
Machine Translation Using Corpus-based Acquisition of Transfer Rules

Werner Winiwarter
University of Vienna, Department of Scientific Computing

Universitätsstraße 5, A-1010 Vienna, Austria
werner.winiwarter@univie.ac.at

Abstract

In this paper we present a Japanese-English transfer-
based machine translation system. Our main research con-
tribution is that the transfer rules are not handcrafted but
are learnt automatically from a parallel corpus. We learn
specific transfer rules from sentence pairs, which are then
generalized in a consolidation phase to avoid overtraining.
The system has been implemented in Amzi! Prolog, which
offers scalability for large rule bases, full Unicode support
for Japanese characters, and several APIs for the seamless
integration of the translation functionality into common of-
fice environments, e.g. Microsoft Word. The dynamic nature
of our system allows for an easy customization of the rule
base according to the user’s personal preferences.

1. Introduction

Research on machine translation has a long tradition [2].
The state of the art in machine translation is that there are
quite good solutions for narrow application domains with a
limited vocabulary and concept space. It is the general opin-
ion that fully automatic high quality translation without any
limitations on the subject and without any human interven-
tion is far beyond the scope of today’s machine translation
technology, and there is serious doubt that it will be ever
possible in the future [3].

It is very disappointing to have to notice that the transla-
tion quality has not much improved in the last 10 years [10].
One main obstacle on the way to achieving better quality is
seen in the fact that most of the current machine transla-
tion systems are not able to learn from their mistakes. Most
of the translation systems consist of large static rule bases
with limited coverage, which have been compiled manually
with huge intellectual effort. All the valuable effort spent
by users on post-editing translation results is usually lost
for future translations.

As a solution to this knowledge acquisition bottleneck,
corpus-based machine translation tries to learn the transfer

knowledge automatically on the basis of large bilingual cor-
pora [4]. Statistical machine translation [1] basically trans-
lates word-for-word and rearranges the words afterwards
in the right order. Such systems have only been of some
success for similar language pairs. In the last few years,
there have been several attempts to extend this word-based
translation approach towards phrase-based translation [5].
Recently, also hybrid approaches that make use of syntac-
tic knowledge have been proposed for translating Japanese
[12, 14].

The most prominent approach for Japanese has been
example-based machine translation [9]. The basic idea is
to collect translation examples for phrases and to use a best
match algorithm to find the closest example for a given
source phrase. The translation of a complete sentence is
then built by combining the retrieved target phrases. The
different approaches vary in the representation of the exam-
ples: some store structured representations for all concrete
examples, others explicitly use variables to produce gener-
alized templates. However, the main drawback remains that
most of the representations of translation examples used in
example-based systems of reasonable size have to be man-
ually crafted or at least reviewed for correctness [8].

In our approach we use a transfer-based machine trans-
lation architecture, however, we learn all the transfer rules
automatically from translation examples by using structural
matching between the parse trees. Our current research
work originates from the PETRA project (Personal Embed-
ded Translation and Reading Assistant, [13]) in which we
had developed a translation system from Japanese into Ger-
man. One main problem for that language pair was the lack
of training material, i.e. high quality Japanese-German par-
allel corpora. Fortunately, the situation looks much brighter
for Japanese-English as there are several large high qual-
ity parallel corpora available. In particular, we use the JE-
NAAD corpus [11], which is freely available for research or
educational purposes and contains 150,000 sentence pairs
from news articles.

For the implementation of our machine translation sys-
tem we have chosen Amzi! Prolog because it provides an

1-4244-1476-8/07/$25.00 ©2007 IEEE.

- 345 -

expressive declarative programming language within the
Eclipse Platform. It offers powerful unification operations
required for the efficient application of the transfer rules and
full Unicode support so that Japanese characters can be used
as textual elements in the Prolog source code. Amzi! Prolog
has also proven its scalability during past projects where we
accessed large bilingual dictionaries stored as fact files with
several 100,000 facts. Finally, it offers several APIs, which
makes it possible to run the translation program in the back-
ground so that the users can invoke the translation function-
ality from their familiar text editor. For example, we have
developed a prototype interface for Microsoft Word using
Visual Basic macros.

The rest of the paper is organized as follows. We first
provide an overview of the system architecture in Sect. 2.
Section 3 gives a formal account of the three generic types
of transfer rules that we use in our system along with several
illustrative examples. The processing steps for the acquisi-
tion of new rules and the consolidation phase to avoid over-
training are presented in Sect. 4. Finally, Sect. 5 focusses
on the application of the transfer rules during translation
and the generation of the final natural language output.

