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Abstract
We present GEMSe, an interactive tool for exploring and analyzing the parameter space of multi-channel segmentation al-
gorithms. Our targeted user group are domain experts who are not necessarily segmentation specialists. GEMSe allows the
exploration of the space of possible parameter combinations for a segmentation framework and its ensemble of results. Users
start with sampling the parameter space and computing the corresponding segmentations. A hierarchically clustered image tree
provides an overview of variations in the resulting space of label images. Details are provided through exemplary images from
the selected cluster and histograms visualizing the parameters and the derived output in the selected cluster. The correlation
between parameters and derived output as well as the effect of parameter changes can be explored through interactive filtering
and scatter plots. We evaluate the usefulness of GEMSe through expert reviews and case studies based on three different kinds
of datasets: A synthetic dataset emulating the combination of 3D X-ray computed tomography with data from K-Edge spec-
troscopy, a three-channel scan of a rock crystal acquired by a Talbot-Lau grating interferometer X-ray computed tomography
device, as well as a hyperspectral image.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—- I.4.6 [Image Process-
ing and Computer Vision]: Segmentation—Pixel classification

1. Motivation

Many scientific disciplines such as material sciences [CCK∗14],
medicine [GFL04] or geosciences [KLF∗15] attempt to gain novel
insights by acquiring and analysing two- or three-dimensional
datasets from a specimen of interest. In most cases, image analysis
techniques focus on data acquired by one scanning modality return-
ing a single data value for each spatial location. However, data from
single scanning modalities may return unclear or ambiguous re-
sponses, or may not deliver all information that is needed. Material
scientists, for example, often require the exact topological details
of a specimen along with minuscule structural deficiencies as well
as information on its chemical composition [AFK∗14]. To address
these demands, the analysis strategies are increasingly adapted to
measuring the same scene or specimen using multiple techniques,
resulting in a so-called multi-modal dataset, where multiple mea-
surement values are available per dataset location. At times a single
scanning modality can also result in multiple measurement values
per dataset location. Here, we will use the term multi-channel to
refer to any dataset or image where multiple values are available
per spatial position.

Image segmentation, the process of partitioning an image into
regions sharing common properties, is a very important step of the
image analysis workflow in many domains. In industrial applica-

tions it is for example essential in quantifying features of interest,
such as voids or defects, or constituent components of a material
system like fibers, particles or their surrounding material. Many
different segmentation algorithms have been developed, typically
tailor-made for a specific target domain. Adapting and parameter-
izing segmentation pipelines to new modalities or to different in-
puts is time-consuming and non-trivial. Typically no segmentation
expert is at hand to lend her expertise to the domain scientist. Of-
ten, there is also no objective measure available and therefore no
automatic optimization can be performed. Thus, domain experts
can only determine whether a segmentation result is meaningful
through visual inspection.

Considering multiple channels of information during segmen-
tation leads to complex algorithms with many input parameters
which require careful tuning. Domain scientists, being no segmen-
tation experts, typically have no guidance available for this tuning
procedure. The traditional way to determine the influence of the
segmentation pipeline’s parameters on the result is to manually per-
form iterative trial and error steps.

We therefore see a strong need for approaches to evaluate the
input parameter space and the result space of segmentation algo-
rithms for multi-channel images. A tool implementing these meth-
ods will allow domain experts to arrive at optimal segmentation
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results for their multi-channel images without ground truth infor-
mation available and without having advanced expertise in image
segmentation. We developed and implemented GEMSe to address
this problem. The main contributions of our work are found in the
following points:

• Methods for exploring and analyzing the input parameter and
result space of a segmentation pipeline.

• Implementing these methods in GEMSe, which guides users to-
wards choosing adequate segmentation parameter values leading
to optimal results for a specific kind of dataset.

• Evaluation of the usability of GEMSe in various case studies of
different application domains.

2. Related Work

Visually supporting segmentation algorithms of 3D data has been
one of the most researched topics in the visualization commu-
nity. The typical approach is through defining a transfer func-
tion [HKRs∗06]. For an overview of different transfer function ap-
proaches we refer the reader to a recent survey [AD10]. However,
transfer functions suffer from two problems. On the one hand they
are not very intuitive to use. On the other hand, they are not able to
properly segment very complex modalities.

The area of computer vision in general and medical imaging in
particular have been focused on developing very sophisticated seg-
mentation algorithms. One of the most widely used approaches to-
day is the random walker algorithm [Gra05]. Hence we are using
this algorithm in our approach. However, we are not limited to this
algorithm and it could be exchanged with any other. Visually sup-
porting such a segmentation pipeline has also been studied in the
visualization community. Saad et al. [SMH10, SHM10] were some
of the first to provide visual support to explore the capabilities of
the random walker algorithm. Their focus was to use the probabilis-
tic features of the algorithm in order to find anomalies in the seg-
mentation that might uncover tumor tissue. Praßni et al. [PRH10]
as well as Top et al. [THA10] introduced approaches to use the seg-
mentation uncertainty to query the user for input where the labeling
is too uncertain.

