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Abstract The paper presents a modelling method aimed

to support the definition and elicitation of requirements for

mobile apps through an approach that enables semantic

traceability for the requirements representation. Business

process-centricity is employed in order to capture

requirements in a knowledge structure that retains proce-

dural knowledge from stakeholders and can be traversed by

semantic queries in order to trace domain-specific contex-

tual information for the modelled requirements. Conse-

quently, instead of having requirements represented as

natural language items that are documented by diagram-

matic models, the communication channels are switched:

semantically interlinked conceptual models become the

requirements representation, while free text can be used for

requirements annotations/metadata. Thus, the method

establishes a knowledge externalization channel between

business stakeholders and app developers, also tackling the

Twin Peaks bridging challenge (between requirements and

early designs). The method is presented using its modelling

procedure as a guiding thread, with each step illustrated by

case-based samples of the modelling language and auxil-

iary functionality. The design work is encompassed by an

existing metamodelling framework and introduces a

taxonomy for modelling relations, since the metamodel is

the key enabler for the goal of semantic traceability. The

research was driven by the ComVantage EU research

project, concerned with mobile app support for collabora-

tive business process execution. Therefore, the project

provides context for the illustrating examples; however,

generalization possibilities beyond the project scope will

also be discussed, with respect to both motivation and

outcome.

Keywords Mobile app requirements � Mobile

interaction � Linked Data � Requirements modelling �
Semantic traceability

1 Introduction

The goal of this work is to establish a knowledge-oriented,

process-centric method for modelling mobile app require-

ments in tight and traceable relation to (a) the business

environment where the apps will be used, as well as to

(b) the early design decisions that must be negotiated with

stakeholders across the Twin Peaks gap [41] between

requirements and designs. The work was motivated on one

hand by drawbacks identified in common practice and tool

support for requirements representation, and on the other

hand by opportunities and challenges identified during the

development of the ComVantage EU research project [17].

We highlight in the remainder of this introduction the

multiple facets of the established goal:

Knowledge-orientation. The commonly used tools for

requirements engineering can be seen as bug trackers or

task management tools that are repurposed or generalized

as ‘‘requirements trackers’’ (e.g. FusionForge [21]). Their

support goes mainly to requirements management, and less
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to requirements representation, although this is the content

communicated during elicitation [29]. Requirements are

often captured in a centralized repository of weakly

structured natural languages statements, typically derived

from itemized survey or interview answers. General pur-

pose diagrams (UML [45]) may support such descriptions

(see IBM’s tooling [26]), but they are still employed as

weakly integrated artefacts, as auxiliary graphical docu-

mentation, rather than structured and integrated represen-

tations of the acquired knowledge, capable of supporting a

comprehensive analysis of the requirements’ context. Thus,

we highlight this aspect with the subgoal of bringing

requirements gathering closer to structured knowledge

acquisition.

Process-centricity. For business stakeholders, require-

ments are ‘‘wishes’’ describing (mostly in domain-specific

terms) what they have to do and what capabilities they need

in order to do it. The developers discuss in terms of user

interface controls, queries, design features, etc. The border

between the two viewpoints is a fuzzy ground that needs to

be structured during requirements elicitation. A key com-

monality identified on this border is the notion of control

flow, which is present both on the business side (emerging

from the practice of business process management) and on

the IT side (inherent to algorithmic thinking). This can be

leveraged to set up a communication strategy whose con-

tent is built around business process modelling.

Conceptual modelling languages can educate their users

to communicate in a structured way, with a limited set of

concepts, based on a common understanding of their

semantics. We align to the position of J. Mylopoulos who

emphasizes the broad value of conceptual models (‘‘for

purposes of understanding and communication’’ [39]),

beyond the scope recently advocated by the software

engineering community (works like [2] go as far as stating

that conceptual modelling is programming, subordinating

the entire field to model-driven code generation, in a

context closely related to our work—interaction mod-

elling). Therefore, we have to stress that, for example,

business process modelling has proven successful as a

knowledge management facilitator, regardless of any goals

related to workflow automation. Thus, we highlight a

second characteristic of the proposed approach: reliance on

existing stakeholder competence regarding business pro-

cess modelling.

Technological and domain specificity. These aspects

originate in the context where the work was developed: the

ComVantage EU research project [17], which proposes a

Linked Data-driven mobile information system

architecture to support collaborative business networks for

specific application areas (customized production and

remote maintenance). A subtask of the project deals with

designing and implementing a method for modelling col-

laborative supply chains, integrated with their motivators

(i.e. products, services, KPIs) and their IT requirements.

The work at hand presents a fragment of this method, the

one concerned with requirements representation. This

fragment is reusable across business domains since it can

be detached from the project’s domain specificity (mani-

fested in model types and constructs that can be linked to

the ones discussed in this paper, but not mandatorily). On

the other hand, the technological specificity (apps and

Linked Data) has a tighter embedding in the modelling

semantics (manifested in object properties and notation)

and thus will limit reuse. Therefore, we can highlight a

third characteristic of the proposed approach: reliance on

metamodelling as means of tailoring a modelling approach

to some (evolving) degree of specificity.

Semantic traceability. Our goal extends towards

ensuring that the resulting requirements can be reused

beyond the elicitation phase, in scenarios such as: human-

based requirements validation, derivation of training

materials from requirements, analysis of the requirements

representation and, if certain prerequisites are met, model-

aware code selection or process-aware requirements man-

agement systems. We designate the term semantic trace-

ability for the ability to retrieve semantically related

information both from upstream (business motivators and

context) and downstream (early design decisions) of the

development process, as well as from multiple levels of

detail.

Towards this multi-faceted goal, we employ: (a) meta-

modelling to establish a procedure and a language for

gradually building semantic links between conceptual

models representing different facets or granularity levels

from the requirements’ enterprise context; (b) Linked Data

principles to expose such semantic links for navigation,

retrieval or rule-based processing; (c) a taxonomy of

modelling relations that can become Linked Data, to the

extent dictated by the level of traceability to be supported.

The paper is structured as follows: Sect. 2 states the

problem and describes its background, including the

research project context. Section 3 provides a high-level

overview on the modelling method in the context of a

metamodelling framework. Section 4 illustrates the mod-

elling procedure with model examples for representing

mobile app requirements. Section 5 glues the examples at

metamodel level and introduces a taxonomy of modelling
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relations that must be considered when aiming for trace-

ability across models. Section 6 highlights some func-

tionality built on top of the models. Section 7 discusses

observations based on an empirical evaluation of a proof-

of-concept implementation. Section 8 indicates related

works briefly, followed by a more detailed analysis in

Sect. 9, to better highlight the contribution. The paper ends

with a conclusive SWOT analysis and states the final

takeaway message.

2 Problem statement and background

2.1 Motivation and context

Both business process management and requirements

engineering are fields that rely heavily on conceptual

modelling; therefore, they converge here as application

domains for our metamodelling concerns and framework.

They further subsume the application domain of the

ComVantage research project, where business-IT align-

ment must be achieved, considering business processes

with domain-specific triggers (requested product cus-

tomizations, sensor-triggered maintenance services) and

some technological specificity (mobile apps with Linked

Data).

From the projects’ requirements elicitation workshops,

several layers on which app requirements should be

structured have been identified: (a) the infrastructure layer,

where technological choices for front-end devices and

back-end endpoints must be made; (b) the data layer,

where data ownership and data requirements are defined;

(c) the domain layer, described through domain concepts,

tasks and required resource types; (d) the user interaction

layer, where the required mobile IT support must be

described for each role, down to a mock-up level of detail

that can support the early design phase.

During elicitation workshops, we have noticed that, as

the user stories are defined, stakeholders naturally tend to

drill down requirements in a procedural fashion, in close

relation to tasks from business processes they are familiar

with, for example: as a user (in role) R, in order to perform

(the task) T, I want to be able to select an (item) X, then

edit its (property) P. This also assumes that user stories are

allowed to be compounded on a manageable level, contrary

to the practitioners’ recommendation for their atomic

decomposition [16] (hence losing the sense of flow

between selecting X and editing its property P). If stake-

holders are already familiar with their legacy system or

their mobile devices, sometimes they add analogies in

order to describe options that should be available at each

business step.

Our challenge was to observe the above-mentioned

communication style and to support it with conceptual

modelling means, to help stakeholders externalize and

structure their ‘‘wishes’’, while enabling app developers to

refine and negotiate them iteratively, towards early mock-

up proposals.

For business stakeholders, ‘‘domain specificity’’ mani-

fests in the tasks to be performed, their motivators and

resources types, the data entities to be handled. On the

other hand, app developers think in terms of their own

(mobile app) domain. Standards like UML abstract away

from both the business view and the app design view, to

generic concepts that software development processes and

code generation frameworks are tailored to handle. How-

ever, it is often the case that none of the two parties are

able or willing to discuss on that level of abstraction. While

for business stakeholders this is quite often the case, the

statement tends to become valid for mobile app developers

as well:

With the recent advent of crowdsourcing-inspired

deployment models (‘‘app stores’’), apps are being devel-

oped by members of a community, not necessarily by

software companies. With a certain amount of training (not

negligible, but with a tendency of being minimized by

frameworks and reusable patterns) and a focus on front-end

user experience (rather than architecture and back-end),

app developers often short-circuit the maturation process of

a software engineer and the life cycle for which UML was

designed. This builds a case for a mobile app requirements

engineering methodology that reflects the short circuit and

still supports some level of agility in development. We add

to this motivation the remark that UML is a modelling

language, whereas this work proposes a modelling method

focused on the semantic linking across different model

types, to enable cross-model analysis and evaluation.

2.2 Research challenges and problem formulation

To summarize, the challenges tackled by this work are:

C1. How to support (with respect to requirements

representation) externalization and communication of

the above-mentioned classes of requirements over the

business-IT gap and from the requirements analysis to

the early design phase?

C2. How to enable semantic traceability and analysis of

requirements, considering their semantics and directly or

indirectly related entities (e.g. from the business context,

from early designs)?
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C3. Assuming that a modelling method is adopted as

knowledge externalization approach, what types of

modelling relations can be exposed as navigable seman-

tic links?

We also formulate the problem in more grounded

terms, inspired by pragmatic needs of the research project

cases:

Assumptions. A company acting in a business collabo-

ration network decides to deploy apps with a ‘‘bring-your-

own-device’’ (BYOD) strategy [34] to support its collab-

orative processes. The stakeholders are familiar with their

legacy systems; they know their business processes and

working environments, and are able to describe them in

business process models. The business partners have

enforced access control policies on their (data) resources,

but decide to relax them to the extent required for

collaboration.

Open issues to be alleviated. The company must

communicate requirements for supporting their business

processes with front-end mobile IT and back-end Linked

Data. The app developers must communicate back pro-

posed refinements and mock-ups before initiating

implementation. Requirements must be traceable (on a

semantic basis) to their rationale (processes, process

motivators), required resources and early design pro-

posals. Several types of gaps must be identifiable (gaps

in the requirements; gaps between required and available

resources). When business processes change, impact on

the mobile IT implementation should be minimized.

Employees must be able to assimilate new/redesigned

processes and learn how the apps support them. To

enable collaboration, business partners need to know

what data access means to relax or create. Finally, the

company might have to justify that Linked Data and

mobile technology are beneficial for their business

processes.

3 An overview of the modelling method

The solution is provided in the form of a knowledge

structure called modelling method, defined in [31] in terms

of the following building blocks:

1. A modelling procedure: human-oriented procedural

knowledge guiding the modeller to his/her goals;

2. A modelling language: structural and declarative

knowledge defining the semantically connected mod-

elling constructs, their notation and editable properties

(‘‘modelling attributes’’), and their grouping in prob-

lem-specific ‘‘model types’’;

3. Mechanisms and algorithms: functionality built upon

models, usually to automate some of the procedure

steps or to derive new knowledge.