2. System architecture

The three main tasks that we have to perform in our sys-
tem are acquisition, consolidation, and translation. Dur-
ing acquisition (see Fig. 1) we derive new transfer rules
by using a Japanese-English sentence pair as input. Both
sentences are first analyzed by the tagging modules, which
produce the correct segmentations into word tokens associ-
ated with their part-of-speech tags. For Japanese tagging we
use ChaSen [7], for English MontyTagger [6]. ChaSen pro-
duces numerical tags whereas MontyTagger uses the Penn
Treebank tagset.

The token lists are then transformed into parse trees by
the parsing modules by using the Definite Clause Grammar
(DCG) preprocessor of Amzi! Prolog. A sentence is mod-
eled as a list of constituents. A constituent is defined as
a compound term of arity 1 with the constituent category
as principal functor. We use three-letter acronyms to en-
code the constituent categories. Regarding the argument of
a constituent we distinguish simple constituents represent-
ing words (atom/atom) or features (atom), and complex
constituents representing phrases modeled as lists of sub-
constituents. Japanese sentences are parsed from right to
left, we have chosen the same order for the subconstituents
in English parse trees. The parse trees form the input to the
acquisition module, which uses a structural matching algo-
rithm to discover new transfer rules.

Whereas the transfer rules learnt during acquisition
are very accurate and guarantee consistent translations,
this specificity reduces the coverage for new unseen data.

Therefore, the consolidation step generalizes transfer rules
as long as such relaxations do not result in conflicts with
other rules in the rule base.

Finally, we perform the translation of a Japanese sen-
tence by first tagging and parsing the sentence and then
invoking the transfer module. It applies the transfer rules
stored in the rule base to transform the Japanese parse tree
into the corresponding English parse tree. The latter is the
input to the generation module, which produces the surface
form of the English sentence as character string. Irregu-
lar inflections of English words are generated by applying
morphology rules which are learnt while parsing English
sentences in the acquisition phase.

3. Transfer rules

One characteristic of our approach is that we model all
translation problems with only three generic types of trans-
fer rules. The transfer rules are stored as Prolog facts in the
rule base. In the next subsections we give an overview of
the three different rule types along with illustrative exam-
ples. For the ease of the reader we use Roman transcription
for the Japanese examples instead of the original Japanese
characters.

3.1. Word transfer rules

For simple context-insensitive translations at the word
level, the argument A1 of a simple constituent is changed to
A2 by applying the predicate wtr(A1, A2), i.e. if the argu-
ment of a simple constituent is equal to the argument con-
dition A1, it is replaced by A2.

Example 1. The default transfer rule to translate the
Japanese noun SEKAI into the English counterpart world
is stated as the fact: wtr(SEKAI/2,world/nn).

3.2. Constituent transfer rules

The second rule type concerns the translation of com-
plex constituents to cover cases where both the category
and the argument of a constituent have to be altered:
ctr(C1, C2, Hea, A1, A2).

This changes a complex constituent C1(A1) to C2(A2)
if the category is equal to category condition C1, the head
is equal to head condition Hea, and the argument is equal
to argument condition A1.

Example 2. The modifying noun (mno) with head KOKU-
SAI is translated as modifying adjective phrase (maj) with
head international:

ctr(mno, maj, KOKUSAI/2, [hea(KOKUSAI/2)],
[hea(international/jj)]).

- 346 -

Tagging

Japanese
input

English
input

Parsing

Japanese
token list

Acquisition English
parse tree

Japanese
parse tree

Transfer
rules

Tagging

English
token list

Parsing

Transfer

Generation

English
parse tree

Japanese
parse tree

English
output

Morphology
rules

Consolidation

Figure 1. System architecture.

The head condition serves as index for the fast retrieval
of matching facts during the translation of a sentence and
significantly reduces the number of facts for which the ar-
gument condition has to be tested. Constituent transfer rules
can contain shared variables for unification, which makes it
possible to replace only certain parts of the argument and to
leave the rest unchanged.

Example 3. The modifying verb phrase (mvp) X NI

MUKETA is translated as modifying adpositional phrase
(map) towardX . It contains a verbal with head MUKERU

and auxiliary TA and an adpositional object with adposition
NI (hef encodes the conjugation type and form):

ctr(mvp, map, MUKERU/47, [vbl([hea(MUKERU/47),
hef(6/4), aux([hea(TA), hef(54/1)])]),
aob([apo(NI/61)|X])], [apo(toward/in)|X]).

