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Abstract

Combinatorial auctions (CA) are a well-studied area in algorithmic mechanism
design. However, contrary to the standard model, empirical studies suggest that a
bidder’s valuation often does not depend solely on the goods assigned to him. For
instance, in adwords auctions an advertiser might not want his ads to be displayed
next to his competitors’ ads. In this paper, we propose and analyze several nat-
ural graph-theoretic models that incorporate such negative externalities, in which
bidders form a directed conflict graph with maximum out-degree ∆. We design
algorithms and truthful mechanisms for social welfare maximization that attain
approximation ratios depending on ∆.

For CA, our results are twofold: (1) A lottery that eliminates conflicts by
discarding bidders/items independent of the bids. It allows to apply any truth-
ful α-approximation mechanism for conflict-free valuations and yields an O(α∆)-
approximation mechanism. (2) For fractionally sub-additive valuations, we de-
sign a rounding algorithm via a novel combination of a semi-definite program
and a linear program, resulting in a cone program; the approximation ratio is
O((∆ log log ∆)/ log ∆). The ratios are almost optimal given existing hardness re-
sults.

For the prominent application of adwords auctions, we present several algo-
rithms for the most relevant scenario when the number of items is small. In par-
ticular, we design a truthful mechanism with approximation ratio o(∆) when the
number of items is only logarithmic in the number of bidders.

1 Introduction

Combinatorial auctions (CA) are an important area in algorithmic mechanism design
due to wide-spread applications in resource allocation and e-commerce, e.g., spectrum
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or adwords auctions [CSS06]. In the standard CA, a set of items is assigned to a set
of bidders in order to maximize social welfare, which is given by the total valuations of
bidders for their assigned items. This assumes that each bidder values exclusively the set
of items assigned to him — his valuation is independent of the assignment of other items
to other bidders. In many applications (see [JMS96, JMS99] for examples), however, such
an assumption is not justified since bidder preferences have a significant dependence on
how items are assigned to other bidders. Such a dependence is called externality.

Mechanism design for CA with externalities in the most general form is difficult,
primarily due to the huge complexity of bidders’ preferences with externalities, which
then also leads to the computational complexity issue for (approximately) maximizing
social welfare. Prior work has studied more restricted scenarios, e.g., when there is only
one item on sale, or when the bidders’ preferences are simple (e.g., unit-demand). In this
work, we focus on a simple type of externalities called conflict-based externality, which is
readily motivated by sponsored search auctions (SSA); in our model, there are multiple
items on sale, and the bidders’ preferences might be more complex than unit-demand
ones.

SSA are one of the most popular special cases of CA, where ad slots on a search
result page are assigned to advertisers. Negative externality arises when, for example, a
car-rental company has much smaller value for an ad slot if an ad of another prominent
rental company is shown right next to it. More generally, for an advertiser there might
be a number of competitors, and an assignment yields value to the bidder only if the ads
of competitors are not displayed simultaneously. The existence of negative externalities
in sponsored search has been confirmed empirically [GIM09]. Moreover, similar negative
externalities also arise in other prominent applications of CA, e.g., in secondary spectrum
auctions where interferences induce negative externalities; or when selling luxury goods,
where the value of a buyer for items from an exclusive brand drops when other buyers
also obtain items from the same brand. These examples give rise to a natural and simple
graph-based model of externalities: each bidder is a node in a directed graph, and a
directed edge indicates that a bidder sees another bidder as a competitor; assigning an
item to a bidder yields value only if none of the competitors receives any item (or just
any “similar” or “better” item).

Negative externalities in auctions have recently received attention, but — perhaps
surprisingly — the natural and simple idea sketched above has not been analyzed in a
rigorous and general fashion. We propose three graph-theoretic models that incorpo-
rate these conflict-based externalities. We study approximation algorithms and truthful
mechanisms under the models. Formally, we assume there is a directed conflict graph on
the set of bidders. Each edge (i, j) indicates a conflict: i has no value for any assign-
ment in which j receives an item. More generally, we also consider cases where conflicts
arise only among certain pairs of items, or different values for assignments that include
or avoid certain conflicts. Our algorithms cope with externalities via new extensions of
algorithmic techniques for independent set problems in combination with algorithms for
conflict-free CA. We also provide additional results for the prominent special case of SSA.
Before we state our results, we proceed with a formal introduction and discussion of the
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models on conflict-based externalities treated in this paper.

1.1 Auctions with Conflict-Based Externalities

In all models, we have a bidder set B of n bidders and an item set I of m items. Each
item can be given to at most one bidder. For each i ∈ B, there is a valuation function
vi : 2I → R+, where vi(Si) represents the value for receiving item set Si ⊆ I. In the
SSA case, the items in I are ad slots. Each slot k has a click-through rate αk ≥ 0. Each
bidder i has a valuation per click of vi ≥ 0 in one slot. Then vi(Si) = maxk∈Si

vi · αk, a
unit demand valuation function with free disposal.

The valuation vi(Si) will be extended, due to externalities, to vci (S), a valuation that
depends on the complete allocation S = (S1, · · · , Sn). The goal is to find an allocation S
that maximizes social welfare SW (S) =

∑
i∈B v

c
i (S).

CA with Bidder Conflicts. The set of bidders B is the vertex set of a (bidder) conflict
graph G = (B,E), which is a directed graph. Each bidder i has a valuation function
vi : 2I → R+. Given a complete allocation S = (S1, · · · , Sn),

vci (S) =

{
vi(Si) if

⋃
j:(i,j)∈E Sj = ∅

0 otherwise.

This models the situation that advertiser i is not interested in showing its ad together
with an ad from a competitor j, represented by an edge (i, j) ∈ E.

The introduction of conflicts turns social welfare maximization NP-hard; in the special
case SSA with all vi = 1, all αk = 1, and m = n, it reduces to the maximum independent
set problem.

CA with Bidder and Item Conflicts. There are two conflict structures in this model, each
represented by a directed graph. The bidder set B is the vertex set of a bidder conflict
graph G = (B,E). The item set I is the vertex set of an item conflict graph GI = (I, EI).
Both graphs are directed. Intuitively speaking, if (i, j) ∈ E and (k, `) ∈ EI , then bidder
i has no use for item k if j receives item `. Formally, for any allocation S, bidder i has a
set Di of useless items, defined as Di := {k ∈ Si | ∃` ∈ Sj : (i, j) ∈ E and (k, `) ∈ EI},
and vci (S) := vi(Si \Di).

An intuitive example is ordered conflicts, where ad slots are ordered on a page top-
down, and a bidder has a conflict only if a competitor receives a slot above him. This can
be modelled by numbering slots top-down and EI = {(k, `) | k, ` ∈ I, ` < k}. Another
intuitive example is neighbor conflicts, where ad slots are arranged horizontally, and a
bidder has conflict only if a competitor receives a slot right next to him. This can be
modelled by numbering slots from left to right and EI = {(k, `) | k, ` ∈ I, |k − `| = 1}.

Note that CA with bidder conflicts is a sub-case of this model, when GI is the complete
digraph.

The results in this paper depend on two parameters ∆ and ∆I of the conflict graphs,
which are the maximum out-degrees of the graphs G and GI respectively.
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CA with Bidder Conflicts and Conflict Value. In CA with bidder conflicts, we assume
that the valuation of a bidder drops to vi(S) = 0 as soon as a competitor receives
any item. We can generalize this assumption to a second valuation function wi(Si): if⋃
j:(i,j)∈E Sj = ∅, then vci (S) = vi(Si); otherwise, vci (S) = wi(Si).

This model can be reduced to the model with bidder-conflicts only. Given an instance
of CA with bidder conflicts and conflict value, we build an instance without conflict value
as follows: for each bidder i, we add an auxiliary bidder ic, where vic(Si) = wi(Si). In the
bidder conflict graph, we add the edges (i, ic) and (ic, i). This increases ∆ by exactly 1.
Now if bidder i is conflicted, we can take all items assigned to it and assign them to bidder
ic instead. In this way, we can transform any allocation into the instance without conflict
value and obtain the same social welfare. It is straightforward to observe that social
welfare maximization in both instances is equivalent. This, however, does not directly
apply to truthfulness.

There are numerous further ways to extend our models, e.g., to combinations of
item conflicts and conflict values, weighted conflicts, etc. Studying their properties are
interesting avenues for future work.

1.2 Our Contribution

For CA with conflict-based externalities, we design and analyze poly-time approxima-
tion algorithms and truthful mechanisms which provide almost best possible approxima-
tion guarantees of maximizing social welfare. To state our results, we first define the
class of fractionally sub-additive valuations, which is known to strictly contain the more
well-known unit-demand valuations, linear valuations, gross substitute valuations and
submodular valuations.

Definition 1 (See [FV10]). A fractionally sub-additive valuation is a valuation function
v : 2I → R that satisfies the following property for any S, T1, T2, · · · , Tk ∈ 2I and 0 ≤
α1, α2, · · · , αk ≤ 1: if for all j ∈ S,

∑
`: j∈T` α` ≥ 1, then v(S) ≤

∑k
`=1 α` · v(T`).

For CA with bidder conflicts, we use well-known techniques for independent set prob-
lem to eliminate conflicts, which is in a spirit similar to lottery, to give a reduction to
conflict-free CA. Given any α-approximation algorithm for the unconflicted problem, we
obtain an O(α∆)-approximation algorithm for CA with bidder conflicts (Theorem 1). If
the original algorithm is a truthful mechanism, our reduction preserves the truthfulness.
Moreover, our reduction preserves the use of randomization (deterministic, universally
truthful, truthful in expectation). If the bidders have fractionally sub-additive valua-
tions, our results extend to CA with bidder and item conflicts (Theorem 6).

