aim of generating mobility traces integrate a wide range of models, such as
BonnMotion [Aschenbruck et al. 2010], transport models simulators (MATSIM [Horni et al.
2011], SUMO [Behrisch et al. 2011], etc.), and simulators of global mobility dynamics (e.g.,
GLEAM [Van den Broeck et al. 2011]). For a detailed listing of available implementations
we refer the reader to the survey of Aschenbruck et al. [2011].

Model validation. 15 of the mobility models we have surveyed do not discuss any validation.
This often concerns generic models enhancing simple synthetic models. If a validation step
is discussed, it is more often targeting the realism of a mobility model (22/44) than its
representativeness (11/44). Mobility modeling practice uses visual comparison, statistical
test for fitness of the model against real data, and evaluation against other existing models.
Both representativeness and realism are explicitly validated for only 5 of the mobility models
surveyed.

Guidance for mobile networking researchers (searching for a mobility model). Introducing mobility
models along a structured engineering process allows for selecting a model by evaluating
the distinct features of candidate models. The evaluation includes rating the selected data
sources (and their representativeness for the specific application) and scrutinizing the mod-
eled features of mobility. Finally, it should be evaluated whether the model has been properly
validated. The selection process may best start with Figure 3, which relates features to mo-

10https://www.nsnam.org/
11http://www.omnetpp.org/
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bility models, resulting in a set of candidate models that may be evaluated step-by-step.
Alternatively, as the validation is a fundamental step, the selection of a mobility model may
also start with using Table VIII, or with any other “step”. It is important to note that the
selection of an appropriate mobility model – or the need to create a new model – depends on
the application context, which determines the modeling aspects of interest as well as those
that can be disregarded for reasons of simplicity and negligible impact on the performance
of the studied network. For example, in opportunistic networks, contact characteristics are
more important than spatial characteristics, whereas for location-based routing algorithms,
realistic spatial mobility modeling is essential.

8. CONCLUSIONS
We surveyed and reviewed the recent literature on mobility modeling dedicated to mobile
networking. More than 40 models for human mobility have been proposed in the last decade
providing a mature understanding of human mobility. Yet structured creation of mobility
models has been missing, which we addressed by a modeling framework for engineering
realistic models of human mobility. The modeling framework formalizes a process that is
often implicitly carried out in existing data-driven mobility modeling efforts. Intended to
provide guidance and not to set up a strict set of rules, the framework raises awareness of
the important aspects of a model’s representativeness and realism, with the aim to increase
the validity and comparability of mobility models.

Our analysis reveals that in particular the validation step in data-driven modeling requires
improvement. About one half of the surveyed mobility models are introduced without an
explicit discussion of model validation, neither in terms of representativeness nor in terms
of realism. The introduction of benchmark traces for validation is one option to counteract
the lack of explicit model validation and make mobility models comparable.

Yet an upcoming challenge with respect to traces used for model creation and benchmark
traces is to keep them up-to-date. Wireless user devices have become increasingly mobile,
leading to outdated traces as in the case of WLAN traces of more stationary notebooks
that are not representative for smartphone mobility. This trend will continue for wearable
devices that exhibit an even higher degree of mobility, which will cause additional demand
for adapting existing data sets.
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Huens, Frédéric Morlot, Zbigniew Smoreda, and Cezary Ziemlicki. 2012. Data for Devel-
opment: the D4D Challenge on Mobile Phone Data. CoRR abs/1210.0137 (2012), 1–10.
http://arxiv.org/abs/1210.0137

Victor J. Blue and Jeffrey L. Adler. 2001. Cellular automata microsimulation for modeling
bi-directional pedestrian walkways. Transportation Research Part B: Methodological 35,
3 (2001), 293 – 312. DOI:http://dx.doi.org/10.1016/S0191-2615(99)00052-1

Chiara Boldrini, Marco Conti, and Andrea Passarella. 2009. The sociable traveller: human
travelling patterns in social-based mobility. In Proceedings of the ACM International
Symposium on Mobility Management and Wireless Access (MobiWAC). ACM, New York,
NY, USA, 34–41. DOI:http://dx.doi.org/10.1145/1641776.1641782