Thus, the work at hand relies on a metamodelling

approach whose outcome must be both human-readable (to

meet challenge C1) and machine-readable (to meet chal-

lenge C2), and a mapping (challenge C3) must exist

between these to ensure semantic traceability. Unlike in

more traditional requirements elicitation practice, dia-

grammatic models are not employed as artefacts attached

to textual requirements—instead, they become the very

representation of requirements, while natural language

takes on the role of model annotations. Model queries can

be employed to extract textual annotations filtered by the

various types of relations that are present in models.

The modelling method proposed in this work is a

requirements-focused partition of the broader (and more

domain-specific) ComVantage modelling method. The

broad method is hybrid, in the sense that it integrates parts

of existing modelling languages (e.g. e3 value [24] for

describing business models, elements of traditional control

flow diagrams for describing processes) with constructs

derived from semi-formal diagrams suggested by best

practices (diagrams proposed by SCOR [57] for supply

chain models, model types used in feature analysis [30] to

describe feature variability) and some newly designed

model types to integrate concepts specific to the

ComVantage application areas (machine defect models,

app orchestration models).

The full conceptual coverage of the broad method is

only suggested here, and only its requirements-oriented

fragment will be further described. Its main characteristics

are: (a) it approaches requirements elicitation as a mod-

elling activity, guiding users to decompose a business view

on multiple layers of detail, down to mock-up designs;

(b) it enables knowledge externalization in human-readable

form, channelling communication between stakeholders

and app designers; (c) it enables knowledge externalization

in machine-readable Linked Data structures, thus enabling

cross-model traceability for various purposes: model

analysis (e.g. requirements gap analysis), interoperability

(e.g. requirements-driven app deployment), derivation of

auxiliary model-aware content or tools (interaction simu-

lator, requirements manager, etc.).

The broad method is designed in an iterative cycle, as a

series of project deliverables available at [17] (deliverables

D311, D621, D721, D821, D312, D622, D722, D822). The

fragment illustrated in this paper is implemented iteratively

as a proof-of-concept modelling tool on the Open Model

Initiative Laboratory portal [46].
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4 The modelling procedure

4.1 Modelling procedure overview

The modelling procedure provides the backbone for the

requirements elicitation process, which thus becomes a

model refinement process, with typical scenarios such as:

(a) the business stakeholder initiates the dialog with some

rudimentary designs on a familiar level of granularity, and

then the app developer enhances models and refines gran-

ularity; or (b) the app developer translates the stakeholder’s

user stories in initial models and presents them, integrating

feedback or attracting the stakeholder to contribute in a

collaborative modelling approach.

Table 1 maps the model types involved in the procedure

on the requirements layers mentioned in Sect. 2.1. Sec-

tion 4.2 will explain the application of these model types

through examples from a maintenance scenario, and then

Sect. 5 will provide an integrated overview (metamodel)

on how they are linked together.

Figure 1 (designed with ADONIS CE [8]) depicts the

modelling procedure as a business process (steps to be

detailed in the next sections). Two high-level phases can be

delimited (only the second being in the focus of this paper):

1. In the business focus phase (not depicted in Fig. 1),

stakeholders describe their business view in terms of

their business model and its domain-specific process

motivators (defect models, product models, KPI mod-

els, etc.);

2. Then, in the requirements focus phase, the business

view is decomposed down to operational processes and

their required resources, of several types: liable entities

(business entities for supply chain processes, human

roles for operational processes), tangible assets (hard-

ware) and intangible assets (apps, information, access

means, locations, endpoints). The app-related assets

are drilled down and refined by the app developer

during negotiation loops with business stakeholders.

For readability, loops are not visible in Fig. 1, but they

can happen for every segment, and for the procedure as

a whole (when requirements evolve based on feedback

coming from evaluating initial design or implementa-

tion, as suggested by the Twin Peaks model [41]).

Once the models are stable, they are exported with the

RDF [61] model serialization component, which further

exposes them to queries from model-aware components (to

be detailed in Sect. 6).

4.2 Example-based procedure details

The modelling procedure was designed to enable a col-

laborative modelling effort for two actors—a business-

oriented modeller (BM) and an app modeller (AM), along

the steps presented throughout this section:

Step 1. Business process modelling

Goals To capture the procedural knowledge of the

stakeholders, on how their operational processes must be

run. To represent user stories in a structured manner.

Relation to previous steps A business process has

domain-specific motivators that are modelled in upper

layers of the broad ComVantage method (not to be detailed

by this paper). For example, one or more machine models

are linked to a maintenance process describing how

Table 1 Model types for the requirements layers

App requirements

layers

Modelling support

Domain layer Links to motivator model types—to describe the business context and domain-specific process motivators: machine

models, product models, etc. (not covered by this paper)

Business process model type—to describe the domain-specific tasks that require app support

Business entities model type—to describe the stakeholders involved in performing the activities (hence, the roles that

require app support) and the ownership of required resources

ER model type—to indicate the domain concepts

Interaction layer Interaction elements model type—to describe interaction points and mock-ups

Orchestration model type—to describe usage precedence for various resource types; for apps, it describes how they must

be orchestrated along a business process, providing input to a deployment engine

Interaction process model type—reused with different semantics, to describe user-app interaction flows (and possibly to

evaluate interaction usability)

Data layer ER model type—to describe the conceptual structure of the available or required data

Information space model type—to describe information resources

Infrastructure layer App & capability pool model type—to describe some technical requirements for the required apps (OS, device type)

Location pool and Information space model type—to describe access means to information resources
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maintenance requests should be handled for each machine

or defect type.

Details BM models an operational business process

according to common business process modelling prac-

tices. As Fig. 2 (bottom-side) and the subsequent screen-

shots suggest, the proposed notation supports the core

control flow semantics common in most flowcharting lan-

guages (activity, decision, parallel splits, swimlanes) but

deviates from standard notations to gain two benefits: a)

expressivity (e.g. a question mark suggests the concept of

‘‘decision’’ quicker than standard constructs inspired by

their IT/logic background—see also [37] for discussions on

notation morphology and understandability); b) the nota-

tion needs to be ornamented with visual cues acting as

hyperlinks to related models. If, for various reasons

(compliance, familiarity) a standard notation is preferred,

the metamodelling platform employed for this work

(ADOxx [9]) allows for defining alternative notations for

the same language grammar.

Step 2. Role definition

Goals To capture knowledge about the liable entities/

roles participating to the business context and their

involvement in process execution.

Relation to previous steps Links are created from busi-

ness process elements to roles from the business context.

Links can be created from roles to the upper layers of the

method (e.g. to the business model, supply network).

Fig. 1 Overview of the proposed modelling procedure Fig. 2 Mapping business processes to business entities
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Details BM models an organizational context (business

entities model), indicating roles that are involved in per-

forming the process (see topside of Fig. 2). The role

assignment relation is also suggested notationally through

swimlanes and functionally via navigable links from pro-

cess elements to organizational elements. Their semantics

extend beyond what is apparent in this simple example,

including also location (where an entity is able to operate)

and relations to the upper level’s domain-specific model

types.

Step 3. Initial requirements allocation

Goals To identify which of its tasks require the mobile

IT support and what features are needed.

Relation to previous steps A ‘‘variant’’ link is created

between the outcome of Step1 and a refined business

process model (requirements view) created here. New role

links may be identified and linked for this refined process.

Details Our experience has shown that Step 1 usually

results in a process model with quite weak granularity

(high-level business steps). It is, however, useful to allow

Step 1 to be performed with minimal guidance, encour-

aging BM to describe the process in terms of what needs to

happen, without thinking of any requirements. Stressing

too early the focus on requirements triggers in some cases a

‘‘granularity imbalance’’—a tendency to mix in the same

process model very high-level tasks (e.g. Perform tests)

with very low-level actions (e.g. Press refresh button). As a

consequence, the modelling procedure aims to build a

sense of decomposition effort, on different layers: Step 1

captures what needs to be done, whereas in Step 3 BM is

asked to break down the granularity so that (s)he can assign

only one app feature to each process activity.

We understand feature here in the sense of ‘‘unit of

functionality’’ [3] rather than ‘‘quality of the system’’, since

in subsequent steps the modeller must describe how the

user will interact with the feature. We assimilate non-

functional ‘‘qualities’’ with capabilities or capability

properties (subject to Step4). Ideally, each feature will

become a single-purpose app, so the modeller can be gui-

ded by the principle ‘‘one app/activity’’. As it will be later

discussed, more complex support can be modelled in the

form of an orchestration of single-purpose apps.

This step will result in a pool model collecting all the

identified apps/features, and a new version of the business

process model: the requirements view. In Fig. 3, one can

notice the visual cues in the top-left corner of some process

activities acting as hyperlinks to the features.

By imposing that BM should create two variants of his/

her business process model will result in significantly

better results than just leading the discussion from the

outcome of Step 1. Firstly, it stimulates the modeller to

think in different stages about what needs to happen and

what support is needed from apps. Secondly, it forces him/

her to go through an explicit step of granularity improve-

ment and to identify clearly which business steps require

Fig. 3 Allocation of features and capabilities
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support and which do not (the latter can be kept with a

coarser granularity, being out of the requirements scope).

Finally, it makes him/her rethink the semantics of the

‘‘assigned role’’: while at Step 1, stakeholders tend to think

in terms of responsible roles (who are accountable for the

activity results), in Step 3 they will think more in terms of

performing roles (who will actually use the apps). This

might cause a significant process redesign (more than just

breaking down activities to finer detail).

Step 4. Capability definition

Goals To acquire finer descriptions of the required

features (including non-functional characteristics and

device dependencies). To accumulate a reusable and

extensible portfolio of app capabilities.

Relation to previous steps Capabilities are linked to the

previously identified features.

Details The semantics of the app/feature concept enable

the further collection of technical requirements, as a) ed-

itable properties prescribed for each app/feature (e.g. OS,

device type, link where it can be downloaded) or b) links to

an extensible pool of capabilities. The capabilities are

classified in three categories: use case capabilities (e.g.

‘‘Access machine data’’), software capabilities (e.g. ‘‘Lo-

cation sensitivity’’) and device capabilities (e.g. ‘‘Internet

connection’’). Dependencies between use case and soft-

ware capabilities and between software and device capa-

bilities can also be modelled (right side of Fig. 3) by AM.

Some capabilities may be further highlighted as being

privacy-relevant (e.g. ‘‘Location sensitivity’’, ‘‘Contact

database access’’). The modellers are expected to collab-

oratively work on linking capabilities and collecting

capability annotating properties which may capture various

expected qualities (e.g. performance-related).

This step will benefit if the methodology has been

employed in other projects and AM has a portfolio/repos-

itory of models accumulated from previous experience.

Specifically, the pool model should be treated as a reusable,

shared, capability vocabulary and, at the same time, as a

catalogue of ‘‘tagged apps’’, accumulated from AM’s

experience. It is plausible that most device and software

capabilities will be reused, whereas BM may introduce new

use case capabilities or perform some linking on use case

level (possibly suggesting some subfeatures). It must be

noted that device and software capabilities can also be

interpreted as settings/states/configurations that should be

active or switchable for the app/feature to be able to run.

The ComVantage research project advocates the reuse

of apps or app skeletons that have been previously

designed/implemented and are described through their

capabilities. An app orchestration framework [67] relies on

this principle, by selecting and adapting app skeletons with

certain properties. Model queries on the app and capability

pool model can be employed to identify apps with a par-

ticular capability set, apps with similar capability sets or

capabilities that have similar dependencies (e.g. using a set

similarity metric like the Jaccard index).

Step 5. Interaction modelling

Goals To capture interaction requirements. To initiate

early designs.

Relation to previous steps Tasks from the business

process model are decomposed here in interaction pro-

cesses. The features assigned in Step 3 are decomposed

here in interaction elements.