However, in this work we are not focusing on the uncertainty in-
formation of the algorithm thus far. Instead we are dealing with the
problem of finding good parameter settings for the segmentation
algorithm to perform well. Systematically exploring the parame-
ter space of algorithms has become an important research topic in
the visualization community over the last few years. Sedlmair et
al. [SHB∗14] present a recent overview and taxonomy of the ap-
proaches in the literature. Using this approach, Tuner [TWSM∗11]
as well as Paramorama [PBCR11] are possibly the two approaches
most closely related to our work.

Tuner was developed for medical image segmentation experts to
help them fine-tune a particular energy model. Hence, it required
a ground-truth segmentation or at least one objective quality mea-
sure in order to function properly. However, in our approach we
aim to support domain experts (that are not necessarily algorithmic
experts in segmentation) and we do not require any ground truth
or objective measure. Instead we navigate the user through seg-
mentation space and rely on visual inspection to help find proper

segmentations. Hence, the interfaces of Tuner and GEMSe have no
resemblance (although they provide similar functionality).

Paramorama [PBCR11] on the other hand lets the user browse
through a large collection of segmented images. A specialized lay-
out algorithm allows users to manually compare the label images
in one or more clusters. While they require using uniform sampling
on a fixed cartesian grid, which does not scale well, we can employ
any sampling method. They cluster by parameter values whereas
we cluster by result similarity.

The major difference of our approach to all these previous work
is that we (a) provide a general segmentation framework for many
different image modalities, and (b) that we are focusing on multi-
channel data. To the best of our knowledge, none of the previous
work has these capabilities.

3. Problem Characterization

The main challenge this work addresses is analyzing the input pa-
rameter space of segmentation algorithms for multi-channel data
and the set of potential label images that they can produce. This
problem can be categorized as visual parameter space analysis, as
systematized by Sedlmair et al. [SHB∗14]. The input is a multi-
channel, two- or three-dimensional dataset with an arbitrary num-
ber of channels per location. We will use the word image to denote
conventional 2D images as well as 3D volumes. Our segmentation
pipeline furthermore takes a parameter set as input, consisting of
various numeric or categorical parameters. A detailed description
of the particular parameter set we investigated is given in Sec-
tion 4.1. The output of one segmentation run is referred to as la-
bel image, which is a single-channel image. As derived output, we
calculate the count of connected components in the label image,
and record the time required by the segmentation algorithm. We
used the count of connected components, or object count, mainly
because it was used by the domain scientists we worked with, but
also because it was used in the Paramorama tool [PBCR11]. Mea-
suring the performance is intended for a trade-off analysis between
result suitability and algorithm speed.

We sample over the parameter space of this model, resulting in
a collection of label images, henceforth referred to as ensemble.
Each label image is linked to the parameter set that produced it and
its derived output. We provide a global-to-local approach to explore
this ensemble.

3.1. Tasks

Through collaborating with domain scientists working on segment-
ing industrial multi-channel datasets and analyzing their current
workflow and analysis needs, the following tasks to be solved were
identified:

• T1: Get an overview over the possible results produced by the
algorithm.

• T2: Analyze the influence of input parameters on the output im-
ages and their correlation to derived output.

• T3: Find stable parameter combinations which produce suitable
segmentation results as determined by visual inspection.
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In terms of Sedlmair et al. [SHB∗14], T1 and T2 fall into the parti-
tioning category, as they are applied to get an insight into what vari-
ation of results can be achieved. T3 is a combination of optimiza-
tion and sensitivity analysis – users first want to arrive at ranges
of parameter values producing suitable results, and then identify
those regions where the results are insensitive to slight parameter
changes.

4. GEMSe Design

For a given multi-channel image we first perform preprocessing as
schematized in Figure 1. The analysis work is subsequently done
through the main interface of GEMSe as shown in Figure 2.

4.1. Preprocessing

Multi-Channel
Image

Parameter
Ranges

Sample
Count

Segmentation
Runs

#

Label Image
Ensemble

Exploration DataPreprocessingInput

Label
Image
Tree

Clustering

Derived Output
Calculation Charts

Sampling

Label Seed
Points

Figure 1: Overview over input, preprocessing pipeline and the data
explored by GEMSe.