The next natural question to ask is whether one can improve the approximation ratio
to o(∆). Since our problem generalizes the weighted independent set (WIS) problem1,
the ratio must be Ω(∆/ log4 ∆) [Cha13], even for unit-demand valuations. We answer the

1Given any graph G = (V,E), J ⊂ V is an independent set if no two vertices in J are connected
by an edge in E. The WIS problem is: suppose each vertex v ∈ V has a positive weight wv, find an
independent set J which maximizes

∑
v∈J wv.
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question positively: if the bidders have fractionally sub-additive valuations and if there
is a demand oracle for each bidder, we design an O((∆ log log ∆)/ log ∆)-approximation
algorithm (Theorem 7). This implies, for example, ratios of O((∆ log log ∆)/ log ∆) for
sponsored search, unit-demand, or more general gross-substitute valuations. The depen-
dence on ∆ mirrors the best-known approximation ratio for WIS. Our algorithm combines
an approach for WIS based on semi-definite programming (SDP) with the standard ap-
proach for CA based on linear programming (LP) to design a cone program relaxation
and a rounding scheme. To the best of our knowledge, we are the first to combine an
SDP with an LP in this fashion, and to show how to analyze it. We believe this technique
might be of independent interest in other applications. It is an interesting open problem
if this approach can be turned into a truthful mechanism, or be generalized to CA with
bidder and item conflicts.

We then focus on SSA with bidder conflicts. Even in this special case, the hardness
bound of Ω(∆/ log4 ∆) applies. We consider a restriction to a small number of slots
that is natural in the context of sponsored search. For the case of m = O(log n) slots, we
present a truthful mechanism based on SDP that obtains an O(∆ ·

√
(log log ∆)/(log ∆))-

approximation (Theorem 17). To obtain the desired truthfulness property, the first step
of our mechanism is to gather a statistic from a sampling of bidders who will not be
allocated any item, which is similar the first two steps in the framework of Dobzinski
et al. [DNS12] for designing truthful mechanisms. However, the subsequent steps of our
algorithm will be different from theirs.

Also, we get an O(logm)-approximation algorithm based on partial enumeration that
runs in time O((m∆)m) (Theorem 18); the algorithm can be turned into truthful-in-
expectation mechanisms with the same approximation guarantee, and it extends to CA
with bidder and item conflicts.

1.3 Related Work

The study of auctions with externalities was initiated by seminal work of Jehiel et
al. [JMS96, JMS99] in the single-item setting. The externality in this work is identity-
dependent, i.e., each bidder can have a different valuation when different bidders obtain
the item. The preference of each bidder can thus be represented by a low dimensional
Rn+1 vector, which reflects the bidder’s valuation on the (n+1) possible outcomes. In our
model, a bidder is indifferent between the bidders who he conflicts with, but our model
allows multiple items in an auction.

Gomes et al. [GIM09] gave empirical evidence that externalities exist in real-life SSA.
Externalities in online advertising were investigated by [GM08] using a probabilistic
model. CA with externalities were presented in [KMSW10, CS12, HIMM13], and max-
imizing social welfare was shown to be NP-hard. In [GS10] a sponsored search setting
was treated where each advertiser has two valuations, one if his ad is shown exclusively
and one if it is shown together with other ads. This is a special case of our model for
CA with bidder conflicts and conflict values. A different line of work considered bidder-
independent externalities in the click-through rates of SSA [AFMP08, KM08, RT12]. All
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this work considered only the unit-demand setting.
Our model of SSA with bidder conflicts has been proposed and studied before by

Papadimitriou and Garcia-Molina [PGM12]. They consider an approach based on exact
optimization algorithms using ILP, implement truthfulness using VCG, and experimen-
tally evaluate their approach with respect to running time and revenue on a dataset
from the Yahoo! Webscope. However, they do not consider polynomial-time algorithms,
provable approximation ratios, or extensions to CA with more general valuations.

Our work is related to approximation algorithms for weighted independent set prob-
lem, a central problem in the study of approximation algorithms and computational
hardness over the past four decades. For a survey on some of the work on approxi-
mation algorithms, see, e.g., [Hal98]; here, we just mention a number of directly re-
lated results. The problem is known to be NP-hard to approximate within a ratio of
n1−ε [H̊as99], and even in undirected ∆-regular graphs it remains hard for a ratio of
O(∆/ log4 ∆) [Cha13]. A trivial greedy algorithm obtains an approximation ratio of
(∆ + 1) in undirected graph with maximum degree ∆. For directed graphs, which arise
in our application, a simple randomized (4∆)-approximation algorithm exists. The best-
known approximation algorithms for undirected graphs with maximum degree ∆ attain
ratios of O((∆ log log ∆)/ log ∆) [Hal00, Hal02]. They are based on rounding suitable
SDP relaxations, and below we build on these techniques and their analysis to provide
algorithms for our cases, which involve directed graphs.

More recently, the study of asymmetric and edge-weighted versions of independent
set has found interest, especially in the context of secondary spectrum auctions [ZGSZ08,
HK12, HK13, HKV14], where bidders are wireless devices that strive to obtain channel
access under interference constraints. In these scenarios, bidders become vertices in a
conflict graph. Each channel is an item that can be given to any subset of bidders
representing an independent set in the graph.

2 CA with Bidder and Item Conflicts via Lottery

In this section, we present results for CA with bidder and item conflicts. We assume that
either (i) ∆ is bounded and GI is arbitrary, or (ii) ∆I is bounded, G is arbitrary and
bidders have fractionally sub-additive valuations.

2.1 Bounded Out-degree in the Bidder Conflict Graph

For case (i), we prove the following result:

Theorem 1. Given a (maximal-in-range) deterministic α-approximation algorithm f for
CA without conflicts, there exists a (truthful maximal-in-range) deterministic (16∆α/3)-
approximation algorithm f c for CA with bidder and item conflicts satisfying condition
(i).

The main idea of Theorem 1 is to first generate a “good” conflict-free bidder set Bc,
and then apply the blackbox algorithm f w.r.t. the bidders in Bc. Initially, each bidder
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is in Bc with probability 1/(2∆). Then, if there are still bidder conflicts within Bc, we
remove those bidders having conflicts. Overall, each bidder is in Bc with probability of at
least 1/(4∆), and this will translate into a randomized (4∆α)-approximation algorithm
f c.

We derandomize the above algorithm using the standard technique of pairwise inde-
pendent distributions [LW05]; this will lead to an increase of the approximation ratio from
4∆α to 16∆α/3. Since no bidder can alter Bc by changing his valuation, truthfulness is
preserved from f to f c. The details of derandomization is given in Appendix A.1.

Next, we discuss the details of designing the randomized (4∆α)-approximation algo-
rithm. The results apply to arbitrary restrictions on the valuations (e.g., submodular
valuations). Given an allocation S = (S1, . . . , Sn) of items to bidders, we show how
to compute a random set Bc ⊆ B such that (1) if (i, j) ∈ E then i 6∈ Bc or j 6∈ Bc,
(2)
∑

i∈B vi(S) ≤ (4∆)EBc [
∑

i∈Bc vi(S)], and (3) the selection of Bc does not depend on
the valuations.

We will use pairwise independent distributions; such distributions always exist as one
can pick the elements in B independently with probability q.

Definition 2. We call a distribution D over subsets of a set B “pairwise independent
with probability q” if for BR ∼ D and i 6= j ∈ B holds that Pr

[
i ∈ BR

]
= q and

Pr
[
{i, j} ⊆ BR

]
= Pr

[
i ∈ BR

]
·Pr

[
j ∈ BR

]
.

Algorithm 1: Conflict-free random set

1 Pick a random subset BR from a distribution over subsets of B that is pairwise
independent with probability 1/(2∆);

2 Bc ← BR;
3 For each i ∈ BR: if ∃j ∈ BR with (i, j) ∈ E then delete i from Bc;
4 return Bc

The random set Bc computed by Algorithm 1 is constructed in the following way.
First, in line 1 the algorithm picks a random subset from a pairwise independent distri-
bution with probability 1/(2∆). Next, in line 3 the algorithm resolves all the remaining
conflicts between the bidders. The proof of Lemma 3 exploits that every bidder is in Bc

with probability at least 1/(4∆).

Lemma 2. In Algorithm 1, every bidder is in Bc with a probability of at least 1/(4∆).

Proof: For all i ∈ B let Qi be the event that i ∈ BR in line 1. Thus, the probability
for this event is Pr [Qi] = 1/(2∆). The probability that a bidder i ∈ BR gets deleted

in line 3, conditioned on that it was selected in BR, is Pr
[⋃

j∈N(i) Qj | Qi

]
, where N(i)
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denotes the set of out-neighbors of bidder i ∈ B.

Pr

 ⋃
j∈N(i)

Qj

∣∣∣∣∣ Qi

 =
Pr
[
(
⋃
j∈N(i) Qj) ∩Qi

]
Pr [Qi]

=
Pr
[⋃

j∈N(i)(Qj ∩Qi)
]

Pr [Qi]

(∗)
≤
∑

j∈N(i) Pr [Qj ∩Qi]

Pr [Qi]

(∗∗)
=

∑
j∈N(i) Pr [Qj] Pr [Qi]

Pr [Qi]
=
∑
j∈N(i)

Pr [Qj] ≤
1

2
.

In the above (in)equalities, (∗) follows from Boole’s inequality and (∗∗) follows from
pairwise independence.

Thus, the probability that i ∈ Bc at the end of the loop is

Pr [Qi] Pr

( ⋃
j∈N(i)

Qj

)C
∣∣∣∣∣ Qi

 = Pr [Qi]

1−Pr

 ⋃
j∈N(i)

Qj

∣∣∣∣∣ Qi

 ≥ 1

4∆
.

Lemma 3. A (randomized) α-approximation algorithm f for CA without conflicts can
be turned into a randomized (4∆α)-approximation algorithm f c for CA with bidder and
item conflicts, in which ∆ bounded and GI arbitrary.

Proof: We define our (4∆α)-approximation algorithm f c as follows: f c first calls Al-
gorithm 1 to compute a random subset Bc and then calls f for the bidders in Bc.

Assume that the α-approximation algorithm f returns the allocation
(S1(B′), . . . , Sn(B′)) if we use it on the set of bidders B′ ⊆ B and if we set Si(B

′) = ∅ for
all i 6∈ B′. Furthermore, assume that the optimal allocation is (OPT1(B′), . . . ,OPTn(B′))
given the constraints OPTi(B

′) = ∅ if i 6∈ B′. Then

EBc

[∑
i∈Bc

vi(Si(B
c))

]
≥ EBc

[
1

α

∑
i∈Bc

vi(OPTi(B
c))

]
(∗)
≥ 1

α
EBc

[∑
i∈Bc

vi(OPTi(B))

]
=

1

α

∑
i∈B

vi(OPTi(B)) ·Pr [i ∈ Bc]

≥ 1

4∆α

∑
i∈B

vi(OPTi(B)).

