Matrix Reordering
by Hypertree Decomposition

Wilfried Gansterer*

Thomas Korimort'
AURORA TR2003-19

*Department of Computer Science and Business Informatics
University of Vienna
Lenaugasse 2/8, A-1080 Vienna, Austria
e-mail: wilfried.ganstererQunivie.ac.at

fInstitute for Applied Mathematics and Numerical Analysis
Vienna University of Technology

Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
e-Mail: korimort@aurora.anum.tuwien.ac.at

Supported by the SFB AURORA of the Austrian Science Fund FWF.

Abstract

Recently, in the area of constraint satisfaction a new hypergraph decomposition
technique has been invented by Gottlob et al. [7] called hypertree decomposition.

In this report hypertree decomposition is applied to matrix reordering. A new
structure of a given matrix is obtained by reording rows and columns according
to a special hypertree decomposition computed for a hypergraph related to the
non-zero structure of the matrix.

A comparison with well-known matrix reordering techniques like reverse Cuthill-
McKee and approximate minimum degree reordering is given.

Contents

Introduction
Objectives
1 Matrix Reordering Techniques
1.1 Cuthill-McKee Reordering
1.2 Column Approximate Minimum Degree
Ordering
2 Hypertree Reordering
2.1 Hypertree Decomposition
2.2 Computing Matrix Reorderings
from Hypertree Decompositions
2.3 Comparison
3 Numerical Experiments
3.1 The Implementation
3.2 The Test Matrices
3.3 The Reorderings Produced
4 Summary e e e

Introduction

In this report standard reordering techniques for sparse matrices (see Chapter 1)
are compared with a new technique based on hypertree decomposition (see Chap-
ter 2).

Given a sparse matrix A, an orthogonal matrix C'T of column permutations and
an orthogonal matrix R of row permutations are constructed. These row and
column permutations define a reordering of the matrix A:

A'= RACT.

If A is symmetric and the reordering is required to preserve symmetry, then
R = C has to be chosen.

Objectives

This report compares the effectiveness of various techniques for reducing the
bandwidth of a given sparse matrix. A forthcoming project will also investigate
a different, but related objective—decoupling or “almost” decoupling of a given
sparse matrix. Efficient approaches to achieve one or even both of these objectives
can be utilized in many situations, such as in a new framework for computing
approximate spectral information of symmetric matrices [2].

Bandwidth Reduction
The bandwidth b of a matrix A is defined as
b:=max{|i—j|,|A(4,j)|#0}, i=1,2,...,n, j=1,2,...,n.

The bandwidth of the reordered matrix A’ is . A bandwidth reduction is
achieved, whenever b’ < b. Obviously, the goal is to reduce the bandwidth as
much as possible, such that ' < b.

Chapter 1

Matrix Reordering Techniques

Many reordering techniques for sparse matrices have been developed, such as
minimum degree, approximate minimum degree reordering [6], etc. This report
deals primarily with techniques for reducing the bandwidth or the profile of a
given matrix, and relevant methods are summarized in the following.

Not all reordering methods are primarly designed for reducing the bandwidth of a
sparse matrix. Some of them are intended to reduce the profile p of a symmetric
sparse matrix, i.e.,

n

f:= Z (1 —g(i)), where

=1
g(i) == min {j|A®i,j) £0Vji=i}, i=1,2...,n

Although a profile reduction usually leads to a reduction in bandwidth, it is pos-
sible that a near minimum profile corresponds to a large bandwidth, for example,
if there is a single row with a nonzero element far away from the diagonal.

With respect to the new matrix reordering method based on hypertree decompo-
sition (hypertree reordering) we can define a single sided profile as follows:

n

f:= Z (g(¢) — 1), where

i=1
g(i) = max {j|A(i,7) 0V j=1i}, i=12,...,n.

1.1 Cuthill-McKee Reordering

The Cuthill-McKee (CMK) and the reverse Cuthill-McKee (rCMK) algorithm |3,
5, 10, 11] are based on the simple technique of traversing the adjacency graph of
the matrix. CMK and rCMK produce a row respectively column reordering of
the matrix by traversing the nodes of the graph in a breadth first manner. The
nodes of each level set are ordered with respect to their degree.

4

1.2 Column Approximate Minimum DegreeOrdering)

1.2 Column Approximate Minimum Degree
Ordering

The approzimate minimum degree (AMD) ordering algorithm [1] for a symmetric
matrix A produces a reordering P such that factorizing the resulting permuted
matrix produces much less fill-in than factorizing the original matrix A. It is
based on the quotient graph for matrix factorization that allows to obtain compu-
tationally cheap bounds for the minimum degree of the nodes of the corresponding
graph.