As depicted in Figure 1, preprocessing starts by sampling the
parameter space of a segmentation pipeline. For this purpose users
can either use default parameter ranges or refine ranges if they al-
ready have a preconception of where suitable results are more likely
to occur, for example from a previous sampling run. We assem-
ble parameter sets according to the chosen sampling method and
parameter ranges. The result of a single run of the segmentation
pipeline is referred to as label image. We perform one segmenta-
tion run for each parameter set, resulting in an ensemble of label
images. We calculate the object count as the count of connected
components of all resulting label images, a simple derived output
which can help in determining the segmentation quality, as will be
shown in our case studies. On the ensemble we finally perform hi-
erarchical clustering using maximum linkage [FLPZ51]. For that
we initially set up each label image as leaf cluster and calculate
pairwise similarities as sum of the dice metric [Dic45] calculated
for each label. These preprocessing steps typically take a long time
(in the range of several hours to days depending on the used hard-
ware) and are therefore performed in advance and detached from
the result exploration.

For segmentation, we have adopted a multi-channel segmenta-
tion framework around the Support Vector Machine (SVM) clas-
sification algorithm and the Extended Random Walker (ERW)
segmentation algorithm [Gra05]. Our current sampling tool uses
this SVM+ERW-based segmentation pipeline but could be easily
adapted to run any other segmentation pipelines or algorithms.

Common parameters
SVM Csvm soft classification penalty

γsvm Gaussian RBF kernel width parameter
nsvm number of channels to consider

ERW βerw normalization neighborhood weight
γerw weight of prior model vs. neighborhood
merw max. number of iterations in linear solver

Modality-specific parameters
pcai number of PCA components considered for channel i

ERW wi channel i weight in neighborhood information
i ∈ [1..N], N = number of image channels

disti Distance metric used for channel i

Table 1: Parameters to our custom segmentation framework.

We have chosen both algorithms because they are successfully
used in many application domains, for example in medical sci-
ences [GFL04] and the geosciences [KLF∗15]. In this setup, there
are six common parameters and two to three additional parameters
per data modality in use to our segmentation pipeline, which are
summarized in Table 1. In addition to input parameters, the SVM
takes seed points for each label as input. We use the same set of
seed points, predetermined by the user, for each segmentation run
of the same dataset at the moment.

4.2. Result Exploration Interface

Figure 2 shows the main interface of GEMSe. Its layout is partially
fixed, meaning that the single views cannot be moved around, but
they can be resized to enlarge areas of interest. We initially consid-
ered a vertically panning screen similar to Bederson and Meyer’s
Pad++ system [BM98], so that we would not be limited to the size
of a single screen, and to better separate the different analysis lay-
ers. We found the downsides of such an approach, namely the lack
of overview and the confusion of the user having to switch through
many screens, to outweigh the benefits and therefore discarded that
idea.

In our interface there are seven linked views. A cluster tree view
(Figure 2a) displays the hierarchy resulting from our clustering,
the cluster example view (Figure 2d) displays characteristic im-
ages from the selected cluster, the detail view (Figure 2b) shows
a large version of the currently selected image, the slice view (Fig-
ure 2c) enables switching between the three possible axis-aligned
slice views as well as changing the currently shown slice, the his-
togram view (Figure 2g) shows histograms for input parameters and
derived outputs, the scatterplot view (Figure 2f) correlates input
parameters with derived outputs, and finally the favorite bar (Fig-
ure 2e) keeps track of preferred images. All interactions in an im-
age view are instantaneously propagated to all other image views
for better comparison. Label images are color-coded using a qual-
itative scheme from ColorBrewer [HB03]. the datasets we studied
so far only required 2-7 labels, so we do not see a problem in the
limitation to a maximum of twelve colors.

The cluster tree view (Figure 2a) shows an interactive tree view
of the cluster hierarchy. Visual appearance and interaction meth-
ods resemble those from the folder view in a file explorer such as
Windows Explorer. For each cluster a node with the number of con-
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Figure 2: Main interface of GEMSe: (a) cluster tree view, (b) detail view, (c) slice view, (d) cluster example view, (e) favorite bar, (f)
scatterplot view, (g) histogram view, (h) magic lens showing original image

tained samples is shown alongside a cluster representative image.
For a leaf node in our hierarchy, the representative is the label im-
age contained in it. For internal nodes, this image should give an
overview over amount and location of differences in the label im-
ages of this cluster. Our first idea was to show the medoid of the
label images in the cluster. Another option we considered was to
calculate an average image from all the masks. A medoid, being a
single label image, same as an average image, can not give an ade-
quate impression of the range of images contained in the cluster. An
average label image is furthermore not meaningful, since it does not
necessarily represent any single member of the cluster. We there-
fore implemented a visual metaphor following similar ideas as the
homogeneity view introduced by Malik et al. [MHG10]. All pixels
which have the same label in all samples retain that labeling, and all
other pixels are replaced with a marker color not used for labeling.
This directly visualizes the regions of the image in which a cluster
contains variation. The system tries to minimize the space used by
the tree. It automatically hides the preview images of parent and
sibling nodes when expanding a tree node as well as nodes that are
marked as unsuitable. The cluster tree view is mainly addressing
task T1. Since selections of a node in the cluster tree view result
in linked updates in all other views, it also acts as main interaction
hub. Task T3 is mainly solved through the interaction of all views,
therefore the cluster tree view plays a vital role in addressing it.