(∗) holds because OPT(Bc) gives the bidders in Bc the maximal social welfare.
Since no bidder can alter Bc by changing his valuation, it also holds that a universally

truthful (resp. truthful in expectation) α-approximation mechanism (f, p) for combina-
torial auctions without conflicts can be turned by the same approach into a universally
truthful (resp. truthful in expectation) (4∆α)-approximation mechanism (f c, pc) for com-
binatorial auctions with conflicts. That is, we can first call Algorithm 1 to compute a
random subset Bc and can then use (f, p) only for the bidders in Bc. Note that bidders
not in Bc cannot change their utility by changing their bid; it is always zero. Furthermore,
bidders in Bc behave like in (f, p), i.e. they bid truthfully so as to maximize their own
utilities for each realization of Bc. The approximation guarantee follows from Lemma 3.
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Corollary 4. A universally truthful (resp. truthful in expectation) α-approximation mech-
anism for CA without conflicts can be turned into a universally truthful (resp. truthful in
expectation) (4∆α)-approximation mechanism for CA with ∆ bounded and GI arbitrary.

2.2 Bounded Out-degree in the Item Conflict Graph

For case (ii), the ideas are similar, but here we generate a conflict-free item set Ic using
the same technique as in case (i). We require that bidders have fractionally sub-additive
valuations to avoid the existence of complementary goods, which should not be deleted
independently as the following example illuminates: Suppose there are two items which
are total complements and they have item conflicts. If we remove either of the two, the
social welfare drops to zero, while the optimal allocation attains a positive social welfare
by allocating both items to the same bidder.

The algorithm for case (ii) and its analysis are similar to those for case (i), except
that we need the following lemma about fractionally sub-additive valuations, which will
imply that if each item is not discarded with probability at least 1/k, then social welfare
retained is at least 1/k of the original. For comparison, for case (i), we have shown that
if each bidder is not discarded with probability at least 1/k, then the eventual social
welfare retained is at least 1/k of the original.

Lemma 5 ([Fei09, Proposition 2.3]). Let k ≥ 1 and let w be an arbitrary fractionally sub-
additive utility function. For a set S, consider a distribution over subsets S ′ ⊂ S such that
each item of S is included in S ′ with probability at least 1/k. Then E[w(S ′)] ≥ w(S)/k.

We obtain the following theorem; we defer its proof to Appendix A.2.

Theorem 6. For CA with bidder and item conflicts satisfying conditions (i) and (ii),
given a (maximal-in-range) deterministic α-approximation algorithm f for CA without
conflicts, there exists a (truthful maximal-in-range) deterministic (16α/3) ·min{∆,∆I}-
approximation algorithm f c.

3 CA with Bidder Conflicts via Cone Program Re-

laxation

We design an approximation algorithm via a combination of (i) an SDP for WIS problem
and (ii) an LP for conflict-free CA. This yields a cone program, which we round its solution
to yield a good allocation. Cone program (CP) is a generalization of the more well-known
LP and SDP. Briefly speaking, a CP is a program that optimizes a linear function in the
intersection of some hyperspaces and a proper cone. More about CP will be given in
Section 3.2.

To the best of our knowledge, we are the first to combine this SDP and a LP in this
fashion. Also, our analysis for the cone program rounding algorithm is novel, combining
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of the analyses for (i) and (ii) so as to get the benefits of both. We prove the following
result:

Theorem 7. For CA with bidder conflicts, suppose that the bidders have fractionally
sub-additive (FSA) valuations. If there is a demand oracle for each bidder (we shall
define this in Section 3.1), then there exists an O ((∆ log log ∆)/ log ∆)-approximation
algorithm of social welfare that runs in poly(m,n)-time.

The rest of this section is organized as follows. We include the relevant standard
facts about CA without conflicts in Section 3.1. We include the formal definition of cone
program and the relevant standard facts about cone programs in Section 3.2. Then we
describe our algorithm in Section 3.3, provide some intuitions of the algorithm in Section
3.4, and give its analysis in Section 3.5. We have a few remarks and discussion in Section
3.6. We slightly abuse the notation and use S to denote a subset of I.

3.1 CA with No Conflicts

The optimal social welfare of a CA without conflicts can be represented by the program
ILP-NC: maximizing

∑
i∈B
∑

S 6=∅ vi(S) · xi,S subject to three sets of constraints: (i) ∀i ∈
B,

∑
S 6=∅ xi,S ≤ 1; (ii) ∀k ∈ I,

∑
S3k
∑

i∈B xi,S ≤ 1; (iii) ∀i ∈ B and ∀S ⊆ I, xi,S ∈
{0, 1}.

In general, solving ILP-NC is NP-hard. The usual remedy is to solve its LP relaxation
LPR-NC, i.e., relaxing (iii) from xi,S ∈ {0, 1} to xi,S ∈ [0, 1], to obtain a fractional solution,
and round it to an integral solution.

There are Ω (2mn) variables in LPR-NC, but it can be solved in poly(m,n)-time if
there is a demand oracle for each bidder: given the prices of the items p1, p2, · · · , pm,
the demand oracle of bidder i returns a set S ⊆ I that maximizes vi(S)−

∑
k∈S pk. The

demand oracles serve as separation oracles for the dual of LPR-NC, thus allow solving
LPR-NC efficiently using the ellipsoid algorithm [NS06].

For CA without conflicts where bidders have FSA valuations, a rounding algorithm
called fair contention resolution algorithm (FCRA) [FV10, Section 1.2] attains approx-
imation ratio 1 − 1

e
. In Lemma 8 below, we state the precise result on FCRA, which

will be useful for our conflict setting; we need the following notation: ∀B′ ⊆ B, let
LPR(B′) denote the program LPR-NC with the item set I and the bidder set restricted to
B′. Given any feasible point {xi,S}i∈B′,S⊆I of LPR(B′), ∀i ∈ B′, let Li ({xi,S}i∈B′,S⊆I) :=∑

S 6=∅ vi(S) · xi,S.

Lemma 8 ([FV10]). Suppose the bidders in B have FSA valuations. Given any feasible
point {xi,S}i∈B,S⊆I of LPR(B), FCRA outputs a randomized allocation in which each i ∈ B
obtains expected welfare of at least

(
1− 1

e

)
· Li ({xi,S}i∈B,S⊆I).

Let FCRA (B, {xi,S}i∈B,S⊆I) denote the randomized allocation in Lemma 8. For any
B′ ⊆ B, let x̂(B′) denote the optimal solution to LPR(B′).
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3.2 Cone Programs in a Nutshell

Cone programs (CP) are generalization of the more familiar linear programs (LP) and
semi-definite programs (SDP). We list the relevant definitions and properties of CP here.
They are extracted from Chapters 2 and 5 in [BV04].

A closed set K ⊆ Rq is a proper cone if (a) for any real numbers a1, a2 ≥ 0 and for
any k1, k2 ∈ K, a1k1 + a2k2 ∈ K; (b) it has nonempty interior; and (c) it is pointed, i.e.,
if x,−x ∈ K, then x = 0. Two examples of proper cones are the non-negative orthant
(the set of points with non-negative coordinates), and the set of symmetric positive semi-
definite (SPSD) matrices.

There is a natural partial ordering on Rq associated with any proper cone K, which
is denoted by �K : For any x1, x2 ∈ Rq, x1 �K x2 if and only if (x1 − x2) ∈ K. The
corresponding strict partial ordering, �K , is defined as follows: For any x1, x2 ∈ Rq,
x1 �K x2 if and only if (x1 − x2) is an interior point of K.

The dual cone of a proper cone K, is the set K∗ := {z | ∀k ∈ K, k · z ≥ 0}, where
k · z is the inner product of k and z. The dual cone of the non-negative orthant is itself,
and the dual cone of the set of SPSD matrices is again itself [BV04, Examples 2.23 and
2.24]. The two proper cones are said to be self-dual.

There are various forms of CP, but they can be shown to be equivalent. In this paper,
we will use two of the forms of CP. The standard form of CP is as follows; note that
c, x ∈ Rq, A is an `× q real matrix, b ∈ R` and K is a proper cone in Rq:

min c · x s.t. Ax = b and x �K 0. (CP-STD)

The above CP has two constraints. The first one, Ax = b, is called non-conic constraint.
The second one, x �K 0 or equivalently x ∈ K, is called conic constraint.

LP is a special case of CP, in which K is the non-negative orthant. SDP is a special
case of CP, in which K is the set of SPSD matrices.

As in the cases of LP and SDP, there is a dual for CP too, which is also a CP. Before
describing the dual, we note that the non-conic constraint Ax = b can be broken into
` equality constraints Ahx = bh, where Ah is the h-th row of the matrix A and bh is
the h-th entry of the vector b. Each such equality constraint in the primal will associate
to one distinct real variable in the dual, but the conic constraint will not associate to
any dual variable. This is important since for our problem, we will introduce a CP with
exponentially many variables but only poly(m,n) equality constraints. Then its dual
will have only poly(m,n) dual variables, which is a necessary feature for using ellipsoid
algorithm to solve it in poly(m,n)-time.

The dual of CP-STD, in an inequality form of CP, is (see [BV04, Example 5.12])

max b · y s.t. c �K∗ Aᵀy. (CP-DUAL-INEQ)

We may solve CP-STD by solving its dual CP-DUAL-INEQ if strong duality holds between
them. While strong duality always holds for LP, it may not hold for SDP and CP. The
standard method to determine strong duality of CP is to check that Slater’s condition
holds, i.e., there exists an x such that Ax = b and x �K 0.

11



3.3 Algorithm

Halperin [Hal02] designed an SDP and a rounding scheme for WIS with approximation
guarantee O ((∆ log log ∆)/ log ∆). We conglomerate his SDP with LPR-NC for our prob-
lem, which is equivalent to solving the discrete program ICP-C below.

As the constraint (1) involves a product of variables, an LP relaxation is not ad-
missible. As LP is a subclass of SDP, one might think that an SDP relaxation suffices.
However, this is not true. If we use a “fully” SDP relaxation, each constraint xi,S ≤ 1
will be converted to a non-conic constraint in the SDP relaxation. This will introduce
exponentially many dual variables, prohibiting an ellipsoid algorithm on its dual to run
in poly-time.

