
Design of Dynamic Algorithms via Primal-Dual
Method

Sayan Bhattacharya?, Monika Henzinger??, Giuseppe F. Italiano? ? ?

Abstract. In this paper, we develop a dynamic version of the primal-
dual method for optimization problems, and apply it to obtain the fol-
lowing results. (1) For the dynamic set-cover problem, we maintain an
O(f2)-approximately optimal solution in O(f · log(m + n)) amortized
update time, where f is the maximum “frequency” of an element, n is
the number of sets, and m is the maximum number of elements in the
universe at any point in time. (2) For the dynamic b-matching prob-
lem, we maintain an O(1)-approximately optimal solution in O(log3 n)
amortized update time, where n is the number of nodes in the graph.

1 Introduction

The primal-dual method lies at the heart of the design of algorithms for com-
binatorial optimization problems. The basic idea, contained in the “Hungarian
Method” [8], was extended and formalized by Dantzig et al. [5] as a general
framework for linear programming, and thus it became applicable to a large
variety of problems. Few decades later, Bar-Yehuda et al. [1] were the first to
apply the primal-dual method to the design of approximation algorithms. Sub-
sequently, this paradigm was applied to obtain approximation algorithms for a
wide collection of NP-hard problems [11]. When the primal-dual method is ap-
plied to approximation algorithms, an approximate solution to the problem and
a feasible solution to the dual of an LP relaxation are constructed simultane-
ously, and the performance guarantee is proved by comparing the values of both
solutions. The primal-dual method was also extended to online problems [4].
Here, the input is revealed only in parts, and an online algorithm is required to
respond to each new input upon its arrival (without being able to see the future).
The algorithm’s performance is compared against the benchmark of an optimal
omniscient algorithm that can view the entire input sequence in advance.

In this paper, we focus on dynamic algorithms for optimization problems. In
the dynamic setting, the input of a problem is being changed via a sequence of
updates, and after each update one is interested in maintaining the solution to
the problem much faster than recomputing it from scratch. We remark that the
dynamic and the online setting are completely different: in the dynamic scenario
one is concerned more with guaranteeing fast (worst-case or amortized) update

? Institute of Mathematical Sciences, Chennai, India. E-mail: bsayan@imsc.res.in.
?? University of Vienna, Austria. E-mail: monika.henzinger@univie.ac.at.

? ? ? Università di Roma “Tor Vergata”, Italy. E-mail: giuseppe.italiano@uniroma2.it.

times rather than comparing the algorithms’ performance against optimal offline
algorithms. As a main contribution of this paper, we develop a dynamic version
of the primal-dual method, thus opening up a completely new area of application
of the primal-dual paradigm to the design of dynamic algorithms. With some
careful insights, our recent algorithms for dynamic matching and dynamic vertex
cover [3] can be reinterpreted in this new framework. In this paper, we show
how to apply the new dynamic primal-dual framework to the design of two
other optimization problems: the dynamic set-cover problem and the dynamic
b-matching problem.

Definition 1 (Set-Cover). We are given a universe U of at most m elements,
and a collection S of n sets S ⊆ U . Each set S ∈ S has a (polynomially bounded
by n) “cost” cS > 0. The goal is to select a subset S ′ ⊆ S such that each element
in U is covered by some set S ∈ S ′ and the total cost

∑
S∈S′ c(S) is minimized.

Definition 2 (Dynamic Set-Cover). Consider a dynamic version of the prob-
lem specified in Definition 1, where the collection S, the costs {cS}, S ∈ S, the
upper bound f on the maximum frequency maxu∈U |{S ∈ S : u ∈ S}|, and the
upper bound m on the maximum size of the universe U remain fixed. The uni-
verse U , on the other hand, keeps changing dynamically. In the beginning, we
have U = ∅. At each time-step, either an element u is inserted into the universe
U and we get to know which sets in S contain u, or some element is deleted from
the universe. The goal is to maintain an approximately optimal solution to the
set-cover problem in this dynamic setting.

Definition 3 (b-Matching). We are given an input graph G = (V,E) with
|V | = n nodes, where each node v ∈ V has a capacity cv ∈ {1, . . . , n}. A b-
matching is a subset E′ ⊆ E of edges such that each node v has at most cv edges
incident to it in E′. The goal is to select the b-matching of maximum cardinality.

Definition 4 (Dynamic b-Matching). Consider a dynamic version of the
problem specified in Definition 3, where the node set V and the capacities {cv}, v ∈
V remain fixed. The edge set E, on the other hand, keeps changing dynamically.
In the beginning, we have E = ∅. At each time-step, either a new edge is inserted
into the graph or some existing edge is deleted from the graph. The goal is to
maintain an approximately optimal solution to the b-matching problem in this
dynamic setting.