C1(A1) = mvp([vbl([hea(MUKERU/47), hef(6/4),
aux([hea(TA), hef(54/1)])]),
aob([apo(NI/61), hea(MINSHU/2), suf(KA/31)])])

C2(A2) = map([apo(toward/in), hea(MINSHU/2),
suf(KA/31)])

If we have to translate the phrase MINSHUKA NI

MUKETA (toward democratization), the applica-
tion of the above rule only translates NI MUKETA and leaves
the translation of MINSHUKA to another transfer rule.

3.3. Phrase transfer rules

The most common and most versatile type of transfer
rules are phrase transfer rules, which allow to define elabo-
rate conditions and substitutions on phrases, i.e. arguments
of complex constituents: ptr(C, Hea, Req1, Req2).

Rules of this type change the argument of a complex
constituent with category C from A1 = Req1 ∪ Add to
A2 = Req2 ∪ Add if hea(Hea) ∈ A1. To enable the
flexible application of phrase transfer rules, input A1 and

argument condition Req1 are treated as sets and not as lists
of subconstituents, i.e. the order of subconstituents does not
affect the satisfiability of the argument condition. The ap-
plication of a transfer rule requires that the set of subcon-
stituents in Req1 is included in the argument A1 of the in-
put constituent C(A1) to replace Req1 by Req2. Besides
Req1 any additional constituents can be included in the in-
put, which are transferred to the output unchanged. This
allows for an efficient and robust realization of the transfer
module because one rule application changes only certain
aspects of a phrase whereas other aspects can be translated
by other rules in subsequent steps.

In addition to an exact match the generalized constituent
categories np (noun phrase) and vp (verb phrase) can be
used in the category condition, i.e. the condition is satisfied
if the constituent category C is subsumed by the generalized
category (e.g. mvp � vp).

The head condition is again used to speed up the selec-
tion of possible candidates during the transfer step. If the
applicability of a transfer rule does not depend on the head
of the phrase, then the special constant nil is used as head
condition.

Example 4. The Japanese verbal with head SURU and
Sino-Japanese compound NINSHIKI is translated into an
English verbal with head recognize:

ptr(vbl, SURU/47, [hea(SURU/47), sjc(NINSHIKI/17)] ,
[hea(recognize/vb)]).

A1 = [hea(SURU/47), hef(3/1), sjc(NINSHIKI/17)]
A2 = [hea(recognize/vb), hef(3/1)]

As explained before, the order of the elements in A1 is of
no importance, the rule is applied to A1 and the additional
element hef(3/1) is added to the elements in Req2.

Just as in the case of constituent transfer rules, also the
expressiveness of phrase transfer rules can be increased sig-
nificantly by using shared variables for unification.

- 347 -

Example 5. The following rule states that a noun phrase
with head KOTO and a modifying verb phrase with verbal
JUUYOU DE ARU and a subject X is translated into a noun
phrase with head importance, definite determiner, and a
modifying noun phrase of X :

ptr(np, KOTO/21, [hea(KOTO/21), mvp([vbl([hea(DA/74),
hef(55/4), aux([hea(ARU/74), hef(18/1)]),
cap([hea(JUUYOU/18)])]), sub([apo(GA/61)|X])])],
[hea(importance/nn), det(def),
mnp([apo(of/in)|X])]).

A1 = [hea(KOTO/21), mvp([vbl([hea(DA/74), hef(55/4),
aux([hea(ARU/74), hef(18/1)]),
cap([hea(JUUYOU/18)])]),
sub([hea(AKUSESU/17), apo(GA/61),
mno(Y), mvp(Z)])])]

A2 = [hea(importance/nn), det(def), mnp([
apo(of/in), hea(AKUSESU/17), mno(Y), mvp(Z)])]

The variables Y, Z are used for the convenience of the
reader to shorten the example. An important point that be-
comes obvious from the example is that the set property for
the argument condition does not only apply to the top level
of A1 but extends recursively to any level of detail specified
in Req1, e.g. to the subconstituents of sub in this example.

4. Acquisition and consolidation

The acquisition module traverses the Japanese and
English parse trees and derives new transfer rules,
which are added to the rule base. We start the
search for new rules at the sentence level by calling
vp_match(vp,JapSent,EngSent). This predicate
matches two verb phrases VPJ and VPE, the constituent cat-
egory C is required for the category condition in the transfer
rules:

vp_match(C,VPJ,VPE):-
reverse(VPJ,VPJR),reverse(VPE,VPER),
vp_map(C,VPJR,VPER).