Thus, we relax to CPR-C, a “mixture” of LP and SDP; note that in CPR-C, w0, wi ∈
Rn+1. CPR-C is a CP. In Appendix B, we show that strong duality holds between CPR-C
and its dual, and we can solve the dual in poly(m,n)-time using the ellipsoid algorithm,
assuming that we have a demand oracle for each bidder. We then round the fractional
solution of CPR-C as in Algorithm 2.

(ICP-C)

max
∑
i∈B

∑
S 6=∅

vi(S) · xi,S

subject to∑
S 6=∅

xi,S ≤ 1, ∀i ∈ B

∑
S3k

∑
i∈B

xi,S ≤ 1, ∀k ∈ I

1 + wi
2

=
∑
S 6=∅

xi,S , ∀i ∈ B

(1 + wi)(1 + wj) = 0, ∀(i, j) ∈ E (1)

wi ∈ ±1, ∀i ∈ B
xi,S ∈ {0, 1}, ∀i ∈ B,S ⊆ I.

(CPR-C)

max Z :=
∑
i∈B

∑
S 6=∅

vi(S) · xi,S

subject to∑
S 6=∅

xi,S ≤ 1

∑
S3k

∑
i∈B

xi,S ≤ 1

1 + w0 · wi
2

=
∑
S 6=∅

xi,S (2)

(w0 + wi) · (w0 + wj) = 0 (3)

‖w0‖ = ‖wi‖ = 1. (4)

xi,S ≥ 0.

3.4 Intuitions on the Algorithm

Let (Z∗, {x∗}, {w∗}) be the solution to CPR-C. Fo anyB′ ⊆ B, let Z∗(B′) :=
∑

i∈B′
∑

S 6=∅ vi(S)·
x∗i,S.

We partition the bidders according to the values of 1 +w∗0 ·w∗i into three sets B0, B1

and B2. Items are allocated to one of the sets; the best one is chosen. The methods of
allocating items to B2 and B1 (Steps 3 and 4) are well motivated by Halperin’s algorithm
– first selecting a “good” independent subset of bidders from them, and then apply FCRA
for conflict-free CA; we call this “IS-then-FCRA”. In Section 3.5, we prove that A2 and

A1 attain expected social welfares of at least
(
1− 1

e

)
Z∗(B2) and Ω

(
log ∆

∆ log log ∆

)
· Z∗(B1)

respectively.
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Algorithm 2: Approximation Algorithm via Cone Program Relaxation.

1 Solve CPR-C to obtain the solution (Z∗, {x∗}, {w∗}).
2 Set τ ← 3 log log ∆

4 log ∆
, which is less than 1/2. Partition the bidders into three sets

B0, B1, B2: B0 = {i | 0 ≤ 1 + w∗0 · w∗i ≤ 2τ}, B1 = {i | 2τ < 1 + w∗0 · w∗i ≤ 1},
B2 = {i | 1 < 1 + w∗0 · w∗i ≤ 2}.

3 Let J2 = B2. A2 ← FCRA(J2, x̂(J2)).
4 For the bidders in B1, do as follows:

• Project all vectors in {w∗i | i ∈ B1} to (w∗0)⊥, the space orthogonal to w∗0, then
normalize them. Let {w′i} denote the projected normal vectors. Note that (w∗0)⊥ has
dimension n, so we can treat each w′i as an n-dimensional vector.

• Choose a random n dimensional vector r = (r1, r2, · · · , rn), where each ri follows the
standard normal distribution with density function φ(x) = 1√

2π
e−x

2/2.

• Let γ := (1− 2τ)/(2− 2τ). Let B′1 :=
{
i ∈ B1 |w′i · r ≥

√
2γ

1−γ log ∆
}

.

• Let J1 := B′1 \ {i ∈ B′1 | ∃j ∈ B′1 such that (i, j) ∈ E}. A1 ← FCRA(J1, x̂(J1)).

5 For the bidders in B0, do as follows:

• Let {qi,S}i∈B0,S⊆I denote the following distribution: ∀S 6= ∅, qi,S =
x∗i,S
2τ∆

, and
qi,∅ = 1−

∑
S 6=∅ qi,S.

• {Ti}i∈B0 ← FCRA (B0, {qi,S}i∈B0,S⊆I).

• (Conflict handling.) Let A0 denote the following allocation: for each bidder
i ∈ B0, if there exists another bidder j such that (i, j) ∈ E and Tj 6= ∅, bidder i gets
nothing in A0; otherwise bidder i gets Ti in A0.

6 Return the best allocation among A0, A1, A2.

For B0, we face two difficulties which force us to use an approach quite different from
Halperin’s. Firstly, Halperin’s algorithm is for undirected graph while in our application
the graph is directed. Secondly, we notice that the “IS-then-FCRA” approach will not
work for B0, and we ought to do the opposite – first apply FCRA by ignoring conflicts
(see the next paragraph), and then resolve any remaining conflicts. These force us to
have an analysis for B0 quite different from Halperin’s one.

We provide more intuitions for B0. The bidders in B0 have low values of
1+w∗0 ·w∗i

2
=∑

S 6=∅ x
∗
i,S. The values x∗i,S are typically viewed as probability densities. Low values of

1+w∗0 ·w∗i
2

allow room to “expand” these densities by a factor of 1/τ , where τ < 1
2
. However,

to handle conflicts, we ought to “dwell” these densities by a factor of 1/(2∆) afterwards.
Then we apply FCRA with the “expanded then dwelled” densities to obtain a sufficiently
good allocation to B0. These will allow us to show that A0 attains an expected social

welfare of Ω
(

log ∆
∆ log log ∆

)
· Z∗ (B0).

Finally, note that Z∗(B0) + Z∗(B1) + Z∗(B2) = Z∗, so the best among A0, A1, A2
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attains an expected social welfare of Ω
(

log ∆
∆ log log ∆

)
· Z∗.

3.5 Analysis

We need the following notation. Recall that for any setB′ ⊆ B, Z∗(B′) :=
∑

i∈B′
∑

S 6=∅ vi(S)·
x∗i,S. Note that Z∗(B0) +Z∗(B1) +Z∗(B2) = Z∗; let L∗(B′) denote the optimal objective
value of LPR(B′); let x∗(B′) denote the vector x∗ restricted to bidders in B′.

Analysis on Step 3. Constraints (3) guarantee that J2 = B2 is an independent set. Since
x∗(J2) is a feasible point of LPR(J2), L∗(J2) ≥ Z∗(J2) = Z∗(B2). FCRA gives an alloca-
tion which is at least

(
1− 1

e

)
L∗(J2) ≥

(
1− 1

e

)
Z∗(B2) in expectation.

Analysis on Step 4. We note that the selection of independent set J1 is identical to the
corresponding part in Halperin’s algorithm, modulo that since we are dealing with a
directed graph, we can remove fewer bidders from B′1.2 Thus, we can follow closely to

Halperin’s analysis to show that E [Z∗(J1)] = Ω
(

log ∆
∆ log log ∆

)
· Z∗(B1).

Since x∗(J1) is a feasible point of LPR(J1), L∗(J1) ≥ Z∗(J1). FCRA gives an allocation

which is at least
(
1− 1

e

)
L∗(J1) = Ω

(
log ∆

∆ log log ∆

)
· Z∗(B1) in expectation.

Analysis on Step 5. Observe that 2τ∆ > 1 for sufficiently large ∆, so the vector q, which
collects {qi,S}i∈B0,S⊆I , is a feasible point of LPR(B0).

For the analysis of this step, we need to unwind FCRA. Taking the feasible point
q as input, the algorithm first selects a random set Si for each bidder i as follows: a
non-empty set S is selected with probability qi,S, and the empty set is selected with
probability 1−

∑
S 6=∅ qi,S. Note that the random sets S1, S2, · · · , Sn may not be disjoint,

so the algorithm next carries on a resolution scheme to randomly generate disjoint sets
T1, T2, · · · , Tn, which are the sets stated in Step 5, while for all i, Ti ⊆ Si.

By Lemma 8, E [vi(Ti)], the expected welfare of bidder i (modulo conflicts), is at least(
1− 1

e

) Z∗({i})
2τ∆

.
To handle conflicts, the algorithm resets the allocation of some bidders to the empty

set. We will show that for each bidder i ∈ B0, at least half of his expected welfare
(modulo conflicts) is retained after conflict handling.

For every i ∈ B0, let Fi be the event: ∀j with (i, j) ∈ E, Sj = ∅. Then Fi is the event:
∃j such that (i, j) ∈ E and Sj 6= ∅. We note that before conflict handling, for all i ∈ B0,
E [vi(Ti) |Fi] ≥ E

[
vi(Ti) |Fi

]
. We will prove the above inequality formally in Lemma 9

below, but it is indeed intuitive in the following sense: Si is the set of items the bidder i
competes for during the resolution scheme, thus the above inequality depicts that bidder
i gets more when facing less competition from bidders he conflicts with.

Note that E [vi(Ti)] = E [vi(Ti) |Fi] · Pr [Fi] + E
[
vi(Ti) |Fi

]
· Pr

[
Fi
]
, i.e., E [vi(Ti)]

is a weighted average of the two conditional expectations. Since the first conditional

2Halperin’s analysis is for undirected graphs, but his proof can be reused for directed graphs with
little modification. In [Hal02, Lemma 5.2], if there is an edge between vertices in B′1, both vertices of
the edge are removed from B′1. For directed graphs it suffices to remove the outgoing vertex only, so the
bound provided in the lemma is also applicable.
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expectation is larger than the second one,

E [vi(Ti) |Fi] ≥ E [vi(Ti)] ≥
(

1− 1

e

)
Z∗ ({i})

2τ∆
.

Next, note that Pr [Fi] = 1−Pr
[
Fi
]

= 1−Pr
[
∪j:(i,j)∈E (Sj 6= ∅)

]
is at least

1−
∑

j:(i,j)∈E

Pr [Sj 6= ∅] = 1−
∑

j:(i,j)∈E

1

2τ∆

∑
S 6=∅

x∗j,S ≥ 1−
∑

j:(i,j)∈E

1

2τ∆
· τ (j ∈ B0)

≥ 1/2. (i conflicts with at most ∆ bidders)

Bidder i’s allocation is reset during conflict handling only if Fi holds. By the last two
paragraphs, the expected welfare of bidder i after conflict handling is at least

E [vi(Ti) |Fi] ·Pr [Fi] ≥
(

1− 1

e

)
Z∗ ({i})

2τ∆
· 1

2
= Ω

(
log ∆

∆ log log ∆

)
· Z∗ ({i}) .