Details Business stakeholders familiar with mobile

technology or their legacy system are quite often inclined

to present their requirements with a sense of flow, for

example: I need to check the machine sensors; if something

looks wrong, I need to go to actuators, edit some of their

values, then check the sensors again to see what effect the

change had.

BM will again describe such stories as ‘‘processes’’ (see

Fig. 4)—but this time the semantics are different: (a) the

tasks are not business activities, but interaction steps (se-

lect, input, read from screen, trigger a new feature, etc.);

(b) the resources that must support each task are not roles/

apps, but points of interaction (to be abbreviated as POIs

throughout the remainder of the paper). POIs are described

on a level of abstraction positioned between the abstract

(inputs, outputs) and concrete (UI controls) layers of the

Cameleon framework [14].

Relative to the business process model designed at Step

3, this interaction process will be linked as a subprocess.

Each of its steps will be linked to an abstract POI that must

support the step. There are, however, cases where BM is

not capable of giving a sense of flow to the interaction and

will only enumerate a list of operations that should be

supported. These too, should be represented as POIs. In any

case, BM is expected to provide an initial set of POIs that

are relevant to the current feature/activity, and an initial

mapping between interaction steps and POIs (as in Fig. 4).

For the POIs, we provide a controlled vocabulary that is

guided by the following basic modelling requirements:

(a) The modeller should not be forced to think in terms

of concrete UI control types for a particular inter-

action modality—for example, UI elements like

checkboxes, radio buttons, drop down menus are

abstracted as lists on which a selection interaction is

performed;

(b) The modeller should not be limited to the input/

output abstraction, but deeper specificity should be

allowed. Therefore, both inputs and outputs are

further typed to be closer to the concepts used in the

natural language discourse of BM;
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(c) Emulated UI proposals should be derivable, hence

models should retain some degree of UI structural

decomposition;

(d) Models should retain domain-specific concepts that

normally occur in the natural language requirements

of the stakeholder. This requirement will be dis-

cussed in Step 7, where data requirements are

bridged with interaction requirements.

In this section, details will be given to clarify the

abstraction level of the POIs (positioned between the

abstract and concrete layers of the Cameleon framework).

In this respect, we have defined a POI taxonomy

(Table 2) with several levels of detail, so that BM can

choose the detail level (s)he is comfortable with. AM is

expected to refine the level of detail and consult BM for

feedback.

The semantics of each POI type is not given strictly by

the taxonomy, but also by the link type (Use/Read or

Change/Write) between POIs and interaction steps.

1. An output POI is an element that is presented as read-

only output to the user, without allowing any form of

direct interaction. This does not mean that the POI

cannot be changed, only that changes cannot be done

by directly interacting with it. In this case, the link

interpretation is:

• Use/Read means that the user reads the POI

content;

• Change/Write means that the user affects somehow

the POI or its content without directly interacting

with it (e.g. causes a POI to appear/disappear,

indirectly causes the update/refresh of a label value

by providing input in some other POIs, etc.).

Typical output POIs can have the following structural

types:

• Simple, meaning that a simple value is provided; the

Event subtype is particularly distinctive, as it represents

the output whose main goal is not content communi-

cation, but the notification of the user about a certain

state of affairs;

• Complex, meaning that complex media content is

provided, such as a non-interactive media stream or

downloaded document/file. Under this category, we

also include any content that the device must output

through unconventional peripherals (e.g. content com-

municated through tactile feedback, 3D printing, etc.).

A comprehensive subtaxonomy of these has not been

designed, as common interaction metaphors are still

relying on visualization and sound. This may change in

the future, as unconventional interactivity gains

popularity.

Fig. 4 Semantic links for an interaction process
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2. An input POI is an element that accepts user interac-

tion without communicating, by itself, any content to

the user except for an indication of the POI role and

existence (e.g. the name of a button/menu option/text-

box, an on/off switch, or a status signal showing that

the app accepts input). The link interpretation is:

• Use/Read means that the user interacts with the

POI without providing any content or affecting its

existence, hence it should rather be used with the

Event data type, meaning that some behaviour is

triggered (e.g. pushing a button, activating a link, a

menu option, a voice command, etc.). For other

data types in most cases, one should use interactive

output POIs (as probably they communicate some

content to the user);

• Change/Write means that the user affects somehow

the POI itself (e.g. causes a POI to appear/

disappear) or provides content to it (inputs a value,

records media, inputs a drawing, uploads a file,

scans an image, etc.). The data type should indicate

what kind of input is expected.

Typical input POIs can have the following structural

types:

• Simple, meaning that a simple value (or an event) is

expected as input, possibly with some specific format

type;

• Complex, meaning that complex content is expected as

input, for example: media recording, QR code scan, file

upload or unconventional input signal (e.g. fingerprint,

input from external controllers, etc.).

3. An interactive output POI is an output element that is

presented as editable or interactive to the user.

Examples can be a prefilled editable text field, an

interactive map, a phone call or video call, a text with

hyperlinks, an editable document, any piece of media

that works as a trigger for other functionality. The link

interpretation is:

• Use/Read means that the user reads the POI content

and possibly interacts without affecting the con-

tents (e.g. reads an audio/video stream possibly

skipping through it, reads a map possibly zoom-

ing/panning, reads a document possibly browsing/

searching through it, uses a piece of media to

trigger some other behaviour);

• Change/Write means that the user affects somehow

the POI itself or its content (e.g. causes a POI to

appear/disappear, causes the contents to change

indirectly, edits the presented value/file/stream,

participates in a call, retrieves a new map, etc.).

Typical interactive output POIs can have the following

structural types:

• Simple, meaning form fields that are prefilled and either

editable in place or interactive; with the Event type, it

can represent notifications that require the user atten-

tion and input before being dismissed;

• Complex, meaning that complex content is editable or

interactive (interactive map, audio/video call, interac-

tive document, editable drawing).

4. Aggregators are used to create complex POIs in two

ways:

• Components group POIs with heterogeneous

semantics. Their presentational style can be screen

(allowing AM to propose a screen granularity for

mock-ups), permanent (for permanently available

components, such as a status bar), generic (group-

ing POIs that are related or must be reused as a

Table 2 POI taxonomy

POI interaction

types

POI structural

types

POI data

types

POI format

types

Output

Input

Interactive output

Simple Text Location

Date/Time

Phone

URI

Email

Number Integer

Decimal

Percentage

Currency

Boolean

Event

Complex Image

Video

Sound

Document/File

Signal

Aggregator Multiplier List

Chart

Table

Tree

Component Screen

Permanent

Generic

Other app
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group) or other app (when they represent an

existing app);

• Multipliers group POIs with homogeneous seman-

tics, to indicate for example that a list or a table of

similar POIs should be presented. As a presenta-

tional hint, it is also possible to indicate that the

data series of such a multi-output must be pre-

sented as a chart, rather than value listing. For

example, a menu would be a List of input POIs that

should be Used to trigger another List (submenu) or

Component (app, pop-up, screen). A data selection

list would be a List of interactive output POIs that

should be Used to access a ‘‘details’’ Component. A

list of editable empty textboxes would be a List of

input POIs that should be Changed.

It must be noted that the taxonomy is meant to be

modality-independent, meaning that it depicts types of

content (‘‘what’’), rather than interaction channels

(‘‘how’’). This means that a POI of the type Text is not

necessarily a text to be displayed/typed in, but some text

that must be communicated between the user and the app:

it can be dictated by voice, written by stylus, touch, or

through an auxiliary peripheral; output text POI can be

communicated on display, by voice (text reader) or even

Morse-encoded in vibrations. Also, the Complex types do

not represent ways of interacting, but kinds of content that

must be transferred between the user and the app: sound

does not refer to an audio channel, but rather to the

availability of some audio content (e.g. the recording of the

noise made by the maintained machine).

On the other hand, some object types are strongly bound

to specific interaction channels (it is difficult to imagine

audio/video content communicated to a human user by

other means than sound/vision). Business stakeholders may

have difficulties in abstracting away from familiar modal-

ities (or are just not interested in alternatives), and conse-

quently, they will blur the content–channel distinction by

grounding requirements to an assumed modality. AM is

responsible with identifying whether BM is content-fo-

cused or modality-focused and to assure that the interpre-

tation is consistently kept throughout the elicitation

process.

An explicit consideration on modality is represented by

a dedicated modelling attribute applicable to all POIs—

Presentable. This is used to distinguish between (a) POIs

that must have a screen presence (hence occupying screen

space), (b) POIs that must use alternate communication

channels and (c) POIs whose modalities are left to the

choice of the app developer. As limited display surface is a

key issue in mobile app development, capturing this

information early in requirements becomes essential input

for evaluating design options.

Step 6. Interaction refinement

Goals To provide initial mock-up designs.

Relation to previous steps The previously created POI

models are refined to emulate the appearance of a concrete

UI.

Details Fig. 4 presented an example from the mainte-

nance use cases of the ComVantage research project, where

the following interaction process has been designed: it

starts with getting a list of sensor values and then, in case

something wrong is noticed, it switches to a testing com-

ponent where actuator values are edited and saved, and

then it switches back to check the effect on sensors. This

maps on a list of (output POIs) sensor values, a (input) POI

to open the actuator test component, a list of machine

actuators with prefilled editable values (interactive output

POIs), an (input) POI to save changes to the actuator values

and an (input) POI to check the effect on sensors.

AM must refine the model by grouping the POIs in

screens (components) and possibly adjusting the interaction

process to accommodate the finished design. Several kinds

of adjustments are expected:

• Model query/analysis will indicate gaps to be filled, for

example if there are interaction steps with no POI

assigned, or POIs that are not involved in any apparent

way throughout the interaction. In Fig. 4, for example,

AM might decide to add a Quit trigger, or might inquire

why the interaction process does not contain a machine

selection step. To this, BM may bring to light the

assumption that the machine should be detected

automatically by location, or that it should be identified

in a previous step (by a QR code scan, or from the

original customer request data).

• Some POIs are introduced only after AM creates a

proposal of grouping them in screens. For example, in

Fig. 4, it is plausible that BM does not explicitly

require the POIs for switching to the actuator testing

component and back to the sensor list. These become

relevant once it was decided that the two subfeatures

will not be displayed on the same screen at the same

time. The interaction process has to be extended

accordingly once the screen-switching elements are

added.

Once AM has an initial grouping in screens and a flow

that drives the user through the interaction, a UI emulation

can be derived by switching the notation from abstract to

concrete. This will give a more suggestive image based on

some presentational attributes (colours, fonts, labels,

positioning) and an alternate model notation mapped on the

presentational types from Table 2.

The mock-up-style notation will also isolate the non-

presentable POIs outside the screens. For example, in
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Fig. 5, AM and BM decided that the triggers that switch

between the two screens can be performed by voice com-

mands and should not occupy screen space.

The result is a UI emulation that can be further

employed for a model-driven component called interaction

stepper with the goal of validating requirements or training

employees in understanding how the apps will support their

workflow (to be discussed in Sect. 6).

The interaction refinement may also involve linking

between interaction steps and capabilities (see Fig. 4), for

purposes such as:

• to communicate that a certain interaction step (e.g.

switching the screen) relies on a capability (e.g. voice

modality, microphone); this enriches the possibilities

for gap analysis, providing answers to queries such as:

Which requested capability is not used by any interac-

tion process?

• to communicate that a certain interaction step relies on

a configuration setting; settings are assimilated to

capabilities and not to POIs since they are not involved

in normal interaction processes (instead, interactions

rely on some existing configuration).

Step 7. Data requirements allocation

Goal To identify what the required data will be about.

To initiate early designs for the domain concept model.

Relation to previous steps The previously identified

interaction steps are linked here to elements of the infor-

mation space.

Details BM is further involved in describing the data

requirements, using the same process-centric approach.

This again assures that no step of the flow is left without a

statement on what is the input and output necessary to

perform the activity, in a manner not unlike the one

advocated (on a more superficial level) by the SIPOC

modelling practices [54].