As stated in [4, 11], the set-cover problem has played a pivotal role both for
approximation and for online algorithms, and thus it seems a natural problem
to consider in our dynamic setting. Our definition of dynamic set-cover is in-
spired by the standard formulation of the online set-cover problem [4], where
the elements arrive online.

Our Techniques. Roughly speaking, our dynamic version of the primal-
dual method works as follows. We start with a feasible primal solution and an
infeasible dual solution for the problem at hand. Next, we consider the follow-
ing process: gradually increase all the primal variables at the same rate, and

2

whenever a primal constraint becomes tight, stop the growth of all the primal
variables involved in that constraint, and update accordingly the corresponding
dual variable. This primal growth process is used to define a suitable data struc-
ture based on a hierarchical partition. A level in this partition is a set of the dual
variables whose corresponding primal constraints became (approximately) tight
at the same time-instant. To solve the dynamic problem, we maintain the data
structure, the hierarchical partition and the corresponding primal-dual solution
dynamically using a simple greedy procedure. This is sufficient for solving the
dynamic set-cover problem. For the dynamic b-matching problem, we need some
additional ideas. We first get a fractional solution to the problem using the previ-
ous technique. To obtain an integral solution, we perform randomized rounding
on the fractional solution in a dynamic setting. This is done by sampling the
edges with probabilities that are determined by the fractional solution.

Our Results. Our new dynamic primal-dual framework yields efficient dy-
namic algorithms for both the dynamic set-cover problem and the dynamic b-
matching problem. In particular, for the dynamic set-cover problem we main-
tain a O(f2)-approximately optimal solution in O(f · log(m + n)) amortized
update time (see Corollary 1 in Section 2). On the other hand, for the dynamic
b-matching problem, we maintain a O(1)-approximation in O(log3 n) amortized
time per update (see Theorem 7 in Section 3). Further, we can show that an edge
insertion/deletion in the input graph, on average, leads to O(log2 n) changes in
the set of matched edges maintained by our algorithm.

Related Work. The design of dynamic algorithms is one of the classic ar-
eas in theoretical computer science with a countless number of applications.
Dynamic graph algorithms have received special attention, and there have been
many efficient algorithms for several dynamic graph problems, including dy-
namic connectivity, minimum spanning trees, transitive closure, shortest paths
and matching problems (see, e.g., the survey in [6]). The b-matching problem
contains as a special case matching problems, for which many dynamic algo-
rithms are known [2, 3, 7, 9, 10]. Unfortunately, none of the results on dynamic
matching extends to the dynamic b-matching problem. To the best of our knowl-
edge, no previous result was known for dynamic set-cover problem.

2 Maintaining a Set-Cover in a Dynamic Setting

We define a problem called “fractional hypergraph b-matching” (Definition 5).
Later, we show that this generalizes the well-known set-cover problem (Lemma 1).
Our main result is Theorem 2, which, along with Lemma 1, implies Corollary 1.

Definition 5 (Fractional Hypergraph b-Matching). We are given an input
hypergraph G = (V,E) with |V | = n nodes and at most m ≥ |E| edges. Let
Ev ⊆ E denote the set of edges incident upon a node v ∈ V , and let Ve = {v ∈
V : e ∈ Ev} denote the set of nodes an edge e ∈ E is incident upon. Let cv > 0
denote the “capacity” of a node v ∈ V , and let µ ≥ 1 denote the “multiplicity” of
an edge. We assume that the µ and the cv values are polynomially bounded by n.

3

Our goal is to assign a “weight” x(e) ∈ [0, µ] to each edge e ∈ E in such a way
that (a)

∑
e∈Ev x(e) ≤ cv for all nodes v ∈ V , and (b) the sum of the weights of

all the edges is maximized.

Below, we write a linear program for the above problem and its dual.

Primal LP: Maximize
∑
e∈E

x(e) (1)

subject to:
∑
e∈Ev

x(e) ≤ cv ∀v ∈ V. (2)

0 ≤ x(e) ≤ µ ∀e ∈ E. (3)

Dual LP: Minimize
∑
v∈V

cv · y(v) +
∑
e∈E

µ · z(e) (4)

subject to: z(e) +
∑
v∈Ve

y(v) ≥ 1 ∀e ∈ E. (5)

y(v), z(e) ≥ 0 ∀v ∈ V, e ∈ E. (6)

Definition 6. A feasible solution to LP (1) is λ-maximal, λ ≥ 1, iff for every
edge e ∈ E with x(e) < µ, there is some node v ∈ Ve with

∑
e′∈Ev x(e′) ≥ cv/λ.