Then the expected social welfare is at least
∑

i∈B0
Ω
(

log ∆
∆ log log ∆

)
·Z∗ ({i}) = Ω

(
log ∆

∆ log log ∆

)
·

Z∗ (B0).

Analysis on Step 6. The final step is to choose the best allocation among A0, A1, A2,
which, by the analyses of the previous three steps, is at least

1

3

[(
1− 1

e

)
Z∗(B2) + Ω

(
log ∆

∆ log log ∆

)
· (Z∗(B1) + Z∗(B0))

]
= Ω

(
log ∆

∆ log log ∆

)
· Z∗.

This concludes the analysis of the algorithm.

Lemma 9. Let Si, Sj, Ti be as defined above. For every i ∈ B0, let Fi be the event: ∀j
with (i, j) ∈ E, Sj = ∅. Then E [vi(Ti) |Fi] ≥ E

[
vi(Ti) |Fi

]
.

Proof: Let Ci be the set of bidders j with (i, j) ∈ E. Fix Sj of bidders j ∈ B0 \ Ci.
For an item k ∈ Si and every i′ ∈ B0, let pi′(k) :=

∑
S3k x

∗
i′,S. Let A(k) := {i′ |Si′ 3 k}.

In FCRA (see [FV10, Section 1.2]), if |A(k)| = 1, i.e. A(k) = {i}, then Pr [k ∈ Ti] = 1;
if |A(k)| > 1, then

Pr [k ∈ Ti] =
1∑

i′∈B0
pi′(k)

 ∑
i′∈A(k)\{i}

pi′(k)

|A(k)| − 1
+
∑

i′ /∈A(k)

pi′(k)

|A(k)|

 .

Recall that we are fixing Sj of j ∈ B0 \ Ci. If Fi holds, then ∀j ∈ Ci, j /∈ A(k).
However, if Fi holds, some bidders in Ci may get into A(k), i.e.,

(|A(k)| when Fi holds) ≤ (|A(k)| when Fi holds),

no matter what Sj the bidders j in Ci choose. Then it is easy to see that

Pr [k ∈ Ti |Fi] ≥ Pr
[
k ∈ Ti |Fi

]
.

As each item is allocated independently, and each item in Si is allocated to bidder i
with higher probability when Fi holds, the lemma follows.
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3.6 Discussion

We obtain the following proposition as a notable special case.

Proposition 10. There is a poly-time O ((∆ log log ∆)/ log ∆)-approximation algorithm
for the WIS problem in a directed graph G with out-degree at most ∆.

Its proof is via a simple reduction from WIS to our problem. Consider a CA in which
the bidder conflicts are represented by the directed graph G. Each bidder wants one
distinct item, and his valuation of the item is the weight of his corresponding vertex in
the WIS problem.

By Theorem 6, we have an O (min{∆,∆I})-approximation algorithm for CA with bid-
der and item conflicts, in which bidders have FSA valuations. An interesting open prob-
lem is whether it is possible to improve the approximation guarantee to o (min{∆,∆I}).
We note that if each bidder has linear valuation, the problem reduces to the WIS problem
in the tensor product of the graphs G and GI , which might be a problem of independent
interest.

Motivated by our CP relaxation CPR-C for CA with bidder conflicts, a valid CP
relaxation for CA with bidder and item conflicts can be obtained by replacing (2)–(4) in
CPR-C with

1 + w0 · wik
2

=
∑
S3k

xi,S, ∀i ∈ B, k ∈ I (2’)

(w0 + wi1k1) · (w0 + wi2k2) = 0, ∀(i1, i2) ∈ E, (k1, k2) ∈ EI (3’)

‖w0‖ = ‖wik‖ = 1, ∀i ∈ B, k ∈ I. (4’)

However, we do not see a good rounding algorithm for this relaxation.

4 Sponsored Search with Limited Number of Slots

In this section we consider sponsored search with bidder conflicts. Some of our results
extend to ordered conflicts and more general graph-based slot conflicts. In light of the
application, we concentrate on the case with a small number m of slots. Note that a
trivial enumeration solves the problem in time O(nm). Moreover, it is unlikely that
significantly faster algorithms exist that solve the problem exactly, even for m ≤ log n;
it is W[1]-hard to decide Log-Independent-Set, i.e., given k ≤ log n, deciding if G has
an independent set of size at least k cannot be done in time f(k) · nc for constant c
unless FPT = W[1] [DF99]. Thus, we present two approximation algorithms. The first
one uses semi-definite programming and has polynomial running time for m ∈ O(log n).
The second one is a partial enumeration approach and runs in polynomial time if m ∈
O((log n)/(log max(∆ + 1, log n))).
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Algorithm 3: Sponsored search auction with conflicts

1 Assign all bidders in B independently with probability 1/2 to set B1 and set
B2 ← B \B1. With v1 ≥ v2 ≥ · · · ≥ vn and h = |B1| define the functions
φ : [h]→ [n] and χ : [n− h]→ [n] such that B1 = {φ(1), . . . , φ(h)} and
φ(j) < φ(j + 1) for j ∈ [h− 1] and B2 = {χ(1), . . . , χ(n− h)} and χ(j) < χ(j + 1)
for j ∈ [n− h− 1];

2 Set q ← 1 with probability 1
2

and set q ← 2 otherwise;
3 if n− h ≥ dm

4
e+ 1 then t← χ(dm

4
e+ 1) else t←∞ and vt ← 0;

4 ;
5 if q = 1 then
6 Set r1 ← vt; Set B1

1 ← {φ(j)|j ∈ [h] and φ(j) < t};
7 if t ≤ m+ 1 then set A to the set of all subsets of B1

1 else A ← ∅;
8 else
9 Set r2 ← vt · 1

8
R(∆); Set B2

1 ← {φ(j)|j ∈ [h] and vφ(j) ≥ r2};
10 Set J ← (unweighted) independent set in B2

1 computed by using the WIS
algorithm (Proposition 10) giving bidders in B2

1 in random order and with
equal weights; A ← {J};

11 Add m bidders without conflicts and with valuation rq to B and each set in A;
12 For each set A ∈ A let M(A) define all the conflict-free matchings of bidders in A

to slots; define M =
⋃
A∈AM(A);

13 Select allocation M ′ ∈ arg maxM∈M
∑

i∈B vi(M);
14 Every real-bidder a in B pays pa ← maxM∈M

∑
i∈B\{a}(vi(M)− vi(M ′));

4.1 Sponsored Search via Semidefinite Programming

We study sponsored search with bidder conflicts and m ∈ O(log n). We assume for
simplicity that n ≥ m ≥ 6. If m > n, we could add (m−n) dummy bidders with valuation
zero. We assume consistent tie-breaking among bidders with the same valuation. Recall
that in this setting bidders have unit demands, and thus we can represent an allocation
S of slots to bidders by a matching MS in a bipartite bidder-slot-graph. We define
vi(MS) = vi(S) for all i ∈ B. We call a matching MS conflict-free if Di ∩ Si = ∅ for all
i ∈ B. Note that for every matching there exists a conflict-free matching with the same
social welfare; we simply unassign all the slots in

⋃
i∈BDi ∩ Si. Furthermore, we define

the expected social welfare SW (M) := E[
∑

i∈B vi(M)] for a (randomized) matching M .

In the following, we also use the notation R(∆) :=
√

log log ∆/ log ∆.
The mechanism is presented in Algorithm 3 and its approximation guarantee is an-

alyzed in Lemma 11. Let t, r1, r2, B1
1 , and B2

1 be defined as in Algorithm 3. We show
that if the optimal conflict-free assignment of bidders to slots OPT was restricted to a
random subset OPT′′ of the t−1 most valuable edges, where each of those edges is picked
with probability 1/2, then SW (OPT′′) ≥ SW (OPT)/16. Thus, it suffices to compare the
performance of a mechanism with OPT′′. We run two different mechanisms, ALG1 and
ALG2, each with probability 1/2, and receive at least 1/2 of the maximum of their social
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welfares SW 1 and SW 2, respectively.
If ALG1 performs very well, i.e., if SW 1 > SW (OPT′′)/(∆R(∆)), we achieve the

result promised in Lemma 11. Mechanism ALG1 tries out all possibilities to find the best
non-conflicting matching for bidders in B1

1 . If ALG1 does not perform very well, we can
show that OPT′′ must get at least a quarter of its social welfare from bidders in B2

1 \B1
1 .

In this case, we build an (unweighted) independent set J of all bidders in B2
1 using the

WIS algorithm described in Proposition 10, which guarantees that the number of bidders
in J is at least an O(1/(∆R(∆)2))-fraction of the optimal number for bidders in B2

1 \B1
1 .

As in OPT′′ every bidder in B2
1 \B1

1 contributes at most with valuation r1 to SW (OPT′′)
and in ALG2 every bidder in J contributes at least with valuation r2 to SW 2, the overall
approximation ratio of ALG2 is O(∆R(∆)2 · r1/r2) = O(∆R(∆)).

Lemma 11. The matching M ′ computed in Algorithm 3 is in expectation an
O(∆

√
log log ∆/ log ∆)-approximation of the optimal social-welfare.

To proceed, we need the lemma below.

Lemma 12. It holds that Pr [t ≤ m+ 1] ≥ 3/4.

Proof: Note that t ≤ m+ 1 if and only if |B2 ∩ [m+ 1]| ≥ dm
4
e+ 1. This happens with

probability 1− 1
2m+1

∑dm
4
e

`=0

(
m+1
`

)
, which is at least 3/4 when m ≥ 6.

Proof of Lemma 11: Assume that the social-welfare-maximizing conflict-free
matching of bidders in B to slots is given by OPT. The valuation of the dummy bid-
ders will not be considered in the social welfare as they were only included to guarantee
truthfulness.