The data requirements can be allocated with superficial

granularity on the outcome of Step 3 (the requirements

view on the business process), or in more detail on the

outcome of Step 5 (the interaction processes), depending

on the knowledge granularity of BM regarding the data.

Just as with the apps, in both cases, there are two levels

of detail on which data requirements can be described, with

the AM being in the position of refining initial, intuitive

BM proposals. On the more superficial level, the modeller

may link information resource objects, while on the more

granular level data entities from a simplified ER diagram

can be captured. A simplified ER representation is abstract

Fig. 5 Shifting between abstract and concrete notations of interaction elements
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enough to describe domain concepts regardless of how the

data will be stored, successfully covering Linked Data,

relational database schemata or XML. For BM, the ele-

ments of an ER diagram are the nouns, attributes and

predicates used in describing what (property) must be

accessed about what (thing). This will become an entry

point for the later data design phase (it is not expected that

BM will give a complete ER design, but rather a rudi-

mentary pool of concepts, properties and relations). The

reusability argument raised in Step 4 (with respect to an

app portfolio) is more prominent here: it is plausible that

mobile apps must be developed as front-end for already

existing data. In such cases, it is even possible that an ER

diagram is available upfront, and BM can perform map-

pings on it. If this is not the case, BM should try to define

ER elements to intuitively express what information should

be available about what ‘‘things’’.

Figure 6 illustrates such mappings on the interaction

process resulted from Step 5.

The granularity of the information resource objects is

not constrained in any way, and they can be created

without any ER mappings, although mappings make the

data requirements much more precise. For example, Fig. 6

contains a sensor live value resource mapped precisely on

the live value attribute of the Sensor entity, whereas a

machine information object is mapped more vaguely, on

the Machine entity as a whole (it is, however, specified that

the information should be constrained by the machine–lo-

cation relation). BM should try a mapping as granular as

possible, by translating in model form statements that are

recurring in natural language requirements, such as I need

to see/change the (properties) p1, p2,… of (entity) E. There

is also a possibility of modelling first-hand constraints (e.g.

machine of current location, value of current sensor) but

not any deeper than this, since complete constraints would

require dedicated constraint modelling, hence pushing the

approach towards code generation, which is out of scope.

We rely on natural language model annotations to com-

plement any details not graspable through models.

Some interaction steps require data to be read or written.

In order to describe how data are handled by an interaction

step, modellers will rely on the same semantic links as in

the case of the POIs (Use/Read means that data must be

retrieved, Change/Write means that data must be changed).

The fact that an interaction step is linked on one side to a

POI and on the other side to an information resource gives

to the interaction process the quality of a ‘‘traceability

bridge’’ between front-end components and back-end data

(see Fig. 7). With the proper granularity, the models will

express what data need to be accessed through each POI.

Fig. 6 Modelling the data requirements at interaction process level
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In addition, Fig. 6 also highlights the possibility of

indicating, for an information resource what access means

(queries) are needed/available for what location (URL of

an endpoint or Linked Data graph). These are technical

details that AM will add in order to define infrastructure-

related requirements (what endpoints are needed/available,

what queries do they accept—concerns particularly rele-

vant when dealing with Linked Data and Web Services to

insure that the available information space fulfils the data

requirements).

Step 8. Interaction process extension

Goals To initiate designs for back-end connectivity.

Relation to previous steps The previously designed

interaction process is extended with non-interactive steps

where some back-end operation must take place.

Details In order to bridge the procedure towards the

software design phase, the interaction processes can be

drilled down by AM, who will separate the steps performed

by the user (interaction steps) from those performed by the

app (functions).

The outcome is an important entry to the app design

process. Technical stakeholders from the business side can

be involved in establishing common understanding of such

an execution flow, as it is still less formal and rigorous than

approaches oriented towards code generation (e.g.

sequence diagrams). It is also a direct extension of the

requirements representation and an enabler for a common

understanding on access means requirements.

Some of the links created in Step 5 (to POIs) and Step 7

(to data entities) will have to be shifted from interaction

steps to newly introduced app functions that will actually

perform data queries and trigger changes in the user

interface. For example, the retrieval of sensor values and

the creation of the POI displaying them become the

responsibility of the Retrieve sensor values function which

must be inserted before the Check sensor values interaction

step (Fig. 8).

Such adjustments will highlight aspects relevant both for

the business stakeholders and the app developers:

• that some interaction steps will not be instantaneous,

but conditioned by some back-end activity and possibly

waiting times;

• that between interaction steps there will be some

queries requiring access means and available endpoints;

• discrete event process simulation, usually employed for

time/cost estimations over business process paths [8]

can be repurposed for interaction processes with a

different interpretation on time (e.g. processing or

query effort) and cost (e.g. back-end data payloads,

number of clicks/touches in the interaction steps).

Step 9. Orchestration modelling

Goals To identify the workflow of each role/entity

participating in a business process.

Relation to previous steps: Orchestration models must

rely on the outcome of Step 3 (process-role-feature

mappings).

Details An essential goal of this work is to assure that

requirements are usable beyond the elicitation phase. This

is achieved by:

• enabling the requirements elicitation phase to flow into

the early app design phase, allowing evaluations on

rudimentary designs (analysing model-based mock-ups

or identifying gaps in the semantic links between

models);

• supporting a semi-automated orchestration of apps

driven by the business flow, a key approach of the

ComVantage research project introduced by [67] and

based on the assumption that each feature is imple-

mented in a single-purpose app.

An orchestration engine that deploys inter-connected

apps takes input from an RDF serialization of models

where the usage precedence of apps (as dictated by the

business process) is described. For this goal, a diagram-

matic orchestration model must be built (manually, or

derived automatically from the business process model, as

it will be highlighted in Sect. 6.2). In the current imple-

mentation, the modelling tool provides options for deriving

an orchestration model for (a) an entire business process or

(b) only for one role involved in a business process. Role-

level orchestration is particularly important, as each role is

Fig. 7 Bridging data requirements and interaction
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assumed to use a different device with different

functionality.

Figures 9 and 10 showcase an example of a business

process model (roles indicated by swimlanes) and the

orchestration models that can be derived from it consid-

ering the allocated app requirements. As Fig. 10 suggests,

the orchestration model loses the distinction between XOR

and AND splits found in the original process model. This

goes with the assumption that the splitting app (e.g.

‘‘History data analyser’’) is always treated as an OR, dis-

playing to the user the choice list of paths to be followed

and letting him/her decide on how to advance. Hence, we

rather aim for a usage precedence recommendation derived

from requirements, rather than a fully automated workflow.

Since we discuss here about front-end execution based on

human interaction, the notion of workflow automation is

not as prescribing as in the case of Web service orches-

tration. However, investigations are still being carried out

regarding the degree of prescription that is useful in a

multi-app execution flow, considering also the control

transfers between the apps serving each role (not in the

scope of this paper).

5 The modelling language

5.1 Metamodel overview

Figure 11 brings all the previous examples together by

providing an overview on the metamodel, on how it was

partitioned in model types and what semantic links have

been created to enable cross-model traceability. The

metamodel groups the different visual constructs (con-

cepts) in model types and prescribes relations of various

kinds. The figure distinguishes only between inter-model

links (commonly implemented as hyperlinks or cross-ref-

erences) and intra-model relations (commonly imple-

mented as visual connectors, object groupings, intra-model

hyperlinks). Concept generalization is also highlighted (see

the legend). These relations have been inspected in

Sect. 4.2 with respect to various model fragments and how

they enable the flow of the modelling procedure.

While a standard UML class diagram could be misused

to present the content of Fig. 11, the semantics and usage

are different—we do not deal here with OO classes and

associations; instead, the intended usage is to track and

query the evolution and different abstraction levels for the

metamodel governing the different diagrammatic samples

presented throughout Sect. 4.2, hence we rely on this

custom language to manage the metamodel (it is created on

the same framework as the method under scrutiny).

The metamodel is the ‘‘gluing’’ semantic core of this

work, as it also captures modelling relations to be exter-

nalized as Linked Data, thus enabling the semantic trace-

ability. The tracing itself is performed by semantic queries

(SPARQL [65]) over a hypergraph derived from the inter-

linked models, as it will be explained in Sect. 6.1. Towards

this goal, the next section will introduce a modelling

relation taxonomy that must be considered when transfer-

ring model information to the hypergraph data model

(RDF).

5.2 A modelling relation taxonomy

The key enablers for semantic traceability are modelling

relations. They are present in diagrammatic modelling in a

variety of forms: implied or explicit, for human interpre-

tation or for machine processing, etc. With respect to the

building blocks of a modelling method as defined by [31],

we introduce here a classification of modelling relations.

Fig. 8 Extending interaction process with app functionality
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Fig. 9 Multi-role app-supported business process model as input for orchestration models

Fig. 10 Orchestration models derived from Fig. 9
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Abstractly, a (binary) relation is defined as a set of

ordered pairs, or through its indicator function:

R � X � Y orR : X � Y ! 0; 1f g

A conceptual modelling relation, however, must con-

sider some pragmatic aspects:

First of all, X and Y are elements of the language

alphabet, terminals representing concepts (from which

modelling objects are instantiated). The alphabet is also the

basis for the syntactical well-formedness rules. Some

modelling tools also allow to capture the ‘‘semantics’’ of

modelling objects in property sheets (‘‘shape data’’ in MS

Visio [35], ‘‘notebook attributes’’ in ADONIS [8]) where

literal data are assigned to properties (hence Y becomes a

data type).

More important for the work at hand is that modelling

relations are not defined only by their participants and

direction—we also have to consider their pragmatic goal of

‘‘communication and understanding’’ [39]. Hence, a

defining characteristic of modelling relations is the level on

which they fulfil this goal, the way they are perceived by

the user. A modeller may grasp (understand) the existence

of a relation from different aspects: some construct visible

on the modelling canvas, by inspecting some off-canvas

annotations, by following a hyperlink between related

models, etc.

We map these levels on the modelling method building

blocks established for the modelling method notion in [31]

and then further drill down to a taxonomy comprising the

following variants of modelling relations (see Table 3 for

illustrative examples):

• notationally induced (NotR), covers relations perceived

by the modeller from the way in which modelling

objects look or are arranged on the modelling canvas;

• syntactically induced (SynR), covers relations induced

by the well-formedness rules of the language (how

modelling objects are allowed to connect on the canvas,

their prescribed properties);

• semantically induced (SemR), covers relations implied

by other relations or stated explicitly with non-

modelling means (e.g. annotations);

• functionally induced (FuncR), covers relations per-

ceived from the usage of some functional feature of the

modelling tool (e.g. navigating a hyperlink).