Theorem 1. Let f ≥ maxe∈E |Ve| be an upper bound on the maximum possible
“frequency” of an edge. Let OPT be the optimal objective value of LP (1). Any
λ-maximal solution to LP (1) has an objective value that is at least OPT/(λf+1).

Proof (Sketch). Follows from LP duality. ut

Definition 7 (Dynamic Fractional Hypergraph b-Matching). Consider
a dynamic version of the problem specified in Definition 5, where the node-set
V , the capacities {cv}, v ∈ V , the upper bound f on the maximum frequency
maxe∈E |Ve|, and the upper bound m on the maximum number of edges remain
fixed. The edge-set E, on the other hand, keeps changing dynamically. In the
beginning, we have E = ∅. At each time-step, either an edge is inserted into
the graph or an edge is deleted from the graph. The goal is to maintain an
approximately optimal solution to the problem in this dynamic setting.

Theorem 2. We can maintain a (f + 1 + εf)-maximal solution to dynamic
fractional hypergraph b-matching in O(f · log(m+n)/ε2) amortized update time.

We now compare fractional hypergraph b-matching with set-cover.

Lemma 1. The dual LP (4) is an LP-relaxation of the set-cover problem.

Proof (Sketch). Given an instance of the set-cover problem, we create an instance
of the hypergraph b-matching problem as follows. For each element u ∈ U create
an edge e(u) ∈ E, and for each set S ∈ S, create a node v(S) ∈ V with capacity
cv(S) = cS . Ensure that an element u belongs to a set S iff e(u) ∈ Ev(S). Set

4

µ = maxv∈V cv + 1. Since µ > maxv∈V cv, it can be shown that an optimal
solution to the dual LP (4) will set z(e) = 0 for every edge e ∈ E. Thus, we can
remove the variables {z(e)} from the constraints and the objective function of
LP (4) to get a new LP with the same optimal objective value. This new LP is
an LP-relaxation for the set-cover problem. ut

Corollary 1. We can maintain an (f2+f+εf2)-approximately optimal solution
to the dynamic set cover problem in O(f · log(m+n)/ε2) amortized update time.

Proof (Sketch). We map the set cover instance to a fractional hypergraph b-
matching instance as in the proof of Lemma 1. By Theorem 2, in O(f log(m +
n)/ε2) amortized update time, we can maintain a feasible solution {x∗(e)} to
LP (1) that is λ-maximal, where λ = f+1+εf . Consider a collection of sets S∗ =
{S ∈ S :

∑
e∈Ev(S)

x(e) ≥ cv(S)/λ}. Since we can maintain the fractional solution

{x∗(e)} in O(f log(m + n)/ε2) amortized update time, we can also maintain
S∗ without incurring any additional overhead in the update time. Now, using
complementary slackness conditions, we can show that each element e ∈ U is
covered by some S ∈ S∗, and the sum

∑
S∈S∗ cS is at most (λf)-times the size

of the primal solution {x∗(e)}. The corollary follows from LP duality. ut

For the rest of this section, we focus on proving Theorem 2. First, in the
static setting, inspired by the primal-dual method for set-cover we consider the
following algorithm for the fractional hypergraph b-matching problem.

– Consider a primal solution with x(e)← 0 for all e ∈ E, and let F ← E.
– While there is some primal constraint that is not tight:

• Keep increasing the primal variables {x(e)}, e ∈ F , uniformly at the
same rate till some primal constraint becomes tight. At that instant,
“freeze” all the primal variables involved in that constraint and delete
them from the set F , and set the corresponding dual variable to one.

Figure 1 defines a variant of the above procedure that happens to be easier to
maintain in a dynamic setting. The main idea is to discretize the continuous pri-
mal growth process. Define cmin = minv∈V cv, and without any loss of generality,
assume that cmin > 0. Fix α, β > 1, and define L = dlogβ(mµα/cmin)e.

Claim 3 If x(e) = µ ·β−L for all e ∈ E, then we have a feasible primal solution.

Proof. Clearly, x(e) ≤ µ for all e ∈ E. Now, consider any node v ∈ V . We have∑
e∈Ev x(e) = |Ev| ·µ ·β−L ≤ |E| ·µ ·β−L ≤ m ·µ ·β−L ≤ m ·µ · (cmin/(mµα)) =

cmin/α < cv. Hence, all the primal constraints are satisfied. ut

Our new algorithm is described in Figure 1. We initialize our primal solution
by setting x(e) ← µβ−L for every edge e ∈ E, as per Claim 3. Say that a node
v is nearly-tight if its corresponding primal constraint is tight within a factor
of fαβ, and slack otherwise. Say that an edge is nearly-tight if it is incident
upon some nearly-tight node, and slack otherwise. Let VL ⊆ V and EL ⊆ E

5

01. Set x(e)← µ · β−L for all e ∈ E, and define c∗v = cv/(fαβ) for all v ∈ V .
02. Set VL ← {v ∈ V :

∑
e∈Ev x(e) ≥ c∗v}, and EL ←

⋃
v∈VL

Ev.