We first analyze the random partition of B into B1 and B2 by the mechanism. Let m∗

be the number of edges in OPT and let us denote those edges by (i(1), j(1)), . . . , (i(m∗), j(m∗))
such that they are ordered by their value, i.e., vi(1) · αj(1) ≥ · · · ≥ vi(m∗) · αj(m∗). Let
OPT′ be the random subset of OPT where all the edges but the t − 1 most valuable
ones are discarded, i.e., OPT′ = {(i(1), j(1)), . . . , (i(t − 1), j(t − 1))}. Furthermore,
let OPT′′ be the random subset of OPT′ where (1) all the edges that contain bidders
in B2 are discarded and (2) if t > m + 1 all edges are discarded. We will show that
SW (OPT) ≤ 16 · SW (OPT′′). Since, B2 ⊆ B it holds that t ≥ dm/4e + 1 ≥ m/4 + 1,
and thus, it follows by m∗ ≤ m that

SW (OPT)

SW (OPT′)
=

∑t−1
s=1 vi(s) · αj(s) +

∑m∗

s=t vi(s) · αj(s)∑t−1
s=1 vi(s) · αj(s)

≤ 1 +

∑m∗

s=t vi(t) · αj(t)∑t−1
s=1 vi(t) · αj(t)

=
m∗

t− 1
≤ 4 .

Now, for all i ∈ B let Ei be the event that bidder i is not in B1 and let T be the event
that t > m+1. By Lemma 12, it holds for each bidder i ∈ B that Pr [Ei ∪ T ] ≤ Pr [Ei]+
Pr [T ] ≤ 1/2 + 1/4 = 3/4. Thus, SW (OPT′′) =

∑t−1
s=1 vi(s) · αj(s) · (1−Pr

[
Ei(s) ∪ T

]
) ≥

(1/4) · SW (OPT′). It follows that SW (OPT′′) ≥ (1/16) · SW (OPT).
We will now compare the outcome M ′ of the mechanism with OPT′′. Let M1 or

M2 be the matching computed by the mechanism under the condition q = 1 or q = 2,
respectively. It holds that 2 · SW (M ′) ≥ max{SW (M1), SW (M2)}. Then the following
claim completes the proof.
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Claim 13. For some constant c > 1 it holds that

c ·∆R(∆) ·max{SW (M1), SW (M2)} ≥ SW (OPT′′). (5)

Proof: Notice that if SW (OPT′′) < max{4,∆R(∆)} · SW (M1) then (5) is satisfied.
Thus, we assume that SW (OPT′′) ≥ max{4,∆R(∆)} · SW (M1). Moreover, we assume
that t ≤ m+ 1, as otherwise, SW (OPT′′) = 0.

Next, we define by SW u the optimal social welfare for bidders in B1
1 when bidder

conflicts are ignored. Furthermore, note that Theorem 3 implies that 4∆ · SW (M1) ≥
SW u. Thus,

SW (OPT′′) ≥ ∆R(∆) · SW (M1) ≥ ∆R(∆) · SW u/(4∆) ≥ (R(∆)/4) · SW u (6)

Let us now partition the matching OPT′′ into OPT1 that contains the edges to bidders in
B1

1 , OPT2 that contains the edges to bidders in B2
1 \B1

1 , and OPT3 := OPT′′ \ (OPT1 ∪
OPT2). Thus, SW (OPT′′) = SW (OPT1) + SW (OPT2) + SW (OPT3).

As the matching OPT1 is considered when computing M1, SW (M1) ≥ SW (OPT1),
and thus, by the assumption taken above holds that

SW (OPT1) ≤ SW (M1) ≤ SW (OPT′′)/max{4,∆R(∆)} ≤ SW (OPT′′)/4.

Furthermore, SW (OPT3) ≤ SW (OPT′′)/2, as otherwise,

SW (OPT′′) < 2 · SW (OPT3) < 2 · r2 ·
t−1∑
j=1

αj = 2 · 1

8
·R(∆) · vt ·

t−1∑
j=1

αj ≤
R(∆)

4
SW u ,

which contradicts (6). Hence, SW (OPT2) ≥ SW (OPT′′)/4. It follows that

SW (OPT2)

SW (M2)
=

∑
(i,j)∈OPT2

vi · αj∑
(i,j)∈M2

vi · αj
≤
r1 ·
∑|OPT2|

j=1 αj

r2 ·
∑|M2|

j=1 αj

≤ 8

R(∆)
·
(

1 +

∑|OPT2|
j=|M2|+1 α|M2|∑|M2|
j=1 α|M2|

)
=

8

R(∆)
· |OPT2|
|M2|

≤ 8

R(∆)
· c′ · (∆ ·R(∆)2) = 8c′ ·∆ ·R(∆), (7)

where c′∆R(∆)2 is the approximation factor of Proposition 10.
We show that the mechanism runs in poly(n,∆) time for certain restrictions on the

number of slots m, and it is universally truthful. The crucial idea for showing truthfulness
is to prove that no bidder has an incentive to alter the set of matchings M. Thus, even
though the range of allocations M depends on the valuations of the bidders, no bidder
has an incentive to change it.

Proposition 14. If m ∈ O(log n) the mechanism takes time poly(n,∆).
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Proof: We have to show that line 13 and 14 can be computed in polynomial time in n
and ∆.

We first argue that |A| is polynomial in n. Consider the case where q = 1. If t > m+1
thenA = ∅; otherwise, A = P(B1

1) and |B1
1 | < t ≤ m+1. Moreover, if q = 2 then |A| = 1.

Thus, |A| is bounded by 2m which is polynomial in n.
Next, assume that we are given some A ∈ A. Given q = 1, we can ignore A if bidders

in A have conflicts, because we know that there exists a conflict-free set of bidders in
A that is optimal. Moreover, given q = 2 we know that the bidders in all sets in A
have no conflicts. Thus, we can assume that the bidders in A are conflict-free. It follows
that computing arg maxM∈M(A)

∑
i∈C vi(M) can be done in polynomial time in n for all

C ⊆ B; for all i ∈ [m] the bidder in A with the i-th largest index has to be matched to
the i-th slot.

Lemma 15. No bidder has an incentive to report a non-truthful bid that alters M.

Proof: We can restrict the proof to bidders in B1 as the other bidders always have
utility zero. Assume that all bidders bid truthful. In both cases, q = 1 and q = 2,
bidders not in Bq

1 are in no matching in M, and thus, they are not in M ′ and their
utility is zero. However, they have no incentive to increase their bid because there are
m competing dummy-bidders that have a valuation that is at least the same as theirs.
Thus, if they increase their valuation, their utility cannot increase because they have to
pay their externality. Furthermore, in both cases, q = 1 and q = 2, bidders in Bq

1 have
two possibilities: (i) Bidding high enough to stay in Bq

1 and (ii) bidding below the value
that is necessary for staying in Bq

1. In (i), if a bidder bids high enough to stay in Bq
1, he

cannot affect Bq
1. Moreover, he cannot affect the outcome of the WIS algorithm by his

bid because we randomized the order of the bidders. Thus, he cannot influence whether
he belongs to a subset in A and, in turn, he cannot influenceM. In (ii), if a bidder bids
below the value that is necessary for staying in Bq

1, he will receive nothing and has utility
zero. Thus, no bidder has an incentive to change his bid if this alters M.

Lemma 16. The mechanism is universally truthful.

Proof: We can assume that all random decision are taken before the bidders report their
bids. We first fix a bidder a. Since by Lemma 15 no bidder has an incentive to report a
non-truthful bid that changes M, we can restrict the analysis to bidder a’s non-truthful
bids that do not changeM. Thus, we can considerM as fixed. The utility of a bidder a
for a matching M ′ is given by ua(M

′) = va(M
′)−(maxM∈M

∑
i∈B\{a}(vi(M)−vi(M ′))) =∑

i∈B vi(M
′)−maxM∈M

∑
i∈B\{a} vi(M) which is maximized when a bids truthful.

The following theorem follows from Lemma 11, Proposition 14 and Lemma 16.

Theorem 17. For sponsored search with bidder conflicts and m ∈ O(log n), Algo-
rithm 3 is a universally-truthful mechanism that attains approximation guarantee of
O(∆

√
log log ∆/ log ∆). It runs in time poly(n,∆).
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4.2 Sponsored Search via Partial Enumeration

We treat a slightly more general small-supply case with m ≤ n/(∆ + 1). For this case we
observe that the problem can be solved optimally in linear time when all bidders i have
uniform values vi = v. For non-uniform values vi, we will strive for a truthful mechanism
that solves the problem approximately but much faster than the trivial enumeration
that solves the problem exactly in O(nm) time. Note that there is an m-approximation
algorithm that assigns slot 1 to the highest bidder, obtains value maxk,i αk · vi, and runs
in time O(n). Thus, we obtain the following trade-off.

Theorem 18. In sponsored search with bidder and slot conflicts, there is a
universally-truthful mechanism that yields an O(logm)-approximation of social welfare
and runs in time O(n+ (m(∆ + 1))m).

We first prove the existence of an approximation algorithm achieving the claimed
approximation ratio.

Lemma 19. In sponsored search with bidder conflicts, there is an O(logm)-approximation
algorithm that runs in time O(n+ (m(∆ + 1))m).

Proof: The algorithm is extremely simple for uniform values vi = v for all i ∈ B
if m ≤ n/(∆ + 1). Initially, every bidder is active. We assign slot 1 to the bidder i
with smallest out-degree, label i and its all out-neighbors to be inactive. We repeat this
procedure with slots 2, 3, . . . ,m. Since m ≤ n/(∆ + 1), we will be able to assign all slots
in this way. This yields an optimum solution and takes time O(n). If the vi are different,
we apply logarithmic scaling. Let vmax = maxi∈B vi. We consider dlog2(2m)e classes,
where class k contains bidders i with value vi ∈ (vmax/2

k, vmax/2
k−1]. The unclassified

bidders have a value which is at most vi ≤ vmax/(2m). Thus, by discarding this set of
bidders, we discard at most 1/2 of the optimum value.

For the remaining bidders, we pick k ∈ {1, 2, . . . , dlog2(2m)e} uniformly at random
and consider Vk = {i ∈ B | vi > vmax/2

k}, the union of all bidders in classes 1, . . . , k. Let
nk = |Vk|. If nk/(∆ + 1) ≥ m, then we can apply the above algorithm for identical values
to Vk. Otherwise, if nk/(∆ + 1) ≤ m, then nk ≤ (∆ + 1)m, and a complete enumeration
takes time at most O((m(∆ + 1))m). In either case, we obtain the optimum for Vk under
the assumption that every bidder has value vmax/2

k, and hence at least half of the value
that the optimum gets from bidders in class k. In expectation over the random choice of
k, this shows that we recover an O(logm)-fraction of the optimum.