Fig. 11 Metamodel overview
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Semantic traceability across models is achieved when

relevant modelling relations of these types are made

explicit and machine-readable in a format that enables

cross-model queries. Therefore, modelling methodologists

must set up mechanisms to produce traceable representa-

tions for these four relation variants. A shortcut recom-

mended by this work is to perform a consolidation between

these relation variants whenever they are meant to be

perceived as the same abstract relation (R). Hence, for the

reader of a model, the following must hold:

NotR x; yð Þ ! R x; yð Þð Þ ^ SynR x; yð Þ ! R x; yð Þð Þ^
^ SemR x; yð Þ ! R x; yð Þð Þ ^ FuncR x; yð Þ ! R x; yð Þð Þ

If this is the case, the variants should be consolidated

and only one relation should be externalized for queries

(otherwise, the methodologist must preserve intended dis-

tinctions). In the methodologist viewpoint (as well as the

model creator’s), the implications are reversed, since he/

she needs to enable (or create) at least one of these variants

for each conceptual relation that should be communicated:

R x; yð Þ ! NotR x; yð Þð Þ _ R x; yð Þ ! SynR x; yð Þð Þ_
_ R x; yð Þ ! SemR x; yð Þð Þ _ R x; yð Þ ! FuncR x; yð Þð Þ

Means of performing the consolidation are, however,

platform-dependent. To facilitate implementation, we have

opted for ADOxx [9], a metamodelling platform that pro-

vides built-in scripting means for deriving these relation

variants one from another. A typical example is the fol-

lowing (the implications express the methodologist

viewpoint):

1. a syntactically induced relation is created as a

reference that is prescribed for some concepts of the

metamodel; for example, from business process Activ-

ities to human Roles in organizational charts:

R ac; roð Þ ! SynR ac; roð Þ

2. this can become a notationally induced relation, if the

notation reflects the existence of the reference with

some visual cue; for example, the referred Role is

displayed under the Activity symbol:

SynR ac; roð Þ ! NotR ac; roð Þ

3. it further becomes a functionally induced relation, if a

hyperlink is created to navigate between models, using

the visual cue as anchor;

NotR ac; roð Þ ! FuncR ac; roð Þ

4. it is also a semantically induced relation, if such

references are generated automatically from the exis-

tence of other relations; for example, when a process

Activity is inside a Swimlane, and that Swimlane has a

Role hyperlinked to it, then the Role can be assigned

automatically to the Activity:

NotR ac; swð Þ ^ FuncR sw; roð Þ ! SemR ac; roð Þ
SemR ac; roð Þ ! SynR ac; roð Þ

It must be noted that this relation consolidation should

not be taken for granted: hyperlinks can be generic,

unconstrained by the language grammar; visual cues can be

displayed without supporting any navigation; machine-

readable relations can be created without having a hyper-

link behaviour. From a tool developer viewpoint, the

consolidation of relations might be a usability decision, but

for the end-users it facilitates model understanding, since it

enables a consolidated cognition of relations manifesting

within and between models.

The format of choice for externalizing the consolidated

relations for this work is RDF, a relation-centred repre-

sentation that can be queried with graph-oriented means

(the SPARQL language). The outcome is a hypergraph of

model information to be further discussed in the next

section.

6 Mechanisms and algorithms

Modelling functionality includes mechanisms and algo-

rithms that support the modelling procedure and the

refinement or validation of the modelled requirements. We

highlight here the most important ones, as they have been

implemented in a proof of concept available in the Open

Model Initiative Laboratory (the modelling tool prototype

is available on registration basis at [39]).

6.1 The RDF exporter

This is the serialization tool that exposes all models in a

Linked Data format based on an RDF Schema represen-

tation of the metamodel from Fig. 11 and on the meta-

metamodel of the ADOxx platform [9] (used for the

modelling tool implementation). Implementation details for

this component are available at [17] (deliverables D311,

D312), the proof of concept and its usage guidelines are

available at [46]. Its aim is to enable model processing

outside the modelling tool (the other features described in

this section also make use of it). Its RDF vocabulary

evolves in synchronicity with the metamodel evolution,

following several basic principles: (a) each model type

prescribed by the metamodel becomes a named graph (in

the TriG [7] and TriX [15] syntaxes); (b) each modelling

concept becomes an RDF class; (c) each modelling relation

becomes an RDF class if it does have its own editable
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properties, and an RDF predicate if not; (d) each modelling

attribute becomes an RDF predicate; (e) each inter-model

link becomes an RDF object property bridging resources

from different named graphs.

This enables the use of Linked Data technologies to

query models or to manipulate the knowledge captured in

models; therefore, it also enables the implementation of

systems or services that are aware of the above-mentioned

variants of modelling relations. Thus, the RDF exporter is a

key enabler for semantic traceability across the different

types of models. Figure 12 depicts traceable relations

across a set of models covering the various aspects that

have been presented in Sect. 4.2 (with the exception of the

top model, which is a domain-specific ‘‘process motiva-

tor’’—it describes types of machines and defects, and it

links them to some designated maintenance process).

On the right side of the figure, the models are reflected

in the consolidated hypergraph resulted from the RDF

export. The dashed edges highlight an example of a

SPARQL query that traverses the graph (its code also

visible in the figure). The query traces the location of the

business entity that requires a particular attribute (At-

tributeX) from the ER model (the model object names are

not meant to be readable; however, familiarity with the

already presented notations is needed to grasp the general

structure and how it translates to the hypergraph).

We highlight here some relation variants that are cap-

tured (and highlighted) in the hypergraph, using concepts

from the metamodel:

• NotR1 ( ProcessSwimlane 9 ProcessElement. It rep-

resents the visual containment relation between process

swimlanes and their contents (in a business process

model);

• NotR2 ( Component 9 POI. It represents the visual

containment relation between a UI ‘‘aggregator’’ com-

ponent and a POI element (see Table 2);

• FuncR ( Activity 9 InteractionProcess.

It represents the hyperlinks that enable navigation from

a process activity to its interaction process;

Fig. 12 Requirements tracing through SPARQL model queries
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• SemR1 ( BusinessEntity 9 Location.

It represents the location of a business entity, derived

from the presence of an intermediate ‘‘access means’’

object;

• SemR2 ( Activity 9 BusinessEntity.

It represents the relation between an activity and a

responsible role, derived from the inclusion of the

activity in a swimlane associated to that role;

• SynR1 ( Organization 9 HumanRole.

It represents the visual connector between an organi-

zation and a subordinated role;

• SynR2 ( App 9 Capability.

It represents a prescribed reference that can be estab-

lished between apps and their capabilities.

It must be noted that queries traversing these relations

can also retrieve data from the editable property sheets of

each modelling object. These are typically domain-specific

attributes (e.g. OS for an app) or attributes relevant for

requirements management (e.g. build status, author, textual

annotations, etc.)

6.2 The orchestrator

This was implemented as automated support for Step 9 of

the modelling procedure, both for the full process and on a

‘‘per-role’’ basis (in order to filter only the app support

required by a certain role).

Formally, this is based on a graph-rewriting mechanism

with a set of rules applied in the sequence indicated by

Fig. 13 (on the left side, the model element names are not

meant to be readable, only the structural changes). It can be

executed in various fashions, either outsourced from the

modelling tool (through SPARQL-based transformations,

through external graph-rewriting libraries), or algorithmi-

cally implemented directly in the modelling tool (current

implementation uses the proprietary scripting language of

ADOxx).

On the right side of Fig. 13, the transformation rules are

depicted graphically in terms of node types and edge types,

numbered in their execution order (each rule is applied

throughout the entire model until the end node):

Step 1 Process elements having apps (requirements)

assigned are bypassed through their app objects;

Step 2 Process splits and joins are bypassed, to the

nearest following app objects;

Step 3 App objects get direct ‘‘sequence’’ relations

between them, removing any intermediary

process elements lacking requirements;

Steps

4–5

deal with the removal of bypassed nodes and of

app assignment relations, so that only the

orchestration model is left.

Fig. 13 Graph transformation rules for orchestration models
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In the context of the ComVantage research project, the

RDF serialization of the orchestration model is then read

by an orchestration engine that deploys concrete chained

apps according to the required business flow. Thus, busi-

ness stakeholders can redesign business processes and

redeploy the same suite of (adapted) apps according to

process changes [67].

It is important to note that the orchestration can be

generalized for any type of resource that is linked to pro-

cess steps, as described in more detail in [11]:

Orchestration of roles will reflect the role switching per-

formed during the process execution. Orchestration of

locations will reflect the location switches necessary for a

process, highlighting the need for mobility if locations are

physical. If locations are digital (endpoints or organization

domains), it will provide a justification for using LinkedData

(as a facilitator of data federation at query time). Orches-

trations derived from the resource ownership relations will

reflect how asset ownership switches along the business

process. Ifwe talk about data ownership, the benefit ofLinked

Data for facilitating queries over multiple organizations is

again highlighted. Therefore, the generalization of orches-

tration can be used to advocate the need for the ComVantage

technological specificity (mobility and Linked Data). Argu-

ments in favour of Linked Data may also include the general

spread of the ER data model over multiple organizations.

6.3 Requirements tracing, consistency and gap

analysis

Model queries play the role of competency questions and

can be built on top of the semantic relations captured from/

across models, with various possible goals:

• to trace requirements and their associated early designs

up to the business context (including roles, activities,

motivators that rely on them);

• to identify possible gaps, insufficiencies and conflicts in

the modelled requirements.

Model queries can be performed on the Linked Data

serialization of the models (as shown in Fig. 12), but also

as dedicated functionality in the modelling tool. Figure 14

presents the results of a query (facilitated by a query

builder component of ADOxx) from our proof-of-concept

implementation.

Model queries are a useful tool for consistency check-

ing. For example, the query results of Fig. 14 can be

interpreted in several alternate ways: (a) that there is a gap

in the requirements (hence the query works as a validator),

(b) that there are business steps which do not require app

support (hence the query works as a report generator),

(c) that the requirements are not complete (hence the query

works as a warning system); (d) that those activities have

been inherited from the As-Is situation and they should be

removed, being irrelevant in the envisioned To-Be (hence

the query supports requirements analysis).

In order to distinguish between these situations, the

property sets of most modelling objects are enriched with

status attributes (‘‘decided’’, ‘‘on hold’’, ‘‘under develop-

ment’’, ‘‘implemented’’) and versioning attributes. These

also become available to model queries, thus enhancing the

semantic traceability with additional filters.

Consistency checking with error messages at ‘‘mod-

elling time’’ is also possible, but with an impact on

usability. For example, a message that warns the modeller

every time he/she creates an activity without app allocation

Fig. 14 Requirements tracing through model queries
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tends to become increasingly annoying and does not con-

sider the fact that requirements models evolve and may be

partially designed for later refinement. Model queries act-

ing as validators are significantly more beneficial.

Consistency checking in terms of relation domains,

ranges and cardinalities is defined in the metamodel

implementation itself (on the underlying metamodelling

platform). The very basic actions of creating a model

should be governed by the metamodel implementation,

disabling the possibility of creating relations that are non-

compliant with respect to their domain, range or

cardinality.

Consistency by reasoning can be induced by production

rules executed on the various relations (and relation vari-

ants introduced in Sect. 3.2) that are of interest for

semantic traceability. Thus, the rules are employed to

derive consistent relations rather than to check consistency

for manually created ones.

For example, relative to the relations discussed in

Fig. 12, we have the following rule-based derivations:

AT x; yð Þ ^Loc y; zð Þ ) SemR2 x; yð Þ

where AT and Loc are the metamodel relations accessi-

ble_through (from liable entities to access means) and

has_location (from access means to physical locations)

(see also their place in the metamodel—Fig. 11).

Or:

NotR1 x; yð Þ ^ Same x; zð Þ ) SemR1 y; zð Þ

where NotR1 is the metamodel relation aggregates (from

swimlane to process elements) and Same is an equivalence

relation (similar to the ontological owl:sameAs) that our

proof-of-concept tool allows to be manually created

between any model objects (bypassing the prescribed

metamodel).

Another example, one that derives syntactically induced

relations is given by the orchestrator rules (from Fig. 13):

F x; yð Þ ^ Req x; að Þ ^ Req y; bð Þ ) F a; bð Þ

where F is the followed by relation (indicating the sequence

in process models and in orchestration models), and Req is

the requires relation (from process elements to their

required resources).

6.4 The Interaction Stepper

This tool takes input from model serializations of the

business process, its interaction processes and corre-

sponding interaction element (outcomes of Steps 3 and 5

from the modelling procedure). As output, it guides the

user through a step-by-step process-driven interaction (in-

cluding its decisions), using the concrete notation mock-

ups as app emulations.

As Fig. 15 indicates, for each process activity, and for

each interaction step, the concrete notation of the assigned

screen (component) is displayed together with the current

activity attributes (e.g. involved roles). The current POI

(determined by the link between interaction steps and

interaction elements) is highlighted on the screen. When-

ever a decision is met, the user is asked to select the pre-

ferred path.