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva.
1998. A Performance Comparison of Multi-hop Wireless Ad-hoc Network Routing
Protocols. In Proceedings of the 4th Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom). ACM, New York, NY, USA, 85–97.
DOI:http://dx.doi.org/10.1145/288235.288256

Francesco Calabrese, Massimo Colonna, Piero Lovisolo, Dario Parata, and Carlo Ratti.
2011. Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome.
IEEE Transactions on Intelligent Transportation Systems 12, 1 (2011), 141–151.
DOI:http://dx.doi.org/10.1109/TITS.2010.2074196

Francesco Calabrese, Giusy Di Lorenzo, Liang Liu, and Carlo Ratti. 2011. Estimating
Origin-Destination Flows Using Mobile Phone Location Data. Pervasive Computing 10,
4 (2011), 36–44. DOI:http://dx.doi.org/10.1109/MPRV.2011.41

Francesco Calabrese, Giusy Di Lorenzo, and Carlo Ratti. 2010. Human mobility prediction
based on individual and collective geographical preferences. In Proceedings of the 13th
International IEEE Conference on Intelligent Transportation Systems (ITSC). 312–317.
DOI:http://dx.doi.org/10.1109/ITSC.2010.5625119

Tracy Camp, Jeff Boleng, and Vanessa Davies. 2002. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing 2, 5 (2002), 483–502.

Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and
James Scott. 2007. Impact of Human Mobility on Opportunistic Forward-
ing Algorithms. IEEE Transactions on Mobile Computing 6 (2007), 606–620.
DOI:http://dx.doi.org/10.1109/TMC.2007.1060

Yung-Chih Chen, J. Kurose, and D. Towsley. 2012. A mixed queueing network model of
mobility in a campus wireless network. In Proceedings of the IEEE INFOCOM. IEEE,
2656–2660. DOI:http://dx.doi.org/10.1109/INFCOM.2012.6195673

Zhuo Chen, Lu Wang, and Nelson H.C. Yung. 2011. Adaptive Human Mo-
tion Analysis and Prediction. Pattern Recognition 44, 12 (2011), 2902–2914.
DOI:http://dx.doi.org/10.1016/j.patcog.2011.04.022

Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility: user
movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD). ACM, New
York, NY, USA, 1082–1090. DOI:http://dx.doi.org/10.1145/2020408.2020579

Marco Conti, Silvia Giordano, Martin May, and Andrea Passarella. 2010. From opportunis-
tic networks to opportunistic computing. IEEE Communications Magazine 48, 9 (2010),
126–139. DOI:http://dx.doi.org/10.1109/MCOM.2010.5560597

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for 
your personal use. Not for redistribution. The definitive version was published in ACM Computing 
Surveys Volume 48 Issue 3, February 2016 http://doi.acm.org/10.1145/2840722



A. Hess, K.A. Hummel, W.N. Gansterer, and G. Haring A:35

Caitlin Cottrill, Francisco Pereira, Fang Zhao, Inas Dias, Hock Lim, Moshe Ben-
Akiva, and P. Christopher Zegras. 2013. Future Mobility Survey: Experience in
Developing a Smartphone-Based Travel Survey in Singapore. Transportation Re-
search Record: Journal of the Transportation Research Board 2354 (2013), 59–67.
DOI:http://dx.doi.org/10.3141/2354-07

Yves-Alexandre de Montjoye, Zbigniew Smoreda, Romain Trinquart, Cezary Ziemlicki, and
Vincent D. Blondel. 2014. D4D-Senegal: The Second Mobile Phone Data for Development
Challenge. CoRR abs/1407.4885 (2014), 1–11.
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Dirk Helbing and Péter Molnár. 1995. Social force model for pedestrian dynamics. Phys.
Rev. E 51 (1995), 4282–4286. Issue 5. DOI:http://dx.doi.org/10.1103/PhysRevE.51.4282

David A. Hensher and Kenneth J. Button. 2008. Handbook of Transport Modelling. Elsevier.
John D. Herbert and Benjamin H. Stevens. 1960. A Model for the Distribution of Res-

idential Activity in Urban Areas. Journal of Regional Science 2, 2 (1960), 21–36.
DOI:http://dx.doi.org/10.1111/j.1467-9787.1960.tb00838.x

Andreas Horni, Kai Nagel, and Kay W Axhausen. 2011. High-resolution destination choice
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