The predicate first reverses the two lists so that the left-
most constituents in the sentences are examined first, which
facilitates the correct mapping of subconstituents with iden-
tical constituent categories, e.g. several modifying nouns.
It then calls vp_map, which is implemented as recursive
predicate for the correct mapping of the individual subcon-
stituents of VPJ:

vp_map(_,[],[]). ...
vp_map(C,VPJ,VPE):-
map_dob(C,VPJ,VPE,VPJ2,VPE2),
vp_map(C,VPJ2,VPE2). ...

vp_map(_,_,_).

Each rule for the predicate vp_map is responsible for
the mapping of a specific Japanese subconstituent (possibly
together with other subconstituents), e.g. map_dob looks
for a subconstituent with category dob in VPJ and tries to
derive a transfer rule to produce the corresponding transla-
tion in VPE. All subconstituents in VPJ and VPE that are
covered by the new transfer rule are removed from the two
lists to produce VPJ2 and VPE2. In that way all subcon-
stituents are examined until the lists are empty or no more
new rules can be found. Each derived rule is added to the
rule base if it is not included yet.

Each predicate of type map dob for the mapping of the
individual subconstituents both covers special mappings as
well as the default treatment:

... map_dob(_,VPJ,VPE,VPJ2,VPE2):-
map_default(dob,VPJ,VPE,VPJ2,VPE2).

... map_default(C,J,E,J2,E2):-
remove_constituent(C,J,ArgJ,J2),
remove_constituent(C,E,ArgE,E2),
map_argument(C,ArgJ,ArgE).

... map_argument(dob,J,E):-
np_match(dob,J,E).

For the default mapping of direct objects both phrases
must contain a subconstituent with category dob. The sub-
constituents are removed from the lists by calling the pred-
icate remove_constituent. This predicate returns the
argument of the removed constituent, it fails if the con-
stituent does not exist. Finally, np_match is called, which
is defined in analogy to vp_match, in order to derive trans-
fer rules for the subconstituents of the two arguments.

The transfer rules that are derived by the acquisition
module are very specific because they consider all context-
dependent translation dependencies in full detail to avoid
any conflict with existing rules in the rule base. This guar-
antees correct translations but leads to a huge number of
complex rules, which has negative effects on computational
efficiency. It also badly affects the coverage for unseen
sentences. To avoid this overtraining we perform a con-
solidation step to prune the transfer rules as long as such
new generalized rules are not in conflict with other rules.
The relaxation of rules mainly concerns contextual transla-
tion dependencies of adpositions, head nouns, determiners,
the number feature, and verbals. The most commonly per-
formed transformations are: to simplify a phrase transfer
rule or to replace it with a word transfer rule, to use the gen-
eralized categories np or vp in the category condition, or to
split a phrase transfer rule in two simpler rules.

Figure 2 shows an example of rule acquisition, Rule 4
and Rule 10 are word transfer rules that were produced by
the consolidation module (the original rules are struck out
and written in angle brackets).

- 348 -

我々は、ロシアの経済発展にとって、改善された
市場アクセスが重要であることを認識する。

vbl hea する/47
 hef 3/1
 sjc 認識/17
dob apo を/61
 hea こと/21
 mvp vbl hea だ/74
 hef 55/4
 aux hea ある/74
 hef 18/1
 cap hea 重要/18
 sub apo が/61
 hea アクセス/17
 mno hea 市場/2
 mvp vbl hea する/47
 hef 3/5
 aux hea れる/49
 hef 6/4
 aux hea た/74
 hef 54/1
 sjc 改善/17
aob apo にとって/63
 hea 発展/17
 mno hea 経済/2
 mnp apo の/71
 hea ロシア/12
sub apo は/65
 hea 我々/14

We recognize the importance of
improved market access for
economic progress in Russia.

vbl hea recognize/vb
dob hea importance/nn
 det def
 mnp apo of/in
 hea access/nn
 mno hea market/nn
 maj hea improved/vbn

aob apo for/in
 hea progress/nn
 maj hea economic/jj
 map apo in/in
 hea Russia/nnp
sub hea we/prp
 num plu