This component supports the requirements validation

loops between app modellers and the business stakeholder,

as it facilitates the communication of envisioned app

interactions in dynamic and intuitive mock-up views, for an

early human-based evaluation. A secondary use may come

in the training phase of a BYOD deployment strategy,

where employees need to be accommodated with new or

redesigned processes, particularly with the way in which

the required apps will support those processes.

7 Empirical evaluation

7.1 Evaluation strategy

An evaluation of the proposed contribution may consider a

wide range of criteria including usability, usefulness and

understandability.

Usability is only briefly mentioned here, as it refers to

the modelling tool rather than the designed artefact;

therefore, it is largely dependent on the underlying meta-

modelling platform that was used for implementation.

Moreover, the ‘‘fast prototype’’ status of the tool also

means that usability refinements have been intentionally

left for post-project productization, with only some

explicitly requested productivity improvements being cur-

rently included (e.g. navigation across models via hyper-

links, the possibility of linking multiple elements at the

same time, streamlining the RDF exporter to include

functionality for uploading model serializations to a Linked

Data server).

Usefulness is not an absolute quality, but one that must

be related to requirements and change requests. The paper

advocates the notion of ‘‘agile modelling method engi-

neering’’ as an approach driven by evolving requirements—

an alternative to the more rigid nature of standard mod-

elling languages for which usefulness may be evaluated

against global requirements of a domain (e.g. the ability to

generate class definitions from class diagrams). The paper

presents a relatively stable snapshot of the method evolu-

tion, without capturing longitudinal evaluations on inter-

mediate iterations, or the design decisions that evolved

with gradual emergence of domain knowledge/require-

ments. Further evolution is expected based on resources,

feedback and requirements from follow-up projects.
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For the proposed modelling method, the requirements

against which usefulness has been (iteratively) judged

come from different sources:

• Directly from project stakeholders. In this category, we

include both initial project requirements and iterative

change requests;

• Indirectly from run-time components that need to

consume model information. In this category, we

include the app orchestration engine (for which the

app orchestration model and some specific app descrip-

tion properties have been designed, together with the

automated derivation of such models from multi-role

business process models). In this respect, the semantics

exposed by the model elements has been gradually

aligned with the input expected by the execution

engine;

• Indirectly from the assumed research challenge of

semantic traceability, which inspired the RDF exporter

functionality. This has also been used as a model

serialization to satisfy the previous point (input for run-

time components) and was validated against evolving

project needs that dictated what properties and relations

should be traceable across the models, following the

core principles discussed in Sect. 6.1.

A comprehensive analysis in relation to the project

requirements, as well as details on some usability

improvements, is provided as a project report in [17] (de-

liverable 622). An overview on the ‘‘modelling require-

ments’’ and how they were reflected in the first iteration of

the ComVantage method was provided in [12].

The following lists some improvements that are already

incorporated in the work at hand, based on the project

experience:

• The need to describe the business process in two

distinct stages: the business view and the requirements

view (addressed by Step 3 of the procedure);

• The POI taxonomy went through several versions in

order to be easily assimilated by users and at the same

time to provide structure for further processing (e.g. the

interaction stepper functionality);

• The requirements gap checking functionality (ad-

dressed by model querying—Sect. 6.3).

Understandability is the focus of this empirical evalua-

tion since it is a direct quality of the proposed work outside

the project context and requirements.

The goal of understandability evaluation was to identify

points in the modelling procedure where users unfamiliar

with the project, but familiar with the key concept of a

business process, may encounter obstacles in modelling

tasks and model understanding.

For this purpose, an evaluation protocol was set up,

involving subjects that had no familiarity with the project

Fig. 15 Interaction stepper

component
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and its modelling method. The protocol comprises several

phases to be discussed in the following section. Additional

details are also available in report [17]—deliverable D622

(however, they refer to the domain-specific parts of the

modelling method).

7.2 Understandability evaluation: protocol

and results

A set of 23 subjects was involved in the deployment of the

protocol, all of them with an educational background in

Business or Business Informatics, therefore with some

existing familiarity with the notion of a business process

(the key assumption on stakeholder skills) and in some

cases with modelling tools. A first-contact survey helped to

distinguish subjects who had previous experience with

business process modelling (15 subjects) from those having

no modelling experience (eight subjects). The results pre-

sented below also reflect the distinction.

7.2.1 Phase 1. Cognitive qualities carried by notations

The subjects were asked to guess, without prior docu-

mentation, which symbols have been defined for which

concept names. A list of names and an extended list of

notations (including a few standard ones) were provided,

with the subjects attempting to match them. Experienced

subjects were inclined to choose notations closely related

to standards (the elements of the ER diagrams, most pro-

cess elements) in the detriment of customized ones. The

exercise also highlighted the value of domain-oriented

notations for all subjects (e.g. the App/feature, the App-

supported activity, the POI interpreted as UI control, the

Physical/Digital location) compared to more generic ones

(Business role, Department) or some considered too cryptic

(Access means). After the correct answers have been

revealed, subjects evaluated the overall visual intuitiveness

at an average of 3.23 (on a 1–5 Likert scale), with expe-

rienced subjects at 3.08 and inexperienced ones at 3.5. This

shows the preference for familiar standards in experienced

subjects, while inexperienced ones rated higher those

symbols that have been customized for visual cognition

(showing less bias towards standards).

The next phases were based on grading the subjects’

understanding of some given artefacts, expressed as nar-

rative descriptions of sample models (phases 2 and 3) or as

models based on narrative scenarios (phase 4). To avoid

subjectivity, a single evaluator was involved. Concept-

level granularity was applied, meaning that each example

had a number of modelling concepts/relations (from the

metamodel) of equal importance to be correctly described/

represented. Three ratings were defined relative to some

improvised ‘‘thresholds of understanding’’: 1.

(misunderstanding or lack of understanding for more than

30 % of concepts present in the example), 2. (partial

understanding, meaning that the semantics of some ele-

ments have been correctly described/represented), 3. (good

understanding, meaning that most concepts—more than

70 %—have been correctly described/represented).

7.2.2 Phase 2. Description of sample models via story-

telling, based on initial visual contact with sample

models

Without previous training (other than the correct answers

from Phase 1 used as a glossary), subjects had to describe

in natural language the narrative that they can grasp from a

given set of models with a complexity similar to the

examples discussed throughout Sect. 4.2. Models of dif-

ferent types were grouped in five complex tasks (each

typically covering two steps of the modelling procedure).

The task-level counts for each grade (1–3) are displayed in

Table 4. The last row indicates the percentage relative to

the maximum possible rating, showing that on average

subjects were able to describe about half of the information

captured in models. The models pertaining to data

requirements seem to be more challenging, and the busi-

ness process models with assigned business entities the

most intuitive (without any training).

An important aspect is the fact that each model com-

municates information on two levels: visible (whatever can

be grasped by looking at a diagram) and non-visible (in-

formation that requires the inspection of editable proper-

ties, hyperlinks). Providing visual cues for every possible

relation induces visual cluttering, whereas pushing more

semantics outside the drawing canvas reduces visual

understandability. Experienced users of standard notations

(e.g. BPMN) expect to see all semantics reflected on

notation level (thus having all relations notationally in-

duced, according to Table 3). On the other hand, semantic

traceability places focus on machine-readable relations

which do not necessarily manifest on the canvas.

The overall conclusions of this phase impacted the

development of modelling guidelines (to be used in train-

ing the users) and motivated the development of the

modelling relation taxonomy described in Table 3.

7.2.3 Phase 3. Description of sample models

after an introductory training

This is a reiteration of Phase 2 in a later session, after the

subjects acquired some basic training (two hours of exer-

cises and provision of the procedure documentation high-

lighting relations that can be created through other means

than visual connectors on the canvas). This showed a

general improvement in understandability (Table 5) with
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an average of about 20 %—higher in the case of orches-

tration modelling and lower in the case of data require-

ments modelling which lags behind even after training

(partly due to the high number of models involved,

building up to a quite fragmented representation).

7.2.4 Phase 4. Creation of models based on user stories

This task was a reverse of the previous phase task—users

had to create models based on some narrative, thus also

acquiring a sense of procedure while advancing through

the different types of models. This was strongly biased by

tool usability, with subjects familiar with the user inter-

face of ADOxx products (e.g. ADONIS CE [8]) per-

forming better. Therefore, the focus was not on

speed/time, but rather on task success and the identifica-

tion of the modelling procedure points that raise obstacles

for the task progress.

Table 6 uses the same grading scheme to evaluate the

models, relatively close to the outcome of the previous

phase (only slightly more difficult), and showing again

weakness in data requirements, as well as some difficulty in

interaction modelling (due to the POI taxonomy which was

consequently simplified).

Based on a follow-up collection of feedback from the

subjects, the difficulties with understanding the data

requirements modelling approach is strongly influenced by

(a) lack of familiarity with ER modelling and technological

concepts pertaining to the Linked Data paradigm (Query,

Endpoint) and (b) the need to work with many model types

even for the smallest scenario. Therefore, a merging of the

model types involved in data requirements modelling is

considered for further evolution, as well as refined mod-

elling guidelines to support users in expressing their data

requirements on the level of detail they are familiar with,

and avoiding a ‘‘take all or leave all’’ approach for the

modelling procedure.

Other evaluation conclusions are synthesized as a

SWOT analysis in the conclusive discussion Sect. 9.5.

8 Related works

This section briefly mentions related works, while a dis-

cussion against this baseline is given in the contribution

summary (Sects. 9.1–9.3).

First of all, the viewpoints of [29, 48] (and their col-

lected set of definitions) have been analysed with respect to

the very nature of the ‘‘requirement’’ concept, which is

questioned here by employing a modelling method as

requirements elicitation means. The notion of ‘‘contextual

requirements’’ has been investigated, using [1] and [20] as

starting points, since the method aims to enable the tracing

of requirements in relation to a business context. The Twin

Peaks model [41] motivated the idea of an iterative

requirements analysis approach that ‘‘bleeds into’’ early

designs, adapted here for mobile app development.

Requirements engineering relies heavily on modelling

languages [25], either UML-based (UML’s use case dia-

grams [60], SysML [44]) or goal-oriented (i* [27], KAOS

[18]). Each modelling language serves a particular

approach, and efforts are being invested in transforming

models between different approaches [35]. Serialization

formats are available as enablers for further processing

models: the more specific GRL [23] and ReqIF [42], or the

more generic (UML-oriented) XMI [43]. The Eclipse

community proposed a requirements structuring approach

under the Open Requirements Management Framework

[47], integrating concepts such as use case, process flow,

artefact, actor in a high-level requirements description

metamodel [49].

An investigation on the effectiveness of various nego-

tiation channels [13] emphasized the role of computer-

mediated communication tools in requirements elicitation.

In contexts like those described in the study, our proposed

models are content to be passed between business stake-

holders and app designers, both in synchronous and asyn-

chronous collaboration. Authors of [66] are also interested

in bridging the gap between domain experts and software

engineers by relying on mind maps to derive feature

Table 4 Rating counts for the ability to create narrative from models (before training)

Business process

and role modelling

(Steps 1–2)

App requirements

modelling

(Steps 3–4)

Interaction

modelling

(Steps 5–6)

Data requirements

modelling

(Steps 7–8)

Orchestration

modelling

(Steps 3, 9)

Experienced modellers 1 count 6 7 10 9 7

2 count 5 6 3 5 5

3 count 4 2 2 1 3

Inexperienced modellers 1 count 5 3 6 6 5

2 count 2 4 1 2 2

3 count 1 1 1 0 1

Relative to maximum 58 % 57 % 48 % 46 % 55 %
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models. The cited paper makes its proposals in the context

of Software Production Lines [55], which conceptually

supersedes the Industrial App Generation Framework

proposed in the ComVantage research project [67], in the

sense that they also promote model-driven code reusability

(in our case this applies to the suggested app model

portfolio).