The cluster example view (Figure 2d) shows a number of exem-
plary label images from the currently selected cluster. These are se-

lected so that they represent the variation in the cluster, supporting
the overview task T1. The number n of label images to be shown
is determined based on the available space. Following the idea of
Krishnamachari and Abdel-Mottalebof [KAM99], we choose leafs
from a parent cluster in the same relation as the number of leafs in
each child cluster. In case we need to choose a single item from a
cluster which is no leaf, a random child is picked. This is executed
recursively, and will lead to n images, or less if the number of leafs
in the selected cluster is smaller than n.

Depending on the previous interaction, the detail view (Fig-
ure 2b) shows an enlarged version of either the cluster represen-
tative selected in the cluster tree view, or a label image selected in
the cluster example view. The border color of the view indicates
the current state, red indicating a cluster representative, yellow a
single label image. Next to the image additional detail information
about the parameter sets producing the label images in this cluster,
and the cluster ID are displayed as can be seen on the right side of
Figure 2b. Comparison to the original images is enabled through a
magic lens (Figure 2h). Additionally, users are presented with in-
teraction elements to positively or negatively rate a segmentation
result, and to navigate towards a specific label image, as can be
seen in the bottom of Figure 2b.

In the histogram view (Figure 2g), we followed the idea of
scented widgets [WHA07] and implemented histograms for all pa-
rameters and derived outputs which are connected to filter sliders
on the axes. The view is designed to address task T2, the analysis of
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correlations between clusters of label images and input parameters
or derived output. By default our histograms show the result count
on the vertical axis over the respective parameter or derived output
on the horizontal axis. The horizontal axis is scaled linearly or log-
arithmically depending on the way the parameter was sampled. The
data of the whole result space is shown in gray, data of the selected
cluster is shown in red, the same color that is used for highlighting
a selected cluster in the cluster tree view. When a single example
image is selected, its parameters are marked with yellow arrows on
the horizontal axis.

The slice view (Figure 2c) is intended for navigation through the
whole image. The original image is shown for comparison with
label images in the form of three axis-aligned slicer images, as do-
main experts are used to such slice views. Selecting one of the three
small slicers changes the slice axes for all previews. Providing a
3D view was considered in the design process of GEMSe, but we
observed that the domain scientists we collaborated with tended to
rarely use 3D visualizations of the dataset, and preferred slice views
due to their better interpretability. The favorite bar (Figure 2e) is
used for collecting intermediate results for later reference. With it
we address the issue that when analyzing any large collection, it is
easy to get lost or to loose track of previous findings. The scatter-
plot view (Figure 2f) shows a correlation of two attributes marked
in the histogram view, intended for addressing task T2. The data
points of the currently selected cluster, potential filter ranges and
example image selections are highlighted here as well.

Ensemble members or whole clusters can be marked as suitable
or unsuitable. This results in a color-coding on the x-axes of the
parameter histograms, which enables the correlation of input pa-
rameter ranges to segmentation quality.

5. Implementation

We implemented GEMSe as a standalone application in a custom
C++ application framework built on top of the Qt framework, us-
ing VTK [SML06] and ITK [YAL∗02] libraries for visualization
and image processing. The sampling of the segmentation parameter
space, resulting in the ensemble of segmentation masks, was imple-
mented inside the same framework. For the segmentation frame-
work we used the libSVM library [CL11], our extended random
walker calculation is built on top of the Eigen v3 linear algebra li-
brary [GJ∗10]. The source code of our tool will be made available
on https://github.com/3dct.

6. Evaluation

We applied two different types of evaluation to our prototype. First
we conducted usability interviews to refine visualization and in-
teraction methods. This lead to an improved version of our tool,
addressing the main concerns raised during these interviews. We
subsequently used this improved tool in several real world as well
as synthetic scenarios.