The highest valuation can be found in time O(n). Computing the threshold and
reducing the set of considered bidders can be done in time O(n). Applying the previous
algorithm can be done in time O(n), enumeration takes time O((m(∆ + 1))m).

Note that for a particular choice of k, the algorithm described in the proof of Lemma 19
is applied in the induced subgraph of Vk and produces an optimum solution under the as-
sumption that all nodes have the same valuation. If this results from the greedy algorithm
for the independent set of bidders, it also remains an optimum solution with arbitrary
additional slot conflicts. If this results from enumeration, we can apply the enumeration
also for additional slot conflicts in the same asymptotic running time. Thus, we obtain
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the same running time and approximation ratio also for sponsored search with bidder
and slot conflicts.

By the sampling arguments in [DNS12, HK13] we can turn the algorithm into a uni-
versally truthful mechanism with the same asymptotic running time and approximation
ratio. The idea is as follows. First, choose a random bit q. If q = 0, partition B into
B1 and B2 randomly and set vmax be the highest valuation in B1. However, we run the
algorithm in Proposition 19 on B2 only; if bidder i ∈ B2 gets assigned slot ` he has to pay
α` · vmax/2

k. If q = 1, we keep the best slot and remove all others, and run a second price
auction among all bidders in B. This ensures that the claimed approximation ratio even
if there is a dominant bidder, i.e., a bidder who contributes at least a constant fraction
of the optimal social welfare. This completes the proof of Theorem 18.
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A Proofs and Results Omitted in Section 2

A.1 Derandomization

It is crucial for the derandomization to show that there exists a pairwise independent
distribution of subsets of B with probability 1/2dlog2 ∆e+1 that has a domain with a cardi-
nality polynomial in n, and this follows from [LW05, Section 1.2]. The idea is to represent
the distribution by a randomization over a family of 2-universal hash functions that as-
signs each bidder u.a.r. values from the set {t1, . . . , t2∆} and to consider the subset of
bidders with value t1. Furthermore, this implies that also a distribution over the random
sets Bc computed by Algorithm 1 exists that has a domain with a cardinality polynomial
in n.

Lemma 20 ([LW05]). Given a set B with |B| = n, for any integer 1 ≤ ∆ ≤ n, there
exists a pairwise independent distribution over subsets of B with probability 1/2dlog2 ∆e+1

and a domain with a cardinality in O(n2).

Thus, instead of picking a subset from a pairwise independent distribution with prob-
ability 1/2dlog2 ∆e+1 in Algorithm 1, we can iterate over the domain of the distribution
in polynomial time. This gives us at least the same social welfare. Moreover, note that
1/(2∆) ≥ 1/2dlog2 ∆e+1 > 1/(4∆). By slightly modifying the proof of Lemma 2, we can
show that every bidder is in Bc with a probability of at least 3/(16∆).

Corollary 21. A deterministic α-approximation algorithm f for combinatorial auctions
without conflicts can be turned into a deterministic (16∆α/3)-approx. algorithm f c for
combinatorial auctions with ∆ bounded and GI arbitrary.

Furthermore, we can extend the results to maximal-in-range algorithms (see [DD13])
which are important for the design of truthful approximation mechanisms. In fact,
most deterministic truthful approximation mechanisms for combinatorial auctions are
maximal-in-range mechanism.

Definition 3. An algorithm f is called “maximal-in-range” if there exists a subset A′ of
the set of allocations A for which f(v1, . . . , vn) ∈ arg maxS∈A′(

∑
i∈B vi(S)).

Given a maximal-in-range algorithm f for CA without conflicts that is a deterministic
α-approximation algorithm, we show in Algorithm 4 how to construct a maximal-in-
range algorithm f c for CA with conflicts that is a deterministic (16∆α/3)-approximation
algorithm. Hence, Theorem 1 follows. Note that Algorithm 4 calls f always for the same
set of bidders and set of items, only the valuations of the bidders change; thus, the target
set A′ of f is the same in each call.

Proof of Theorem 1: Let us assume that OPT was set to its final value whenB′ = B∗.
Furthermore, assume that Bc is a random subset computed by Algorithm 1. It follows
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Algorithm 4: Maximal-in-range algorithm f c over range A′D.

1 Let D be the domain of a distribution over the random set Bc computed by
Algorithm 1 satisfying |D| ∈ O(n2);

2 Let A′ ⊆ A be the target set of f ;
3 Set OPT← (∅, . . . , ∅);
4 foreach B′ ∈ D do
5 forall the i ∈ B do set vB

′
i ← vi if i ∈ B′ and vB

′
i ← 0 else;

6 ;

7 Set OPT(B′)← f(vB
′
);

8 if
∑

i∈B v
B′
i (OPTi(B

′)) ≥
∑

i∈B vi(OPTi) then
9 Set OPT to the following assignment:

(1) all i ∈ B′ get the same items as in OPT(B′); and (2) others get no
items;

10 end

11 end
12 return OPT

that∑
i∈B

vi(OPTi) =
∑
i∈B

vB
∗

i (OPTi) =
∑
i∈B

vB
∗

i (OPTi(B
∗))

≥ EBc

[∑
i∈B

vB
c

i (OPTi(B
c))

]
(∗)
≥ EBc

[∑
i∈B

vB
c

i (OPTi(B))

]
=
∑
i∈B

vi(OPTi(B)) ·Pr [i ∈ Bc] ≥ 3

16∆
·
∑
i∈B

vi(OPTi(B)) .

Inequality (∗) holds because OPT(Bc) ∈ arg maxS∈A′
∑

i∈B v
Bc

i (Si) and OPT(B) ∈ A′.
Since the maximum social welfare is at most α ·

∑
i∈B vi(OPTi(B)) the claimed approxi-

mation factor follows.
We still have to show that the algorithm is maximal-in-range. For each S ∈ A′ and

B′ ∈ D let SB
′

be the assignment when all bidders in i ∈ B′ get the same set of items as
in S and all other bidders get no items. Define A′D := {SB′|(S,B′) ∈ A′ ×D}. We show
next that f c is maximal on the subset A′D ⊆ A. It holds that∑
i∈B

vi(OPTi) = max
B′∈D

∑
i∈B

vB
′

i (OPTi(B
′)) = max

B′∈D
max
S∈A′

∑
i∈B

vB
′

i (Si) = max
SB′∈A′D

∑
i∈B

vi(S
B′

i ) .

The pricing scheme for a truthful mechanism is given in [Nis07, Proposition 9.31].

A.2 Bounded Out-degree in the Item Conflict Graph

Here we provide the proof of Theorem 6, which follows from Theorem 22 below. Recall
that we here handle the case when ∆I is bounded, G is arbitrary, and valuations are frac-
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tionally sub-additive. Again, the results apply to arbitrary restrictions on the valuations
(e.g., submodular valuations).

Theorem 22. Suppose that valuations are fractionally sub-additive, and that the original
approximation guarantees of f c in Theorem 3, Corollary 4, Corollary 21, and Theorem 1
are in the form of C∆α, where C is either 4 or 16/3. Then f c can be modified so that
the approximation guarantees are changed to C∆Iα.

Proof of Theorem 22 (for Lemma 3 with bounded ∆I): The idea is to restrict
the item set I to a random set Ic that is independent of the valuations of the bidders and
then to call the α-approximation algorithm for the restricted item set Ic. Note that we
can use Algorithm 1 also for items. Thus, by the same arguments as for bidders we obtain
a random set of items Ic where items have no conflicts and where every item is in Ic with
probability at least 1/(4∆I). Let (S1(I ′), . . . , Sn(I ′)) be the allocation that f returns
when we restrict the set of items to I ′ ⊆ I. Furthermore, let (OPT1(I ′), . . . ,OPTn(I ′))
be the optimal allocation of the item set I ′. It holds that

EIc

[∑
i∈B

vi(Si(I
c))

]
≥ EIc

[
1

α

∑
i∈B

vi(OPTi(I
c))

]
(∗)
≥ EIc

[
1

α

∑
i∈B

vi(OPTi(I) ∩ Ic)
]
≥ 1

α

∑
i∈B

EIc [vi(OPTi(I) ∩ Ic)]

(∗∗)
≥ 1

4∆Iα

∑
i∈B

EIc [vi(OPTi(I))] .

Above, inequality (∗) follows because OPTi(I
c) is optimal for item set Ic, and inequality

(∗∗) follows by Proposition 5.

Proof of Theorem 22 (for Corollary 4 with bounded ∆I): Again, we restrict the
item set I to a random set Ic as in Theorem 3 and then to call mechanism (f, p) for the
restricted item set. The approximation guarantee follows from Theorem 3 and univer-
sally truthfulness (resp. truthfulness in expectation) follows since truthful bidding is a
dominant strategy for each realization of Ic.

Proof of Theorem 22 (for Lemma 21 with bounded ∆I): Note that in Theorem 3
we use the same randomization technique for Bc and for Ic. Thus, we can apply our de-
randomization technique for Bc also to Ic.

Proof of Theorem 22 (for Theorem 1 with bounded ∆I): Given a maximal-in-
range algorithm f for combinatorial auctions without conflicts that is a deterministic
α-approximation algorithm we show in Algorithm 5 how to construct a maximal-in-range
algorithm f c for combinatorial auctions with conflicts that is a deterministic (16∆Iα/3)-
approximation algorithm. As in Algorithm 4, Algorithm 5 always calls f for the same
set of bidders and set of items; thus, the target set A′ of f is the same in each call.
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Algorithm 5: Maximal-in-range algorithm f c over range A′D when ∆I is bounded.

1 Let D be the domain of a distribution over the random set Ic computed by
Algorithm 1 satisfying |D| ∈ O(m2);

2 Let A′ ⊆ A be the target set of f ;
3 Set OPT← (∅, . . . , ∅);
4 foreach I ′ ∈ D do
5 Define vI

′
i (S) := vi(S ∩ I ′) for all S ⊆ I and i ∈ B;

6 Set OPT(I ′)← f(vI
′
);

7 if
∑

i∈B v
I′
i (OPTi(I

′)) ≥
∑

i∈B vi(OPTi) then ∀i ∈ B : OPTi ← OPTi(I
′)∩ I ′;

8 ;

9 end
10 return OPT

Let us assume that OPT was set to its final value when I ′ = I∗. Furthermore, assume
that Ic is a random subset computed by Algorithm 1. It follows that∑

i∈B

vi(OPTi) =
∑
i∈B

vI
∗

i (OPTi(I
∗)) ≥ EIc

[∑
i∈B

vI
c

i (OPTi(I
c))

]
(∗)
≥ EIc

[∑
i∈B

vI
c

i (OPTi(I))

]
=
∑
i∈B

EIc [vi(OPTi(I) ∩ Ic)]

(∗∗)
≥ 3

16∆I

∑
i∈B

vi(OPTi(I)) .