Recent proposals of requirements modelling languages

aim to compensate shortcomings of the traditional ones

with superior semantic integration: a feature modelling

language also covering behavioural capabilities as state

machines is described in [52]; Ref. [6] proposes URML, a

language that tries to capture in an integrated way both

business rationale and product modularity. Such works

converge towards the conclusion that requirements mod-

elling needs to combine behavioural, intentional and

structural aspects, and this is pinpointed as a semantic

insufficiency of traditional, rather one-sided, approaches.

A language taking a more holistic approach, hence

similar in spread to the work at hand, is RML [4, 50]. It

provides designs for diagram types classified as People

Models, Objective Models, System Models and Data

Models. Some of them are mere predesigned tables, aiming

to substitute the common use of Excel in gathering

requirements with various types of matrices (e.g. use case

centralizer, role/permission matrix, state matrix, decision

tables, data dictionary, etc.). Others are diagrammatic in

nature: the data flow diagram, the state diagram, decision

trees, organizational charts and business process models.

Our proposal also takes a holistic approach, but here the

product under scrutiny is more specific: the mobile IT

support to be developed and deployed, for example, in a

BYOD environment. Our concept of feature is anchored in

the interaction layer, as perceived by the end-user. It fol-

lows in the steps of the Cameleon framework [14] and its

related serializations [59], which rely on the following

abstraction layers: (a) tasks and concepts, (b) abstract UI,

(c) concrete UI, (d) final UI.

A closely related piece of work (also inspired by the

Cameleon framework) is [2], which gives a good

summarized coverage of the interaction modelling litera-

ture (not to be replicated here). The authors align to the

consensus that multiple abstraction levels are necessary,

and define their own primitives mapped on the Cameleon

layers. UML extensions for interaction modelling have also

been proposed in the literature—see [40, 53]. Another

approach to interaction modelling introduces the notion of

discourse models [10] with the ambition of generating user

interfaces.

With respect to the Linked Data requirements (given by

the motivating project context), normally this technology is

not something to be required explicitly by stakeholders, but

rather a capability to fulfil particular business requirements.

Most research work on Linked Data has been realized

towards the goal of developing enabling tools or in pro-

moting the growth of Linked Data Sets [33]. Shifting the

focus to requirements is something to be handled in the

business world, as business stakeholders must be made

aware of benefits that are grounded in their business views.

Companies providing semantic products are trying to cover

this gap on a marketing level [51, 58]. Business motiva-

tions for Linked Data adoption are currently being refined

by a W3C working group [63], and are described in the

broader context of ‘‘Future Internet’’ by FInES, a project

cluster and research community that provides an insightful

roadmap for Future Internet Enterprise Systems [22]. All

these sources converge towards recommending Linked

Data as a data integration paradigm, subordinating all its

other aspects, which inspired us to investigate what model-

level signals can be relevant in a requirements analysis

context.

9 Conclusive discussion

9.1 Contribution summary on requirements

representation

The focus of the work at hand is on the engineering of a

modelling method that enables the description of

Table 5 Rating counts for the ability to create narrative from models (after training)

Business process

and role modelling

(Steps 1–2)

App requirements

modelling

(Steps 3–4)

Interaction

modelling

(Steps 5–6)

Data requirements

modelling

(Steps 7–8)

Orchestration

modelling

(Steps 3, 9)

Experienced modellers 1 count 1 2 2 3 1

2 count 8 7 8 8 6

3 count 6 6 5 4 8

Inexperienced modellers 1 count 1 1 2 3 1

2 count 3 3 3 4 3

3 count 4 4 3 1 4

Relative to maximum 78 % 77 % 72 % 65 % 81 %
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requirements as a query-able knowledge structure which

integrates business context with mobile interaction and

data requirements, considering the relation variants that

can be perceived on the level of diagrammatic modelling.

The similarly holistic approach of RML [4] highlights the

importance of business processes in requirements engi-

neering, the need for extending traceability with inter-

model links and the insufficiencies of UML in describing a

business view with some domain specificity. The designers

of RML have published an interesting evaluation for a

comprehensive list of commercial tools [5] which confirms

the core focus of the market on managing, rather than

representing requirements. Representation is commonly

handled through human-readable diagrams attached (as

‘‘artefacts’’) to entries from a use case/requirements

catalogue.

RML aims to fill this gap, but it is merely a diagram

language design which relies on hyperlinked templates

(mostly Microsoft-centric, for Powerpoint and Excel),

lacking in machine-readable semantics, an integrative

metamodel and a dedicated tool with functionality built on

top of the metamodel. The work at hand approaches this

from the direction of the metamodelling scientific para-

digm, also advocating the notion of ‘‘agile modelling

method engineering’’ which can produce a modelling tool

that supports inter-model linking with multiple purposes

such as usability (navigation between related models) and

semantic traceability (based on model queries, as an

alternative to traceability approaches based on information

retrieval techniques [56]). Our work introduces a novel

taxonomy of modelling relations, which uses, as distinction

criteria, the modeller perception on the existence of con-

ceptual relations.

The ORMF initiative of the Eclipse community con-

firmed recurring concerns with requirements modelling and

provided its own metamodels for this purpose [49]. How-

ever, the abstraction level was significantly higher than in

the work at hand, as we try to retain business and tech-

nological specificity as first-class modelling citizens. The

ORMF metamodels reflect the common perception that

models are artefacts of textual requirements, while we are

experimenting with the vision that models themselves

should be seen as the main representations of requirements

(with some textual annotations).

Therefore, the discussion can be furthered to the rather

fundamental issue of ‘‘what is a requirement’’ and how this

work deviates from common perception. The author of [28]

states upfront that ‘‘there is no agreed definition of what

counts as a requirement’’. Common definitions (as over-

viewed by [48]) use the term ‘‘statement’’, suggesting that

requirements are ‘‘natural language items’’. Authors of [29]

show that stakeholders only communicate requirements

representations, and not the requirements themselves. To

support this, we believe that modelling languages can be

assimilated to logographic systems, having the ideogram

(the notation) as the basic syntactical unit, hence models

are statements formulated in such a language. Logographic

statements composed in such ‘‘phrases’’ (inter-linked

models) will semantically connect a requirement to its

goal, context (the supported process and process motiva-

tors) and to its early design decisions (mock-up proposals)

through different variants of modelling relations. The

author of [48] also proposes his own definition, highlight-

ing this semantic connectivity: ‘‘a feature of a design object

that is necessary to achieve a goal’’.

Therefore, it should be apparent that the work at hand

challenges and opens for debate several RE principles

(mostly rooted in the waterfall development model):

• That the stakeholder must stay away from any design

decisions. This often goes with the assumption (coming

from an age when most projects were aiming to replace

paper-based administration with IT systems) that

stakeholders are technology-agnostics. Nowadays users

are significantly more familiar with technology and

business process management, and more IT projects

aim to integrate or evolve legacy systems rather than to

create systems from scratch. The stakeholder

Table 6 Rating counts for the ability to create models from narrative (after training)

Business process

and role modelling

(Steps 1–2)

App requirements

modelling

(Steps 3–4)

Interaction

modelling

(Steps 5–6)

Data requirements

modelling

(Steps 7–8)

Orchestration

modelling

(Steps 3, 9)

Experienced modellers 1 count 2 1 2 5 0

2 count 8 9 9 7 7

3 count 5 5 4 3 8

Inexperienced modellers 1 count 1 1 1 4 1

2 count 4 4 3 3 4

3 count 3 3 3 1 3

Relative to maximum 74 % 75 % 70 % 59 % 81 %
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familiarity with the business process management

paradigm can be leveraged to refine the requirements

granularity while retaining a sense of workflow on

different levels;

• That software development phases should be strictly

separated and sequenced. This was invalidated by the

agile manifesto and model-driven paradigms that make

development phases flow one into another gracefully

(e.g. code generation from design to implementation).

We try to stimulate a similar model-driven tight

coupling between the phases of requirements analysis

and design, a requirement emphasized by the Twin

Peaks model;

• That the ‘‘why’’ (goal), the ‘‘what’’ (requirement) and

the ‘‘how’’ (design decision) should be strictly sepa-

rated. On a sufficiently small granularity level, the

‘‘what’’ tends to translate into the ‘‘how’’, and this is

what the POI taxonomy aims to support. This is

particularly noticeable for single-purpose apps—for

example, the requirement of getting (access to) the

current sensor values intuitively translates to a UI list

displaying those values and to a Sensor data entity

(maybe even some key attributes specified upfront by

the stakeholder). It is then the choice of the designer to

either build further on the stakeholder rudimentary

models, or to propose innovative alternatives for

covering the required POIs and data entities. This is

the reason why the POI taxonomy is kept modality-

independent and why the ER diagram should be seen as

a concept map rather than a database design.

With respect to model serialization, compared to the

existing requirements serialization languages based on

XML, the work advocates an RDF serialization for two

reasons: (a) to benefit from the graph-based traceability

features of Linked Data paradigm; (b) due to an auxiliary

research challenge (not emphasized in this paper) of

bridging the worlds of conceptual modelling and Linked

Data.

9.2 Contribution summary on mobile app

requirements

The Cameleon framework [14] describes functionality in

terms of interaction, on several abstraction layers, with the

aim of enabling generative UI. The mapping of those layers

on our approach is indicated in Table 7. These levels also

inspired [2] to define primitives targeted to object-oriented

code generation, with a richness of details beyond our

scope (edit masks, queries, object mappings, etc.). Their

conclusive section indicates a need for a requirements

engineering approach that follows a similarly layered,

interaction-oriented approach, and this is where our work is

positioned. The work at hand favours specificity and con-

text given by business processes, while execution-wise we

are addressing model-driven app chaining [38] and code

selection based on model information (the orchestration),

rather than app code generation. Therefore, we use a

specific notion of context compared to [1] (where context is

a world state, possibly broken down by specific dimen-

sions—task, social, personal, etc. as suggested by [32]) or

[20] (where context is a human environment description

including task, goal, organizational position). In our work,

context is given by the highest Cameleon layer (tasks and

concepts) linked to auxiliary models from the high-level

business view (involved roles, locations, process

motivators).

The discourse modelling approach of [10] shares with

the Cameleon framework the ambitious goal of UI gener-

ation and the hierarchical approach to task representation,

but it is rooted in communication theories. Discourse

models occupy the same position as the hereby introduced

interaction processes. Thus, we rely on the familiarity of

Table 7 Mapping of the proposed approach on the Cameleon framework

Cameleon levels

of abstraction

Cameleon artefacts The proposed approach

Tasks and

concepts

Task models (ConcurTaskTrees [62]) and

domain models (UML class diagrams)

Describe business processes and involved roles in notations that are more

familiar to the business stakeholder (than ConcurTaskTrees). Drill down

business process steps to interaction steps using the same control flow

language with extended semantics

Describe domain concepts with simplified ER diagrams and highlight data

ownership

Abstract UI Inputs, Outputs, Facets Collaboratively define functional elements of the app (POIs)

Map interaction steps on structural elements and data requirements

Concrete UI UI controls Design wireframe mock-ups for requirements validation driven by interaction

steps and their mappings

Final UI Running code We do not aim for code generation, but for model-driven code selection
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stakeholders with business process modelling rather than

introducing a completely new language. In other words,

interaction is intuitively approached as a process, rather

than as a hierarchical task decomposition, and the POI

taxonomy is introduced to describe ‘‘resources’’ required

by such a process.

9.3 Contribution summary on Linked Data

requirements

The related works on stimulating Linked Data adoption

inspired the goal of signalling, with modelling means,

opportunities for employing Linked Data. The data inte-

gration is technically achieved with query federation across

multiple endpoints [64] or query orchestration (separated

queries bound programmatically). The main contribution

here is the proposal to employ the generalization of

orchestration models (see final comments in Sect. 6.2) in

order to justify the adoption of this technology in relation

with business processes.