03. For i = L− 1 to 1:

04. Set x(e)← x(e) · β for all e ∈ E \
⋃L

k=i+1Ei.

05. Set Vi ←
{
v ∈ V \

⋃L
k=i+1 Vk :

∑
e∈Ev x(e) ≥ c∗v

}
.

06. Set Ei ←
⋃

v∈Vi
Ev.

07. Set V0 ← V \
⋃L

k=1 Vi, and E0 ←
⋃

v∈V0
Ev.

08. Set x(e)← x(e) · β for all e ∈ E0.

Fig. 1. DISCRETE-PRIMAL-DUAL().

respectively denote the sets of nearly-tight nodes and edges, immediately after
the initialization step. The algorithm then performs L− 1 iterations.

At iteration i ∈ {L − 1, . . . , 1}, the algorithm increases the weight x(e) of
every slack edge e by a factor of β. Since the total weight received by every slack
node v (from its incident edges) never exceeds cv/(fαβ), this weight-increase
step does not violate any primal constraint. The algorithm then defines Vi (resp.
Ei) to be the set of new nodes (resp. edges) that become nearly-tight due to this
weight-increase step.

Finally, the algorithm defines V0 (resp. E0) to be the set of nodes (resp.
edges) that are slack at the end of iteration i = 1. It terminates after increasing
the weight of every edge in E0 by a factor of β.

When the algorithm terminates, it is easy to check that x(e) = µ · β−i for
every edge e ∈ Ei, i ∈ {0, . . . , L}. We also have c∗v ≤

∑
e∈Ev x(e) ≤ β ·c∗v for every

node v ∈
⋃L
k=1 Vk, and

∑
e∈Ev x(e) ≤ c∗v for every node v ∈ V0. Furthermore, at

the end of the algorithm, every edge e ∈ E is either nearly-tight, or it has weight
x(e) = µ. We, therefore, reach the following conclusion.

Claim 4 The algorithm described in Figure 1 returns an (fαβ)-maximal solu-
tion to the fractional hypergraph b-matching problem.

Our goal is to make a variant of the procedure in Figure 1 work in a dynamic
setting. Towards this end, we introduce the concept of an (α, β)-partition (see
Definition 8) satisfying a certain invariant (see Invariant 5). The reader is en-
couraged to notice the similarities between this construct and the output of the
procedure in Figure 1.

Definition 8. Fix any two parameters α, β > 1 and let cmin = minv∈V cv > 0.
An (α, β)-partition of the hypergraph G partitions its node-set V into subsets
V0 . . . VL, where L = dlogβ(mµα/cmin)e. For i ∈ {0, . . . , L}, we identify the

subset Vi as the ith “level” of this partition, and denote the level of a node v by
`(v). Thus, we have v ∈ V`(v) for all v ∈ V . We also define the level of each edge

e ∈ E as `(e) = maxv∈Ve {`(v)}, and assign a “weight” w(e) = µ · β−`(e) to e.

Given an (α, β)-partition, let Ev(i) = {e ∈ Ev : `(e) = i} denote the set of

edges incident to v that are in the ith level, and let Ev(i, j) =
⋃j
k=i Ev(k) denote

6

the set of edges incident to v whose levels are in the range [i, j]. Similarly, we
define the notations Dv = |Ev| and Dv(i, j) = |Ev(i, j)|. Let Wv =

∑
e∈Ev w(e)

denote the total weight a node v ∈ V receives from the edges incident to it. We
also define the notation Wv(i) =

∑
e∈Ev µ ·β

−max(`(e),i). It gives the total weight
the node v would receive from the edges incident to it, if the node v itself were
to go to the ith level. It is easy to check that an (α, β)-partition satisfies the
following conditions for all nodes v ∈ V .

Wv(L) ≤ cmin/α (7)

Wv(L) ≤ · · · ≤Wv(i) ≤ · · · ≤Wv(0) (8)

Wv(i) ≤ β ·Wv(i+ 1) ∀i ∈ {0, . . . , L− 1}. (9)

Invariant 5 Define c∗v = cv/(fαβ). For every node v ∈ V , if `(v) = 0, then
Wv ≤ fαβ · c∗v. Else if `(v) ≥ 1, then c∗v ≤Wv ≤ fαβ · c∗v.

Lemma 2. Consider an (α, β)-partition that satisfies Invariant 5. The edge-
weights {w(e)}, e ∈ E, give an (fαβ)-maximal solution to LP (1).