 1. ptr(vbl, する/47, [hea(する/47), sjc(認識/17)], [hea(recognize/vb)]).
 2. ptr(vbl, nil, [hef(3/1)], '[]').
 3. ptr(np, こと/21, [hea(こと/21), mvp([vbl([hea(だ/74), hef(55/4), aux([hea(ある/74), hef(18/1)]),
 cap([hea(重要/18)])]), sub([apo(が/61) | X])])], [hea(importance/nn), det(def), mnp([apo(of/in) | X])]).
 4. wtr(アクセス/17, access/nn). 〈ptr(np, アクセス/17, [hea(アクセス/17)], [hea(acess/nn)]).〉
 5. wtr(市場/2, market/nn).
 6. ctr(mvp, maj, する/47, [vbl([hea(する/47), hef(3/5), aux([hea(れる/49), hef(6/4)]),
 aux([hea(た/74), hef(54/1)]), sjc(改善/17)])], [hea(improved/vbn)]).
 7. ptr(vp, する/47, [aob([apo(にとって/63), hea(発展/17) | X])],
 [aob([apo(for/in), hea(progress/nn) | X])]).
 8. ctr(mno, maj, 経済/2, [hea(経済/2)], [hea(economic/jj)]).
 9. ptr(np, progress/nn, [mnp(X)], [map([apo(in/in) | X])]).
10. wtr(ロシア/12, 'Russia'/nnp) 〈ptr(np, ロシア/12, [hea(ロシア/12)], [hea('Russia'/nnp)]).〉
11. ptr(np, 我々/14, [hea('我々'/14)], [hea(we/prp), num(plu)]).

Rule 2
X

Rule 1

Rule 3

Rule 4

Rule 5

Rule 7

Rule 6

Rule 8

Rule 9

Rule 10

Rule 11

Figure 2. Example of rule acquisition.

5. Transfer and generation

The transfer module traverses the Japanese parse tree
top-down and searches for transfer rules that can be applied.
The chosen design of the transfer rules guarantees the robust
processing of the parse tree. One rule only changes certain
parts of a constituent into the English equivalent, other parts
are left unchanged to be transformed by other rules. There-
fore, our transfer algorithm is able to work efficiently on a
mixed Japanese–English parse tree, which gradually turns
into a fully translated English parse tree.

At the top level we first apply phrase transfer rules
(apply_ptrules) to the sentence before we try to
translate each constituent in the sentence individually
(transfer_const):

transfer(J,E):-apply_ptrules(vp,J,I),
transfer_const(I,E).

apply_ptrules(C,J,E):-apply_ptr(C,J,I),
apply_ptrules(C,I,E).

apply_ptrules(_,Sent,Sent).

The predicate apply_ptrules applies phrase transfer
rules recursively until no further rule can be applied. The

application of a single phrase transfer rule (apply_ptr)
is divided in two steps. First, we select all rule candidates
that satisfy the category, head, and argument conditions in
the rule. Second, we rate each rule and choose the one with
the highest score. The score is calculated based on the com-
plexity of the argument condition. In addition, rules are
ranked higher if the head condition is not nil or the argu-
ment condition does not depend on the head.

The most challenging task for selecting rule candidates
is the verification of the argument condition because this
involves testing for set inclusion (argument condition ⊆ in-
put) at the top level as well as recursively testing for set
equality of arguments of subconstituents. This is achieved
by using the predicate split, which retrieves each ele-
ment in the argument condition AC from the input I (at the
same time binding free variables through unification) and
returns the remaining constituents from the input as list of
additional elements Add, which are then appended to the
translation of the argument condition:

split(I,AC,Add):-
once(split_rec(I,AC,AC,Add)).

split_rec(Add,[],[],Add).

- 349 -

split_rec(I,[CoAC|ReAC],
[CoAC2|ReAC2],Add):-

once(retrieve_co(CoAC,I,CoAC2,I2)),
split_rec(I2,ReAC,ReAC2,Add).

retrieve_co(Co,[Co|ReI],Co,ReI).%(1)
retrieve_co(CoAC,[CoI|ReI],CoAC,ReI):-%(2)
CoAC =.. [Cat,ArgAC],CoI =.. [Cat,ArgI],
equal_args(ArgI,ArgAC).

retrieve_co(CoAC,[CoI|ReI],CoAC2,
[CoI|ReI2]):-

retrieve_co(CoAC,ReI,CoAC2,ReI2).
equal_args(ArgI,ArgAC):-
once(unify_args(ArgI,ArgAC,ArgAC)).

unify_args(ArgI,ArgAC,ArgAC2):-
var(ArgAC),ArgAC2 = ArgI.%(3)

unify_args([],[],[]).%(4)
unify_args(ArgI,[CoArgAC|ReArgAC],

[CoArgAC2|ReArgAC2]):-
once(retrieve_co(CoArgAC,ArgI,

CoArgAC2,ArgI2)),
unify_args(ArgI2,ReArgAC,ReArgAC2).