Inequality (∗) holds because OPT(Ic) ∈ arg maxS∈A′
∑

i∈B v
Ic

i (Si) and OPT(I) ∈ A′, and
Inequality (∗∗) follows from Lemma 5. Since the maximum social welfare it at most
α ·
∑

i∈B vi(OPTi(I)), the claimed approximation guarantee follows.
We still have to show that the algorithm is maximal-in-range. For each S ∈ A′ and

I ′ ∈ D let SI
′

:= (S1 ∩ I ′, . . . , Sn ∩ I ′). Define A′D := {SI′ |(S, I ′) ∈ A′ × D}. We show
that f c is maximal on the subset A′D ⊆ A. It holds that∑

i∈B

vi(OPTi) = max
I′∈D

∑
i∈B

vI
′

i (OPTi(I
′)) = max

I′∈D
max
S∈A′

∑
i∈B

vI
′

i (Si) = max
SI′∈A′D

∑
i∈B

vi(S
I′

i ) .

Again, the pricing scheme for a truthful mechanism is given in [Nis07, Proposition 9.31].

B Proofs and Results Omitted in Section 3

B.1 Solving Dual of CPR-C in Poly-time using Ellipsoid Algo-
rithm

First, we refer the readers to [GLS88, Chapters 2–4] for details of ellipsoid algorithm. We
will use the following result from fundamental linear algebra:
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Lemma 23 ([GLS88, Section 0.1]). Let M be a symmetric q×q real matrix. M is positive
semi-definite if and only if there exists w1, w2, · · · , wq ∈ Rq such that for 1 ≤ k, ` ≤ q,
Mk` = wk ·w`. Furthermore, M is positive definite if and only if the vectors w1, w2, · · · , wq
are linearly independent.

For our problem, we define the following proper cone K: K consists of all points
({xi,S}, {αi}, {βk},M), where {xi,S}, {αi}, {βk} are vectors of dimension (2m−1)n, n, m
respectively, and all of them have non-negative entries; M is symmetric positive semi-
definite (n + 1) × (n + 1) real matrix. It is easy to verify that K is a proper cone.
By following the arguments in [BV04, Examples 2.23 and 2.24], it is easy to show that
K∗ = K, i.e., K is self-dual.

Using Lemma 23 and introducing slack variables α’s and β’s, we can rewrite CPR-C
in the standard CP form CP-STD:

min −
∑
i∈B

∑
S 6=∅

vi(S) · xi,S (CPR-C’)

s.t. −
∑
S 6=∅

xi,S − αi =− 1, ∀i ∈ B (ui)

−
∑
S3k

∑
i∈B

xi,S − βk =− 1, ∀k ∈ I (pk)

2
∑
S 6=∅

xi,S −M0i = 1, ∀i ∈ B (zi)

M0i +M0j +Mmin{i,j} max{i,j} =− 1, ∀(i, j) ∈ E (yij)

M00 = 1, (q0)

Mii = 1, ∀i ∈ B (qi)

({xi,S}, {αi}, {βk},M) �K 0.

Instead of solving CPR-C’ directly, we will solve its dual. Each equality constraint in
CPR-C’ will associate to a variable in the dual. We have written the variables down on
the right of their corresponding constraints.

To ensure that solving the dual of CPR-C’ is equivalent to solving CPR-C’, we need to
check that strong duality holds between them. We do this soon later in this appendix.

The dual of CPR-C’ is

max −
∑
i∈B

ui −
∑
k∈I

pk +
∑
i∈B

zi −
∑

(i,j)∈E

yij + q0 +
∑
i∈B

qi (CPR-C-DUAL)

s.t. vi(S)− ui −
∑
k∈S

pk + 2zi ≤ 0, ∀i ∈ B, S ⊆ I

ui ≥ 0, ∀i ∈ B
pk ≥ 0, ∀k ∈ I
−Q is SPSD,
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where Q is the symmetric (n+ 1)× (n+ 1)-matrix determined as follows:

Qii = qi, ∀i ∈ B ∪ {0}

Q0i = Qi0 = − zi +
∑

j:(i,j)∈E

yij +
∑

j:(j,i)∈E

yji, ∀i ∈ B

Qij = Qji =


0 if (i, j) /∈ E and (j, i) /∈ E
yij if (i, j) ∈ E and (j, i) /∈ E
yji if (i, j) /∈ E and (j, i) ∈ E
yij + yji if (i, j) ∈ E and (j, i) ∈ E

, ∀ distinct i, j ∈ B.

The final step is to design a poly-time separation oracle:

• If ui < 0 for some i ∈ B or pk < 0 for some k ∈ I, we have an obvious separation
hyperplane.

• Since the dimension of −Q is poly(n), we can use a standard algorithm to check
whether it is SPSD in poly(n) time, and obtain a separation hyperplane if −Q is
not SPSD. See [dOF14, Example 2] for details.

• If vi(S) − ui −
∑

k∈S pk + 2zi > 0 for some i ∈ B and S ⊆ I, then we can use the
demand oracle of bidder i to find S = S∗ that maximizes vi(S) −

∑
k∈S pk. Then

vi(S
∗)−ui−

∑
k∈S∗ pk+2zi > 0, which provides us a separation hyperplane. This is

almost identical to the separation oracle used in the ellipsoid algorithm for solving
LPR-NC in [NS06].

B.2 Strong Duality of CPR-C

While strong duality always holds for LP, it does not always hold for CP. To check
strong duality, we verify that the primal program CPR-C’ satisfies Slater’s condition, i.e.,
find a feasible point which satisfies all equality constraints, and strictly satisfy the conic
constraint. In other words, we need to find a feasible point ({xi,S}, {αi}, {βk},M) which
satisfies all equality constraints, and such that xi,S > 0 for all i ∈ B, S ⊆ I, αi > 0 for
all i ∈ B, βk > 0 for all k ∈ I, and M is positive definite.

Here, we only consider the cases n ≥ 2; the auction with n = 1 bidder is trivial.
Consider the point with xi,S = 1

4(2m−1)n2 for all i ∈ B and S ⊆ I. Then αi =

1 − (2m − 1) · 1
4(2m−1)n2 > 0 and βk = 1 − 2m−1n · 1

4(2m−1)n2 > 0. Also, ∀i ∈ B, M0i =

2(2m − 1) · 1
4(2m−1)n2 − 1 = 1

2n2 − 1, and ∀i, j ∈ B where i 6= j, we choose Mij =

−1−M0i −M0j = 1− 1
n2 . Recall that ∀i ∈ B, M00 = Mii = 1.

For notational convenience, let ε = 1
2n2 , i.e., ∀i ∈ B, M0i = ε − 1; ∀i, j ∈ B where

i 6= j, Mij = 1− 2ε. By Lemma 23, to check that M is positive definite, equivalently, we
find linearly independent w0, w1, · · · , wn ∈ Rn+1 such that ∀i, j ∈ B ∪{0}, wi ·wj = Mij.

30



Let

w0 = (1, 0, 0, · · · , 0)

w1 = (ε− 1, a1, 0, 0, · · · , 0)

w2 = (ε− 1, b1, a2, 0, 0, · · · , 0)

w3 = (ε− 1, b1, b2, a3, 0, 0, · · · , 0)

...

wn = (ε− 1, b1, b2, b3, · · · , bn−1, an).

Note that ∀i ∈ B ∪ {0}, wi has n− i trailing zeroes. Also, ∀i ∈ B, the first entry of wi is
ε− 1, followed by b1, b2, · · · , bi−1, and then followed by ai and the trailing zeroes. These
ensure that w0 · w0 = 1 = M00 and w0 · wi = ε− 1 = M0i for all i ∈ B.

We will determine a1, b1, a2, b2, a3, b3, · · · , an−1, bn−1, an in this order. We will show

that for every i ∈ B, ai ≥
√

133
12n

, and bi’s are negative with |bi| ≤ 1
3n3 .

Since w1 · w1 = 1, (ε− 1)2 + (a1)2 = 1 and thus

a1 =
√

2ε− ε2 =

√
1

n2
− 1

4n4
=

√
1

n2

(
1− 1

4n2

)
≥
√

15

16n2
>

√
133

12n
.

Since for i > 1, w1 · wi = 1− 2ε, (ε− 1)2 + a1b1 = 1− 2ε. Hence a1b1 = −ε2 and thus b1

is negative with

|b1| = ε2/a1 =
1

4n4a1

<
3√

133n3
<

1

3n3
.

Next, we proceed by induction. Suppose that for some q ≥ 1, a1, a2, · · · , aq ≥
√

133
12n

and b1, b2 · · · , bq are negative with |b1|, |b2| · · · , |bq| ≤ 1
3n3 .

Since wq+1 · wq+1 = 1, (ε− 1)2 +
∑q

`=1(b`)
2 + (aq+1)2 = 1 and thus

aq+1 =

√√√√2ε− ε2 −
q∑
`=1

(b`)2 ≥
√

1

n2
− 1

4n4
− n · 1

9n6

≥
√

1

n2
− 1

4n4
− 1

18n4
=

√
1

n2

(
1− 11

36n2

)
≥
√

133

12n
.

Since for i > q + 1, wq+1 · wi = 1− 2ε, (ε− 1)2 +
∑q

`=1(b`)
2 + aq+1bq+1 = 1− 2ε. Hence

0 > aq+1bq+1 = −ε2 −
q∑
`=1

(b`)
2 ≥ − 1

4n4
− n · 1

9n6
≥ − 1

4n4
− 1

18n4
= − 11

36n4
,

and thus bq+1 is negative with

|bq+1| ≤
11

36n4aq+1

≤ 11

36n4
· 12n√

133
=

11

3
√

133n3
<

1

3n3
.

These complete the induction.
Since all ai’s are strictly positive, w0, w1, w2, · · · , wn are linearly independent.
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