Proof (Sketch). Similar to the proof of Claim 4. ut

Handling an edge insertion/deletion. Consider an (α, β)-partition in the
graph G. A node is called dirty if it violates Invariant 5, and clean otherwise.
Since the edge-set E is initially empty, every node is clean and at level zero before
the first update. Now consider the time instant just prior to the tth update. By
induction hypothesis, at this instant every node is clean. Then the tth update
takes place, which inserts (resp. deletes) an edge e in E with weight w(e) =
µβ−`(e). This increases (resp. decreases) the weights {Wx}, x ∈ Ve. Due to this
change, the nodes x ∈ Ve might become dirty. To recover from this, we call the
subroutine in Figure 2.

01. While there exists a dirty node v
02. If Wv > fαβc∗v, Then

// If true, then by equation 7, we have `(v) < L.
03. Increment the level of v by setting `(v)← `(v) + 1.
04. Else if (Wv < c∗v and `(v) > 0), Then
05. Decrement the level of v by setting `(v)← `(v)− 1.

Fig. 2. RECOVER().

Consider any node v ∈ V and suppose that Wv > fαβc∗v = cv ≥ cmin. In
this event, since α > 1, equation 7 implies that Wv(L) < Wv(`(v)) and hence we
have L > `(v). In other words, when the procedure described in Figure 2 decides
to increment the level of a dirty node v (Step 02), we know for sure that the
current level of v is strictly less than L (the highest level in the (α, β)-partition).

Next, consider an edge e ∈ Ev. If we change `(v), then this may change the
weight w(e), and this in turn may change the weights {Wz}, z ∈ Ve. Thus, a

7

single iteration of the While loop in Figure 2 may lead to some clean nodes
becoming dirty, and some other dirty nodes becoming clean. If and when the
While loop terminates, however, we are guaranteed that every node is clean
and that Invariant 5 holds.

Analyzing the amortized update time For each node v ∈ V and each
i ∈ {0, . . . , L}, we store the set of edges {e ∈ Ev : `(e) = i} in a doubly linked
list Neighbors[v, i]. The update time of our algorithm is dominated by the
time taken to update these lists. Next, note that each time the level of an edge
changes, we have to update at most f lists (one corresponding to each node
v ∈ Ve). Hence, the time taken to update the lists is given by f · δl, where δl
is the number of times the procedure in Figure 2 changes the level of an edge.
Using a carefully chosen potential function, in the full version of the paper we
show that δl ≤ t · O(L/ε) after t edge insertions/deletions in G starting from
an empty graph, for α = 1 + 1/f + 3ε and β = 1 + ε. This gives the required
O(fδl/t) = O(f log(m+ n)/ε2) bound on the amortized update time.

3 Maintaining a b-Matching in a Dynamic Setting

In this section, we will present a dynamic algorithm for the problem specified
in Definitions 3, 4 (see Theorem 7). Given any subset of edges E′ ⊆ E and any
node v ∈ V , let N (v,E′) = {u ∈ V : (u, v) ∈ E′} denote the set of neighbors
of v with respect to the edge-set E′, and let deg(v,E′) = |N (v,E′)|. Next,
consider any “weight” function w : E′ → R+. For every node v ∈ V , we define
Wv =

∑
u∈N (v,E) w(u, v). Finally, for every subset of edges E′ ⊆ E, we define

w(E′) =
∑
e∈E′ w(e). Next, we show how to maintain a “fractional” b-matching.

Theorem 6. Fix a constant ε ∈ (0, 1/4), and let λ = 4. In O(log n) amortized
update time, we can maintain a fractional b-matching w : E → [0, 1] in G =
(V,E) such that:

Wv ≤ cv/(1 + ε) for all nodes v ∈ V. (10)

w(u, v) = 1 for each edge (u, v) ∈ E with Wu,Wv < cv/λ. (11)

Further, the size of the optimal b-matching in G is O(1) times the sum
∑
e∈E w(e).

Proof (Sketch). Note that the fractional b-matching problem is a special case of
fractional hypergraph b-matching (Definitions 5, 7) where µ = 1, m = n2, and
f = 2.