9.4 Degree of generality

Reusability beyond the scope where this work originates is

impacted by two factors: domain specificity (the business

domain for which the method has been designed) and

technological specificity (the technology for which

requirements must be modelled).

With respect to the first factor, the metamodel has been

designed to include its domain specificity in a loosely

coupled manner: it manifests in model types that can be

linked to some elements of the hereby presented meta-

model (e.g. as process motivators), but such links can be

neglected and the requirements elicitation may start

directly from business processes. By partitioning the

metamodel in multiple inter-linked model types, a ‘‘take all

or leave all’’ approach is avoided. Actually the metamodel

discussed in this paper (Fig. 11) does not include the

domain-specific parts at all. They are just hinted at as

context of the work (in Step 1 of the procedure, Sect. 3) or

as additional information that may be reached by the

traceability queries (see top of Fig. 12). Concepts of other

domains may extend the metamodel, and the RDF exporter

will expose the newly added link and concepts to queries

without any adaptation.

With respect to technological specificity, this limits

reusability since it is embedded at deeper levels:

• In notation, e.g. symbols representing apps, app-

supported activities, Linked Data queries, etc.;

• In semantics, through certain concepts and their

prescribed editable properties, e.g. the concept of app/

feature (with properties such as OS, device type, etc.);

the pool of app capabilities; the subtyping of some

concepts (locations can be SPARQL endpoints; access

means can be SPARQL queries); the POI taxonomy

was based on recurring patterns identified in app UIs

and their interaction modalities; the interaction pro-

cesses leverage the user perception that the app is a rich

front-end providing units of functionality against

loosely coupled data locations;

• In functionality: the requirement of deriving orchestra-

tion models on a per-role basis derives from the fact

that each process participant uses a different device

with a different deployed orchestration (as opposed to

service orchestration where this is not inherently an

issue); also, app descriptions include editable properties

that are required by the run-time orchestrated app

deployment engine.

Ultimately, any modelling approach must make a trade-

off between reusability (typically addressed by standards

that try to bring everyone on the same abstraction level),

and scenario-oriented customization (typically addressed

by agilely evolving modelling methods that retain speci-

ficity at various levels). It was an explicit goal for this work

to lower generality level compared to more generic

approaches (e.g. BPMN, UML activity diagrams). How-

ever, it must be noted that the specificity of ComVantage is

not narrow, but rather multifaceted. Therefore, in the most

general sense applicable here, we can state that the mod-

elling method facilitates the decomposition of a business

model down to app and data requirements that can be

passed towards the run-time side through an RDF serial-

ization of models and their semantic links. Since we are

advocating an evolutionary approach to agile modelling

methods, and the work presented here is a temporary fixed

iteration, specificity may be further deepened based on

what kind of information should become traceable in

concrete applications.

9.5 SWOT evaluation of the proof of concept

A SWOT analysis has been performed on the current

iteration of the modelling method based on the evolving

implementation hosted by the Open Model Initiative

Laboratory portal [46] for registered members, using

ComVantage scenarios and relying on the RDF export

capability to expose models to external components (for

example the app orchestration framework [67]). All

sample models presented in this work have been real-

ized on this prototypical implementation. Modellers

collaborate on the remotely accessible modelling tool,

sharing and annotating models in a common model

repository.
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The conclusions of the SWOT analysis are as follows

(weaknesses are discussed in more detail as basis for fur-

ther work):

Strengths. The work at hand advocates a knowledge

management approach for requirements elicitation, by

creating a communication channel and a requirements

representation space based on integrated conceptual mod-

els. Therefore, the proposed approach brings several

benefits:

• It treats requirements representations as knowledge

structures with a visual manifestation and semantic

links that enable querying, analysis and traceability to

the business environment or early design decisions;

• It exposes the semantic links and structure in a Linked

Data (RDF) representation to leverage its relation-

centric processing techniques;

• It leverages the wide adoption of business process

management and the increasing stakeholder skills of

describing business processes. This improves signifi-

cantly the connection with the business view, the

granularity of requirements and preserves a sense of

flow that is lost in traditional elicitation approaches due

to atomization of user stories and the representation of

requirements as weakly structured item sets. Stake-

holders are empowered by the modelling language to

decompose their business view and to initiate rudimen-

tary designs over the business-IT gap; therefore,

requirements elicitation gets a tighter coupling with

the design phase, reflecting the Twin Peaks vision;

• It advocates reuse of requirements models at later

stages, to feed model-driven auxiliary components (e.g.

for requirements analysis and validation, run-time app

orchestration flexible deployment);

• It captures behavioural, structural and interaction

aspects in a modelling method that can be further

evolved in an agile fashion (in order to deepen the

domain specificity and to lower the abstraction effort).

Weaknesses. There is a risk that the work is perceived

as heavy-weight and excessively prescriptive (as a ‘‘take all

or leave all’’ approach). It must be stressed that the mod-

elling procedure should be read as guidelines—fragments

can still be employed for disjointed purposes (business

process modelling, sketching mobile app mock-ups or ER

conceptual models, etc.) or for coarser granularity

requirements. The method does not force the modeller to

create all link/model types enabled by the metamodel,

hence model completeness cannot be a strict goal here—

requirements can be described with various levels of detail,

as new insight is gained during requirements evolution.

Model querying for missing links will guide the modellers

through what they can do, rather than enforcing what they

must do. Additionally, the procedure was designed as a

granularity refinement process, inducing a gradual close-

ness between the stakeholder view and the developer view.

The empirical evaluation showed some understandabil-

ity problems in the quite heavy part of data requirements

modelling, which must be reconsidered in the further

evolution of the method, possibly by merging some of the

involved model types.

Regarding requirements management, the work at hand

only briefly mentions properties that are relevant for

managing requirements: authorship, responsibility, prior-

ity, difficulty, timestamps, build status, change tracking,

etc. It has already been emphasized that we are currently

interested in requirements representation rather than

requirements management. Since the work takes a meta-

modelling approach, the modelling language is fully cus-

tomizable and any attributes that are relevant from a

management point of view can be added to all the pre-

sented concepts, including natural language descriptions to

enhance model understanding. Model queries can aggre-

gate reports from such attributes—however, the paper hints

at this possibility without really pursuing its implications.

Regarding app design domain specificity, the POI tax-

onomy was designed to control granularity when describ-

ing app interaction (rather than to reflect a complete GUI

control set). Specificity of the mobile domain can be

improved by defining common UI patterns (status bar,

document browser, etc.) as first-class modelling citizens.

Such patterns can extend the capability pool towards the

aim of accumulating a reusable vocabulary of UI patterns.

Regarding app orchestration, the currently employed

graph transformation extracts an app usage precedence

model acting as a rudimentary workflow. More prescriptive

workflows can be derived by preserving the nature of the

split nodes (XOR, AND) from the original business pro-

cess. However, the orchestration deployment engine may

also take input directly from the RDF serialization of the

business process model if this level of detail must be pre-

scribed in the app precedence flow.

Opportunities. Extended report generation mechanisms

can be implemented on top of the RDF serialization,

pushing the work towards the field of semantic information

systems or even process-aware systems. This would rely on

model queries for deriving aggregated requirements

reports, which can be done both in the modelling tool and

on the RDF serialization of models (via SPARQL queries).

The work lays some foundations for code reuse, under

the assumption that app code is available and mapped on

app models. Investigations on similarity between app

models (hinted at in the procedure Step 4) can be furthered

in a code reuse context scenario. Capability similarity can

be extended with considerations on interaction process

similarity (covered for business process in works such as

[19]) to enable potential reuse of simple, single-purpose

Requirements Eng

123



apps or interaction patterns. This direction can also be

furthered towards model-driven code generation, although

significant implementation details must be added on mod-

elling level.

The project context drives the research towards the app

orchestration concept; however, new opportunities (and

challenges) arise if the orchestration is seen as a facilitator

for interaction process composition (if the developer

chooses to implement a single complex app, instead of an

orchestration of single-purpose apps).

Usability analysis evaluation can be performed with

respect to the early mock-ups established in the require-

ments engineering phase, particularly with respect to

interaction process simulation for quantitative usability

metrics (e.g. number of interactions, screen distance to be

covered in order to perform an interaction process).

Threats. As with any requirements elicitation effort, the

collaborative steps of the modelling procedure may

degenerate in fuzzy communication. Conceptual models,

enhanced with the interaction stepper, are meant to mini-

mize ambiguity and to channel communication using a

minimal set of constructs. However, the semantics of these

constructs and the modelling procedure as a whole must be

assimilated by the modellers involved in elicitation with a

certain overhead, a general problem for any modelling

language. Natural language annotations can serve as

annotations to all modelling objects, to reduce ambiguity

and compensate the risk that the objects are misused during

the language learning phase and a model refinement loop is

recommended.

Model-based communication is heavier compared to

natural language statement acquisition, but helps with

flowing the requirements analysis phase into the design

phase, while retaining a more granular formulation of the

requirements rationale and context. Experience encouraged

us to rely on the popularity of business process modelling

and on the familiarity of business stakeholders with their

legacy systems in order to reduce the overhead.

Finally, trained software engineers may prefer the uni-

versality of UML to describe not only apps, but also the

business view, taking the full responsibility of structuring

the business stakeholders ‘‘wishes’’. We, however, advo-

cate the need for ‘‘agile modelling method engineering’’

which aligns to the same agile philosophy as modern

software engineering: a metamodelling approach can tailor

modelling tools to case specificity or change requests from

specialized communities, thus providing shortcuts and

lowering the abstraction effort when communicating

through models.

9.6 Final conclusions and takeaway message

The work at hand employed a metamodelling framework to

design modelling means representing process-centric app

requirements that can be traced with semantic queries

towards related context elements or early design proposals.

We specifically target the BYOD environments, a natural

next step of the cloud computing paradigm, shifting the

‘‘software as a service’’ deployment model towards a

‘‘service as an app’’ set-up. Enterprises have the necessary

tools to store their data and knowledge, and to open them to

employee-owned devices on a ‘‘need-to-know’’ basis. The

proposed modelling approach can support decisions

regarding what functionality and access means must be

enabled for each role, process, or activity, and also to

communicate this among all involved stakeholders and

developers.

We see a modelling procedure as an integral part of a

modelling method, rather than as the object of auxiliary

consulting services. Instead, we place the focus of con-

sulting on agile extensions for the language specificity.

With the rise of business process management practices

and the ubiquity of mobile technology, stakeholders are

more capable of stating what they need and when they need

it (relative to their swimlane-based business processes).

This is, however, merely an observation on our project

experience—turning it into hypothesis should inspire

interesting longitudinal studies.

The generalized takeaway message of the work at hand

is summarized as follows:

(a) requirements representation should receive as much

emphasis as requirements management;

(b) extensive and integrated conceptual modelling can

be employed for this purpose, as it enables knowl-

edge externalization over the business-IT gap (re-

quirements elicitation becomes a knowledge

acquisition effort);

(c) as models enable the software design phase to bleed

into the coding phase during agile development, the

requirements can also flow into the design phase

with a proper inter-model integration;

(d) semantic traceability relies on the explicit represen-

tation or derivability of different variants of relations

perceived by the modeller.

Acknowledgments The research leading to these results was funded

by the European Community’s Seventh Framework Programme under

Grant Agreement No. FP7-284928 ComVantage.

Requirements Eng

123



References

1. Ali R, Dalpiaz F, Giorgini P (2010) A goal-based framework for

contextual requirements modeling and analysis. Requir Eng

15:439–458. doi:10.1007/s00766-010-0110-z

2. Aquino N, Vanderdonckt J, Panach JI, Pastor O (2011) Con-

ceptual modelling of interaction. In: Embley D, Thalheim B (eds)

Handbook of conceptual modeling: theory, practice and research

challenges. Springer, Berlin, pp 335–355
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