6.1. Usability Evaluation

GEMSe was developed in constant collaboration with domain ex-
perts in material science. Our design was therefore heavily influ-
enced by their input. To evaluate and improve its usefulness on
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Figure 3: Datasets used in our case studies: Attenuation image
(a1) and three K-Edge element maps (a2-a4) of the synthetic K-
Edge dataset. Attenuation image (b1) and dark field image (b2) of
the middle slice along x-y-axis of the rock crystal TLGI-XCT scan.
Channels 26(c1), 46(c2), 125(c3) and 176(c4) from the SalinasA
hyperspectral dataset.

a broader scale, we asked five visualization professionals to take
a look at our tool. Following the best practices established by
Nielsen [Nie00], we performed approximately one-hour long inter-
views over the course of four weeks. We used the small synthetic
dataset as shown in Figure 3a for the evaluation. We first introduced
each user to our tool. Then we encouraged them to interact with
the tool to get acquainted with the modes of interaction. During
this phase, our users implicitly addressed task T1 from Section 3.1,
namely to get an overview over the possible results. Subsequently
we posed two explicit exercises for them to solve through the help
of our tool: The first exercise consisted of finding out what was the
determining factor for the small amount of obviously unsuitable
label images in the synthetic example as shown in Figure 5(a5),
a specific instance of task T2. The second, more open-ended ex-
ercise was to find the visually most satisfying segmentation result
and deducing reasonable and stable parameters for segmenting this
dataset, basically task T3. We observed our users in performing
these tasks and took notes on how they were doing. Additionally,
we encouraged them to comment on their current thoughts. For all
sessions we recorded screen captures and the conversation. We used
this feedback to improve our software prototype, in order to arrive
at the most effective ways of visualization and interaction.

Users started their exploration with the root node of the hier-
archical clustering selected. To get an overview over the possi-
ble results, three of our users navigated down in the tree hierar-
chy, checking cluster representatives and continuing in the direc-
tion of the result which matched their expectation most. Interest-
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ingly, the benefits of the cluster example view were controversial.
Two users reported that they found the view tremendously help-
ful and used it as their main navigation cue, chose the label image
that they found most suitable, and navigated towards that image.
Two users did not use it at all and commented that they found it
confusing. We think this suggests different interaction preferences
in our users, both of which our tool supports. For the first exer-
cise, finding the parameter responsible for a cluster of unsuitable
label images, most of our users observed the histogram view while
switching between clusters. Within at most one minute all of our
users spotted the parameter γerw mainly responsible for the differ-
ence. Most users required encouragement by the interviewer to em-
ploy filtering, facilitated through the slider handles below the his-
tograms, which could also have helped solving this exercise. Once
aware, our users commented very positively on this feature, espe-
cially the immediate feedback in the cluster hierarchy. There, the
number of masks matching the current filter is shown alongside the
number of all masks in that cluster, and clusters with all contained
label images outside of the filter range are minimized. The scat-
terplot view, which would allow detailed correlation analysis, was
also only used after a reminder by the interviewer. It was not per-
ceived as that helpful. It might not be required at all, but might be
used more if it had permanent visibility and deeper integration into
the linked views.

For our second exercise, users continued their exploration as they
did while getting an overview. They typically arrived at a broad
range of parameters suitable for the dataset within a few minutes.
We received as common feedback that it was perceived as hard to
arrive at a final stable parameter region. A part of these users missed
methods to compare the parameter ranges in which favorites were
located. The second remark in this direction was that it is hard to
spot whether there are any bigger differences left in a cluster. Some
users commented that it would be useful to zoom in on a particular
subtree, for example when it has become clear that good results are
only to be found in one particular cluster. During these usability
sessions we had one large original image next to the detail view.
One common suggestion was to allow a more direct comparison
between the label images and the original image. The cluster rep-
resentative in general was perceived very helpful in determining
the variation inside a cluster. When comparing siblings in the hier-
archy, we made the observation that the cluster representative can
have a slight misleading effect. Users tended to interpret a repre-
sentative showing many differences as generally worse than one
with less differences. The full picture only unravels however when
considering the number of label images inside the cluster, as well
as the location of differences and the number of label images that
contributed to one particular difference. Two of our users suggested
to provide filtering capabilities directly in the result space. Their ar-
gument was that from looking at the original they already formed
a mental image of how the resulting label image should look like.
They thus wanted to restrict the shown results to the ones having
specific label values at certain positions, and excluding those results
which exhibited, for example, noise artifacts.