A constituent can be retrieved from the input, if the cor-
responding element from the argument condition can be (1)
directly unified or (2) if the two categories are identical and
the two arguments are equal sets. The equality of the ar-
guments is tested by retrieving the argument condition sub-
constituents from the input argument until either (3) a free
variable as tail (i.e. |X]) or (4) the end of the list is reached.

After applying phrase transfer rules at the sentence level,
transfer_const examines each individual subcon-
stituent. It first tries to apply constituent transfer rules be-
fore calling the predicate trans(C,JapArg,EngArg)
for the category-specific transfer of the argument. For sim-
ple constituents this means the application of a word trans-
fer rule, for complex constituents it involves again the appli-
cation of phrase transfer rules (apply_ptrules), the re-
cursive call of transfer_const, and some post-editing,
e.g. removing the theme particle from a subject.

As last processing step of a translation, the generation
module generates the surface form of the sentence as char-
acter string. For that purpose we traverse again the parse
tree in a top-down fashion and transform the argument of
each complex constituent into a list of surface strings, which
is computed recursively from its subconstituents as nested
list and flattened afterwards. As mentioned before, we use
morphology rules derived while parsing English training
sentences to produce the correct surface forms for words
with irregular inflections.

6. Conclusion

In this paper we have presented a Japanese-English ma-
chine translation system based on the automatic acquisition
of transfer rules from a parallel corpus. We have finished

the implementation of the system including a prototype in-
terface to Microsoft Word and have demonstrated the fea-
sibility of the approach based on a small subset of the JE-
NAAD corpus.

Future work will focus on extending the coverage of the
system so that we can process the full JENAAD corpus and
perform a thorough evaluation of the translation quality us-
ing tenfold cross-validation. We also plan to make our sys-
tem available to students of Japanese Studies at our univer-
sity in order to receive valuable feedback from practical use.

References

[1] P. Brown. A statistical approach to machine translation.
Computational Linguistics, 16(2):79–85, 1990.

[2] J. Hutchins. Has machine translation improved? Some his-
torical comparisons. In Proc. 9th MT Summit, pages 181–
188, New Orleans, USA, 2003.

[3] J. Hutchins. Machine translation and computer-based trans-
lation tools: What’s available and how it’s used. In J. M.
Bravo, editor, A New Spectrum of Translation Studies, pages
13–48. Univ. Valladolid, Valladolid, 2004.

[4] K. Knight. Automatic knowledge acquisition for machine
translation. AI Magazine, 18(4):81–96, 1997.

[5] P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based
translation. In Proc. Human Language Technology Conf.
of the North American Chapter of the ACL, pages 48–54,
Edmonton, Canada, 2003.

[6] H. Liu. MontyLingua: An end-to-end natural language pro-
cessor with common sense. Technical report, MIT Media
Lab, 2004.

[7] Y. Matsumoto et al. Japanese morphological analysis system
ChaSen version 2.0 manual. Technical Report NAIST-IS-
TR99009, NAIST, 1999.

[8] S. Richardson et al. Overcoming the customization bottle-
neck using example-based MT. In Proc. ACL Workshop on
Data-Driven Machine Translation, pages 9–16, Toulouse,
France, 2001.

[9] S. Sato. Example-Based Machine Translation. PhD thesis,
Kyoto University, 1991.

[10] H. Somers, editor. Computers and Translation: A Transla-
tor’s Guide. John Benjamins, Amsterdam, 2003.

[11] M. Utiyama and H. Isahara. Reliable measures for aligning
Japanese-English news articles and sentences. In Proc. 41st
Annual Meeting of the ACL, pages 72–79, Sapporo, Japan,
2003.

[12] T. Watanabe, K. Imamura, and E. Sumita. Statistical ma-
chine translation based on hierarchical phrase alignment.
In Proc. 9th Intl. Conf. on Theoretical and Methodological
Issues in Machine Translation, pages 188–198, Keihanna,
Japan, 2002.

[13] W. Winiwarter. Incremental learning of transfer rules for
customized machine translation. In U. Seipel et al., editors,
Applications of Declarative Programming and Knowledge
Management, volume 3392 of LNAI, pages 47–64. Springer-
Verlag, Berlin, 2005.

[14] K. Yamada. A Syntax-Based Statistical Translation Model.
PhD thesis, Kyoto University, 1999.

- 350 -