We scale down the capacity of each node v ∈ V by a factor of (1 + ε), by
defining c̃v = cv/(1 + ε) for all v ∈ V . Next, we apply Theorem 2 on the input
graph G = (V,E) with µ = 1, m = n2, f = 2, and the reduced capacities
{c̃v}, v ∈ V . Let {w(e)}, e ∈ E, be the resulting (f + 1 + εf)-maximal matching
(see Definition 6). Since ε < 1/3 and f = 2, we have λ ≥ f + 1 + εf . Since ε is a
constant, the amortized update time for maintaining the fractional b-matching
becomes O(f ·log(m+n)/ε2) = O(log n). Finally, by Theorem 1, the fractional b-
matching {w(e)} is an (λf +1) = 9-approximate optimal b-matching in G in the

8

presence of the reduced capacities {c̃v}. But scaling down the capacities reduces
the objective of LP (1) by at most a factor of (1 + ε). Hence, the size of the
optimal b-matching in G is at most 9(1 + ε) = O(1) times the sum

∑
e∈E w(e).

This concludes the proof. ut

Set λ = 4 for the rest of this section. We will show how to dynamically
convert the fractional b-matching {w(e)} from Theorem 6 into an integral b-
matching, by losing a constant factor in the approximation ratio. The main idea
is to randomly sample the edges e ∈ E based on their w(e) values. But, first we
introduce the following notations.

Say that a node v ∈ V is “nearly-tight” if Wv ≥ cv/λ and “slack” otherwise.
Let T denote the set of all nearly-tight nodes. We also partition the node-set
V into two subsets: B ⊆ V and S = V \ B. Each node v ∈ B is called “big”
and has deg(v,E) ≥ c log n, for some large constant c > 1. Each node v ∈ S is
called “small” and has deg(v,E) < c log n. Define EB = {(u, v) ∈ E : either u ∈
B or v ∈ B} to be the subset of edges with at least one endpoint in B, and let
ES = {(u, v) ∈ E : either u ∈ S or v ∈ S} be the subset of edges with at least
one endpoint in S. We define the subgraphs GB = (V,EB) and GS = (V,ES).

Overview of our approach. We maintain the following quantitates. (1)
A random subset HB ⊆ EB , and a weight function wB : HB → [0, 1] in the
subgraph GB(H) = (V,HB), as per Definition 9. (2) A random subset HS ⊆ ES ,
and a weight function wS : HS → [0, 1] in the subgraph GS(H) = (V,HS), as
per Definition 10. (3) A maximal b-matching MS ⊆ HS in the subgraph GS(H),
that is, for every edge (u, v) ∈ HS \MS , there is a node q ∈ {u, v} such that
deg(q,MS) = cq. (4) The set of edges E∗ = {e ∈ E : w(e) = 1}.

We will show that with high probability, one of the edge-sets HB ,MS , E
∗ is

an O(1)-approximation to the optimal b-matching in G. The rest of this section
is organized as follows. In Lemma 3 (resp. Lemma 4), we prove some properties
of the random set HB (resp. HS) and the weight function wB (resp. wS). In
Lemma 5, we show that the edge-sets HB , HS ,MS and E∗ can be maintained
in a dynamic setting in O(log3 n) amortized update time. We prove our main
result in Theorem 7.

Definition 9. Let ZB(e) ∈ {0, 1} be a random variable such that (a) it is set to
one if e ∈ HB and zero otherwise, and (b) the following properties are satisfied.

With probability one, deg(v,HB) ≤ cv for every small node v ∈ S. (12)

Pr[e ∈ HB] = E[ZB(e)] = w(e) for every edge e ∈ EB . (13)

∀v ∈ B, variables {ZB(u, v)}, u ∈ N (v,EB), are mutually independent. (14)

For each edge e ∈ HB , we have wB(e) = 1 (15)

Definition 10. Let ZS(e) ∈ {0, 1} be a random variable such that (a) it is set
to one if e ∈ HS and zero otherwise, and (b) the following properties hold.

Pr[e ∈ HS] = E[ZS(e)] = pe = min(1, w(e) · (cλ log n/ε)) ∀e ∈ ES . (16)

The variables {ZS(e)}, e ∈ ES , are mutually independent. (17)

9

For each edge e ∈ HS ,we have wS(e) =

{
w(e) if pe ≥ 1;

ε/(cλ log n) if pe < 1.
(18)

Lemma 3. For every node v ∈ V , define WB
v =

∑
u∈N (v,HB) w

B(u, v). The

following conditions hold with high probability. (a) For every node v ∈ V , we
have WB

v ≤ cv. (b) For every node v ∈ B ∩ T , we have WB
v ≥ (1− ε) · (cv/λ).

Proof (Sketch). Consider any small node v ∈ S. By equations 12, 15, we have
WB
v = deg(v,HB) ≤ cv with high probability. Now, consider any big node

v ∈ B. By equations 13, 15 and linearity of expectation, we have E[WB
v] =

Wv ≤ cv/(1 + ε). Furthermore, if v ∈ B ∩T , then we have E[WB
v] = Wv ≥ cv/λ.