Based on the feedback from these interviews, we introduced sev-
eral improvements into GEMSe. To allow better comparison to the
original, we implemented a magic lens for overlaying the origi-
nal data in the detail view directly, as shown in Figure 2h. To im-

Rock Crystal Synthetic Salinas
Size 285x300x216 120x120x8 83x86
Channels 3 4 214
Labels 3 4 6
# of Samples 200 100 500
SVM C 0.01..100l - 10−5..10,000l

γsvm 10−11..1l - 10−11..0.01l

SVM n 1..2 - 1..224
βerw 0.1..1,000 0.1..1,000l 0.1..10,000
γerw 1..10 0.1..10 1..10
m 10..1,000,000l - 10..10,000
w 0..1 0.25..1/0..0.75 -

Table 2: Properties and sampling ranges of datasets used in our
case studies. l indicates a logarithmic sampling scale.

prove the navigation towards a final suitable parameter range we
introduced a coloring of the parameter axes in regions of good and
bad label images. Clusters can be marked as suitable or unsuitable
through interaction elements in the detail view. These markings de-
termine a coloring of the histogram axes in the histogram view. We
calculate the ratio of these suitable to unsuitable label images for
each histogram bin. If there are only suitable label images in a bin,
then it is marked green, and red if there are only unsuitable ones,
as shown in Figure 4(l, o). In between we map to grey and reduce
the opacity, so that an equal distribution will result in no coloring.

6.2. Case Studies

We have successfully used our tool on several datasets from differ-
ent domains. In the following paragraphs we will present three of
them. The details of these datasets are shown in Table 2.

6.2.1. Talbot-Lau grating interferometer X-ray computed
tomography data

Our main source of test datasets is Talbot-Lau Grating Interfer-
ometry X-ray Computed Tomography (TLGI-XCT) data, scanned
by a SkyScan 1294 by Bruker [Sky], which generates three data
channels: the attenuation as known from conventional X-ray com-
puted tomography, the differential phase contrast which is related
to the index of refraction and a dark-field contrast reflecting the to-
tal amount of radiation scattered at small angles. We supplied our
tool to two domain experts working with phase contrast datasets.
We analyze the Rock Crystal dataset here, which depicts a quartz
structure with several cracks and pores inside. In this case we used
attenuation and dark field image, a slice of each is shown in Fig-
ure 3b. The attenuation image alone can not resolve all cracks. The
dark field image can, but typically over-emphasizes them and also
shows high signal near the border of the crystal. The main goal was
to segment all cracks and pores in the crystal.

Starting with getting an overview according to task T1, the root
cluster as seen in Figure 2a shows variations of segmentation la-
bels for nearly every pixel of the image. The second child cluster
of this root is the minimized top cluster in Figure 4a. Its first child
a1, currently selected, looks promising, where most of the air is
correctly labeled (in green), as well as a big portion of the crystal
is labeled as such (in yellow). Its child node a2 shows solid round
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Figure 4: GEMSe with the rock crystal dataset loaded. Clusters (a1-7) show an overview of the result ensemble. For the selected cluster a1,
the enlarged representative is shown in the detail view (b) along with exemplary label images (c) from that cluster. Histograms d1-d3 show
the distribution of γsvm for clusters (a2, a5, a6). Histograms d4-d6 show the distribution of the number of channels used in SVM for clusters
(a2, a3, a4). The filter set in d6 affects the cluster tree view (e), also clusters rated suitable and unsuitable are highlighted here, and their
parameter ranges are color-mapped accordingly in histograms d3 and d6.

structures labeled as cracks, which are also visible in the cluster
representative in the detail view Figure 4b and marked there with
arrows. These are not actual crack structures but unwanted artifacts.
We therefore want to determine the parameter causing these to be
wrongly labeled, an instance of task T2. A look at the histogram for
the number of considered SVM channels d4 for cluster a2 reveals
that all masks in it were produced using only one data channel. This
could be a hint that considering all datasets for SVM will lead to
results without these artifacts. Cluster a3, the sibling of a2, does not
show these artifacts. Its SVM channel histogram d5 indicates that
some masks in that node were also produced using only one data
channel, but significantly more used data available in both chan-
nels. To determine this correlation more closely, we filter for a high
SVM channel number in histogram d6 of cluster a4. The cluster tree
view in Figure 4e shows the filtered cluster representatives, which
are calculated only from matching label images. There, the artifacts
are not visible anymore.

When looking at the node a5 we see that it contains masks which
all over-segment the crystal label, and in addition show a large ring
artifact which should be labeled as air, marked with an arrow. The
corresponding γsvm histogram d2 shows high values in this cluster.
γsvm influences the width of the bell-shaped surfaces in the Gaus-
sian RBF kernel used for separation in SVM. The underlying gray
plot representing the distribution in the whole result set shows that
the majority of masks with an SVM gamma parameter in the upper
third of the range are contained in this cluster. Its sibling a6, where
the ring artifact is still visible but less pronounced, shows values
in the middle of the range with the corresponding histogram d3.
Histogram d1 for node a2, whose representative does not show the
large ring artifact, was produced using low γsvm values. For suit-
able results, γsvm must therefore be selected from the lower end of

the range. The threshold between suitable and unsuitable results, as
determined through interactive filtering, is at approximately 10−9.