Since cv ≥ c log n, the Lemma now follows from equation 14 and Chernoff bound.
ut

Lemma 4. For every node v ∈ V , define WS
v =

∑
u∈N (v,HS) w

S(u, v). The

following conditions hold with high probability. (a) For each node v ∈ V , we
have WS

v ≤ cv. (b) For each node v ∈ S, we have deg(v,HS) = O(log2 n). (c)
For each node v ∈ S ∩ T , we have WS

v ≥ (1− ε) · (cv/λ).

Proof (Sketch). In order to highlight the main idea subject to space constraints,
we assume that pe < 1 for every edge e ∈ ES . First, consider any small node
v ∈ S. Since N (v,ES) = N (v,E), from equations 10, 16, 18 and linearity of
expectation, we infer that E[deg(v,HS)] = (cλ log n/ε) · Wv ≤ (cλ log n/ε) ·
(cv/(1 + ε)). Since cv ∈ [1, c log n], from equation 17 and Chernoff bound we
infer that deg(v,HS) ≤ (cλ log n/ε) · cv = O(log2 n) with high probability. Next,
note that WS

v = deg(v,HS)·(ε/(cλ log n)). Hence, we also get WS
v ≤ cv with high

probability. Next, suppose that v ∈ S ∩T . In this case, we have E[deg(v,HS)] =
(cλ log n/ε)·Wv ≥ (cλ log n/ε)·(cv/λ). Again, since this expectation is sufficiently
large, applying Chernoff bound we get deg(v,HS) ≥ (cλ log n/ε) · (1− ε) · (cv/λ)
with high probability. It follows that WS

v = (ε/(cλ log n)) · deg(v,HS) ≥ (1− ε) ·
(cv/λ) with high probability.

Finally, applying a similar argument we can show that for every big node
v ∈ B, we have WS

v ≤ cv with high probability. ut

Lemma 5. With high probability, we can maintain the edge-sets HB, E∗, HS,
and a maximal b-matching MS in GS(H) = (V,HS) in O(log3 n)-amortized
update time.

Proof (Sketch). We maintain the fractional b-matching {w(e)} as per Theorem 6.
This requires O(log n) amortized update time, and starting from an empty graph,
t edge insertions/deletions in G lead to O(t log n) many changes in the edge-
weights {w(e)} (see Section 2). Thus, we can easily maintain the edge-set E∗ =
{e ∈ E : w(e) = 1} in O(log n) amortized update time.

Next, we show to maintain the edge-set HS . We do this by independently
sampling each edge e ∈ ES with probability pe. This probability is completely
determined by the weight w(e). So we need to resample the edge each time its
weight changes. Thus, the amortized update time for maintaining HS is O(log n).

10

Next, we show how to maintain the maximal b-matching MS in HS . Ev-
ery edge e ∈ HS has at least one endpoint in S, and each node v ∈ S has
deg(v,HS) = O(log2 n) with high probability (see Lemma 4). Due to this fact,
for each node v ∈ B, we can maintain the set of its free neighbors Fv(S) = {u ∈
N (v,HS) : u is unmatched in MS} in O(log2 n) worst case time per update in
HS , with high probability (w.h.p.). Using the sets {Fv(S)}, v ∈ B, after each
edge insertion/deletion in HS , we can update the maximal b-matching MS in
O(log2 n) worst case time w.h.p. [9]. Since each edge insertion/deletion in G, on
average, leads to O(log n) edge insertions/deletions in HS , we spend O(log3 n)
amortized update time for maintaining MS , w.h.p..

Finally, we show how to maintain the set HB . The edges (x, y) ∈ EB with
both endpoints x, y ∈ B are sampled independently with probability w(x, y).
This requires O(log n) amortized update time. Next, each small node v ∈ S
randomly selects some neighbors u ∈ N (v,EB) and adds the corresponding
edges (u, v) to the set HB , ensuring that Pr[(u, v) ∈ HB] = w(u, v) for all
u ∈ N (v,EB) and that deg(v,HB) ≤ cv. The random choices made by the
different small nodes are mutually independent, which implies equation 14. But,
for a given node v ∈ S, the random variables {ZB(u, v)}, u ∈ N (v,EB), are
completely correlated. They are determined as follows.