For further refinement of the parameter ranges, as required by
task T3, we rate clusters using the interaction elements shown be-
low the detail image in 4b. Rated clusters are highlighted in the
cluster tree view in Figure 4e and on the axes of histograms d3
and d6. For γerw, the weight factor of the prior model in the ERW,
we determine through filtering that very low values are produc-
ing noisy results. Values higher than 1.1 result in well-suited label
images. Higher values of the parameter Csvm, allowing soft mar-
gins but penalizing wrongly classified points in the SVM, tend
to slightly over-segment the crystal. For the other parameters the
situation is less clear, with this sampling we could not determine
a direct correlation with a suitable segmentation outcome. One
possibility would be to re-sample these with fixed values for the
most influential parameters γsvm and nsvm. The best label image we
could find had parameters βerw = 85.38, γsvm = 6.98, Csvm = 0.044,
γsvm = 3.13×10−11 and nsvm = 2.

6.2.2. Synthetic K-Edge Data

K-Edge absorptiometry is a new scanning modality in X-ray com-
puted tomography devices, which is enabled by a new generation of
X-ray detectors in computed tomography (CT) devices [FNMA06].
The X-ray attenuation image from a conventional CT device can
provide high contrast, but typically limited information on the el-
emental composition. K-Edge absorptiometry delivers elemental
concentrations at the cost of a higher noise level and reduced reso-
lution. In our synthetic dataset shown in Figure 3a, the whole spec-
imen is modeled to have the same average attenuation value, and
three K-Edge absorptiometry images each give the concentration

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Fröhler & T. Möller & C. Heinzl / GEMSe

of a single element. The sampling here was done with a limited
segmentation framework using a fixed prior model derived from
thresholding instead of SVM, thus the SVM parameters do not have
ranges listed in Table 2.

In the cluster representative of the root node as shown in Fig-
ure 5(a1) every pixel has the difference marker color. The first
overview conclusion, solving task T1 is therefore that inside this
cluster there is not a single pixel with a consistent label through-
out all images. Looking at the two child nodes, we see a divi-
sion between one larger, homogeneous and well-segmented clus-
ter of images in a2 and another node a5 showing highly varying
results. Starting a correlation analysis task T2, the γerw parameter
histogram b2 for node a5 reveals that those images were all gener-
ated with low γerw values. For node a2 on the other hand the γerw
values are all higher as shown in the histogram in b1. Apparently
low settings of γerw deliver invalid results for this kind of dataset.
The exact threshold value is determined using the filtering controls.
Figure 5(b3) illustrates this with a filter interval which masks out
all images in node a5 while still matching all label images of node
a2, as can be seen in the updated cluster tree view 5(c).

Inspecting the object count histogram 5(d) for node a1 shows
that while most label images contain four objects, some have a sig-
nificantly higher object count. Filtering for a high object count, and
using the slice view to change the slice axis, it turns out that in
some label images noise lead to separate objects. The histograms
reveal that these result from using one PCA dimension and a low
γerw value near the threshold defined before. Adjusting the γerw fil-
ter to a threshold of approximately 1 results in the images with high
object count being filtered out. This conclusion can be drawn from
the scatter plot in 5(e). For T3, we have already identified that γerw
is the parameter with most influence on the suitability of a seg-
mentation in this case. The PCA dimension turns out to have no
direct correlation with the noise – there are label images using only
one PCA dimension and no noise. When completely filtering out
the noise we arrive at a threshold for γerw of 3.3. Further analysis
shows that a minor influence on noisy pixels also came from βerw.
For the modality weights, we could not determine a clear correla-
tion to the segmentation quality for this dataset. Very low values
of weights were however only sampled in regions of a problematic
γerw value. Re-sampling with suitable γerw values might provide
additional information.

Using this dataset, we also performed a detailed comparison to
Paramorama [PBCR11]. For this specific test we employed uni-
form sampling. This is the only sampling strategy supported by
Paramorama, as its interface is tailored to it through their param-
eter tree, which is splitting the parameter space hierarchically. In
contrast to the test datasets provided for Paramorama, we are fac-
ing a higher number of parameters for our synthetic dataset: Six
for our overall algorithm and three for each of the two modalities.
Even when only two different values per parameter are sampled,
212 = 4096 segmentation masks are generated. When loading this
ensemble in Paramorama, even with the relatively large amount of
samples there is no chance to determine a specific threshold be-
tween suitable and unsuitable results for the γerw parameter. The
only thing to be determined is that the lowest value results in un-
suitable masks, while the highest value produces suitable masks.