In the beginning, we pick a number ηv uniformly at random from the in-
terval [0, 1), and, in a predefined manner, label the set of big nodes as B =
{v1, . . . , v|B|}. For each i ∈ {1, . . . , |B|}, we define ai(v) = w(v, vi) if vi ∈
N (v,EB) and zero otherwise. We also define Ai(v) =

∑i
j=1 aj(v) for each i ∈

{1, . . . , |B|} and set A0(v) = 0. At any given point in time, we defineN (v,HB) =
{vi ∈ B : Ai−1(v) ≤ k + ηv < Ai(v) for some nonnegative integer k < cv}.
Under this scheme, for every node vi ∈ B, we have Pr[vi ∈ N (v,HB)] =
Ai(v) − Ai−1(v) = ai(v). Thus, we get Pr[vi ∈ N (v,HB)] = w(v, vi) for all
vi ∈ N (v,EB), and Pr[vi ∈ N (v,HB)] = 0 for all vi 6= N (v,EB). Also note
that deg(v,HB) ≤ d

∑
vi∈N (v,EB) w(v, vi)e ≤ dWve ≤ dcv/(1 + ε)e ≤ cv. Hence,

equations 12, 13 are satisfied.
In the full paper, we show that the sums {Ai(v)}, v ∈ S, i, and the sets

{N (v,HB)}, v ∈ S, can be maintained using a balanced binary tree data struc-
ture in O(log3 n) amortized update time. This means that the set HB can also
be maintained in O(log3 n) amortized update time. ut

Theorem 7. With high probability, we can maintain an O(1)-approximately op-
timal b-matching in the input graph G in O(log3 n) amortized update time.

Proof (Sketch). We maintain the random sets of edges HB and HS , a maximal
b-matching MS in the subgraph GS(H) = (V,HS), and the set of edges E∗ =
{e ∈ E : w(e) = 1} as per Lemma 5. This requires O(log3 n) amortized update
time with high probability (w.h.p.). We will show that w.h.p., one of the edge-
sets E∗, HB and MS is an O(1)-approximately optimal b-matching in G. But,
first, we claim that:

w(E∗) +
∑

v∈B∩T
Wv +

∑
v∈S∩T

Wv ≥ w(E) (19)

11

Equation 19 holds since each edge e ∈ E \ E∗ has at least one endpoint in
T (by equation 11), and hence each edge e ∈ E contributes at least w(e) to
the left hand side and exactly w(e) to the right hand side. Next, note that by
Lemmas 3, 4, the weight functions wB , wS are fractional b-matchings in G with
high probability. For the rest of proof, we condition on this event, and consider
three possible cases based on equation 19.

Case 1. w(E∗) ≥ (1/3) · w(E). In this case, since w(e) = 1 for all e ∈ E∗,
Theorem 6 imply that E∗ is an O(1)-approximately optimal b-matching in G.

Case 2.
∑
v∈B∩T Wv ≥ (1/3) · w(E). Here, Lemma 3 and equation 15 imply

that:
∑
v∈B∩T Wv ≤

∑
v∈B∩T cv ≤

∑
v∈B∩T O(1) ·WB

v ≤ O(1) · 2 · wB(HB) =
O(1) · |HB |. Since O(1) · |HB | ≥

∑
v∈B∩T Wv ≥ (1/3) ·w(E), Theorem 6 implies

that the edge-set HB is an O(1)-approximately optimal b-matching in G.

Case 3.
∑
v∈S∩T Wv ≥ (1/3) ·w(E). Here, Lemma 4 implies that:

∑
v∈S∩T Wv ≤∑

v∈S∩T cv ≤ O(1) ·
∑
v∈S∩T W

S
v ≤ O(1) · 2 · wS(HS) ≤ O(1) · |MS |. The last

inequality holds since MS is a 1-maximal b-matching in GS(H) = (V,HS), and
hence we have wS(HS) ≤ 3 · |MS | (see Theorem 1). Finally, since O(1) · |MS | ≥∑
v∈S∩T Wv ≥ (1/3) ·w(E), Theorem 6 implies that the edge-set MS is an O(1)-

approximately optimal b-matching in G. ut

References

1. R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

2. S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(logn)
update time. In FOCS, pages 383–392, 2011.

3. S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. In Procs. 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2015), pages 785–804, 2015.

4. N. Buchbinder and J. Naor. The design of competitive online algorithms via a
primal-dual approach. Foundations and Trends in Theoretical Computer Science,
3(2-3):93–263, 2009.

5. G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A primal-dual algorithm for
linear programs. In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities
and Related Systems, pages 171–181. Princeton University Press, 1956.

6. D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. J.
Atallah and M. Blanton, editors, Algorithms and Theory of Computation Handbook,
2nd Edition, Vol. 1, pages 9.1–9.28. CRC Press, 2009.

7. M. Gupta and R. Peng. Fully dynamic (1 + ε)-approximate matchings. In FOCS,
pages 548–557, 2013.

8. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

9. O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic
maximal matching. In STOC, pages 745–754, 2013.

10. K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover.
In STOC, pages 457–464, 2010.

11. V. Vazirani. Approximation Algorithms. Springer-Verlag, NY, USA, 2001.

12