With our tool and using the latin hypercube sampling strategy, we
could easily determine a narrow range for this threshold with only
100 samples.

6.2.3. Hyperspectral Data

We also tested our tool on the hyperspectral SalinasA dataset
[VMV] (Figure 3c). It can demonstrate the functionality of our tool
even for a high number of channels, and when ground truth is avail-
able. The main goal here was to verify the robustness of our seg-
mentation pipeline with ground truth data. For that we calculate ob-
jective measures (dice coefficient, overall accuracy and kappa coef-
ficient) as additional derived output for each of our sampling result
and show it in the histogram view as shown in Figure 6b-d. By fil-
tering for the highest dice metric scores, we can easily navigate to
the best segmentation result. The magic lens proves to be very use-
ful in this case by showing the result in comparison to the ground
truth, as can be seen in Figure 6a. Our best result achieves an over-
all accuracy of 0.8 and only slightly lower kappa coefficient of 0.79
in our ensemble, using an approximate 2 % of the image pixels ran-
domly chosen as seed points. As a general rule values over 0.8 are
regarded as strong classification results [CG08]. Considering that
we are using a general segmentation framework for multi-channel
data not finetuned for hyperspectral data, and without even having
refined the sampling to the most suitable ranges, this is a very good
result. A very recent segmentation framework also based on the
ERW and tuned for hyperspectral images by Kang et al. [KLF∗15],
achieves an overall accuracy of 0.88 and a kappa coefficient of 0.87
applied on a larger part of the same dataset, using 2% of the pixels
as training points.

Figure 7 shows a summary of the ranges used for the most in-
fluential parameters in all three case studies. In each instance 5-10
positive and negative examples were ranked, the axis shows the re-
sulting coloring. For the SVM channels, we can see that consider-
ing a higher number typically causes better results for both Salinas
A and rock crystal dataset. Considering the mixed coloring at the
higher end for the Salinas A dataset, we can see that highest values
however do not necessarily improve the results. An SVM C some-
where above 0.354 needs to be chosen for the Salinas A dataset,
where for the rock crystal dataset the best value is clearly closer to
the minimum of 0.0078, values around 1 are not well-suited. γsvm
values around 10−7 produce suitable results for Salinas A, while
for the rock crystal dataset best results from choosing it nearer to
10−12.

7. Conclusion and Outlook

We presented GEMSe, a tool for the exploration of the parameter-
and result space of multi-channel, multi-dimensional image seg-
mentation algorithms. Three tasks were identified in collaboration
with domain experts: getting an overview over the space of poten-
tial results, analyzing correlations between input parameters and
output, and finding stable parameter regions producing suitable la-
bel images. Our case studies conducted together with domain ex-
perts show the suitability of our methods for these tasks. Our clus-
ter tree view was perceived as very helpful in solving the overview
task. While the cluster representative image was shown to provide

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Fröhler & T. Möller & C. Heinzl / GEMSe

1

2

3

4

5

1

2

3

c d

e

a b

Figure 5: Cluster view (a) of the synthetic K-Edge dataset. Histogram b1 shows the γerw distribution of node a2, b2 that of a5, b3 demonstrates
the filtered histogram, (c) the resulting cluster tree view. Histogram (d) shows the object count for node a1, the scatterplot (e) correlates γerw
(x-axis) to the object count (y-axis).
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Figure 6: (a) label image with best kappa value, the ground truth
is shown in the magic lens for comparison. (b-d) objective measure
histograms.
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Figure 7: Comparison of ranked parameter ranges for all case
studies.

insight into the cluster variation, there is a need for researching fur-
ther methods of representing a cluster, for example through a scale
encoding the number of differences for each voxel. Linked His-
tograms and filtering have proven to be successful for analyzing
the correlations between input parameters and output, as shown in
Section 6.2.1 and Section 6.2.2. Finding stable parameter regions,
at least for the most influential parameters, was shown to be suc-
cessful through our rating, axis coloring and filtering interactions.
As can be seen in Figure 7 different modalities require different
parameter settings. Hence, there is a need for GEMSe in helping
practitioners find these settings without the help of segmentation
experts. Future work could look further into the multi-channel as-
pect, for example through integrating image fusion for comparison
visualizations, or through evaluating multiple different segmenta-
tion algorithms at once. The segmentation pipeline we employed
can produce a probabilistic result, another promising area for fu-
ture work is incorporating information on the segmentation uncer-
tainty, which these probabilistic results give access to. Regarding
clustering, one could investigate ways to combine clustering by re-
sult similarity as we have applied here, with clustering or splitting
by parameter values, or perform dimensionality reduction instead
of clustering.
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