Column approzimate minimum degree (COLAMD) ordering is a column ordering
method based on a symbolic LU factorization of a non-symmetric matrix A [4].
The column ordering @ resulting from COLAMD, which is based solely on the
nonzero pattern of A, is designed such that AQ) tends to have sparser LU factors
than A, regardless of the subsequent choice of the row interchanges P from stan-
dard partial pivoting. Also, the Cholesky factorization of (AQ)T AQ tends to be
sparser than that of AT A.

Although minimum degree ordering algorithms in general do not result in a band-
width reduction of A, the corresponding reorderings are shown in Chapter 3 for
several reasons: (i) COLAMD is a onesided reordering and therefore it does not
preserve symmetry (similar to the more efficient variant of hypertree reordering);
(i7) it forms the basis of the symmetric approzimate minimum degree (SYMAMD)
ordering, which is not applicable to the test cases of this report that are not pos-
itive definite; (i7i) in further research activities, we are planning to investigate
the applicability of hypertree reordering to the computation of fill-in reducing
reorderings when factorizing non-symmetric linear systems.

Chapter 2

Hypertree Reordering

2.1 Hypertree Decomposition

Hypertree decomposition is a decomposition method for hypergraphs, which was
invented by Gottlob et al. [7].

Definition 2.1.1 (Hypertree Decomposition) A hypertree decomposition of
a hypergraph G = (V, E) is a triple (T, x, \) such that:

1. T=(N,A) is a (rooted) tree,

T, is the subtree from T, which is rooted at n,

x: N — P(V),

A: N — P(E),

Vre E dneN:rCx(n),

Vo € V' the subgraph of T induced by {n € N|v € x(n)} is a subtree of T,
Vn € N :x(n) CU,enm

8. Vn € N : x(To) "U,erpmy T = x(n).

NS v o e

The width of a hypertree decomposition of G is w = max,ey |A(n)].

One can see from the definition that a hypertree decomposition is essentially a
decomposition tree which additionally satisfies Axiom 8. This axiom has been
added to the definition of a decomposition tree to be able to prove the poly-
nomiality of the fixed width algorithm to compute hypertree decompositions of
minimal width w.

The exact algorithm for computing hypertree decomposition has only polynomial
running time, if one fixes the width to a constant k£ in advance. Then the space
and time complexity of the algorithm is about Q(n*) where n is the problem size
and c is a constant. This motivates the development of a heuristics to compute
hypertree decompositions as is done in [8]. An example for a hypertree decom-
position is given in Figs. 2.1 and 2.2. The hypergraph to be decomposed is given

6

2.2 Computing Matrix Reorderingsfrom Hypertree Decompositions 7

in Fig. 2.1. A hypertree decomposition for the hypergraph in Fig. 2.1 is given in
Fig. 2.2. Note that for the sake of readability, all variables from the hyperedges
not in the y-set are replaced by an underscore.

Figure 2.1: The hypergraph to be decomposed by a hypertree decomposition.

E(2,4,6,10)

]B(1,3,4), E(24,_,) \

F(5.6,7,8)

G(5,7,12)

Figure 2.2: A hypertree decomposition of the hypergraph in Fig. 2.1.

2.2 Computing Matrix Reorderings
from Hypertree Decompositions
This section deals with methods for computing a matrix reordering from a hy-

pertree decomposition. Given a hypertree decomposition the methods proceed
recursively from the root as follows. Pass to the root the set of all hyperedges

8 2. Hypertree Reordering

procedure compute_row_permutation(n, notyetchosen, permulist)
n ... a hypernode of the hypertree under consideration.
notyetchosen ... contains the rows (hyperedges)
that have not yet been chosen.
permulist ... contains sets of rows (hyperedges)
that constitute the row permutation.
Build the set p that contains the hyperedges in notyetchosen
that are covered by x(n).
Append p to permulist.
Let notyetchosen = notyetchosen — p.
for each son n; of n do
Call compute_row _permutation(n;, notyetchosen, permulist).
next
end

Figure 2.3: Recursive procedure for computing a row partitioning.

of the hypergraph. Collect all hyperedges contained in the y-set of the root and
remove them from the set of hyperedges. Pass the remaining set of hyperedges to
the sons of the root and construct in this way an ordered partition of all the hy-
peredges, where the order of the partition set is given by the depth first traversal
of the hypertree decomposition. Concerning the matrix under consideration we
obtain a partitioning of the rows into blocks. Since the partition sets are ordered,
a row permutation up to row order inside one row partition is introduced. For
each row partition set we determine a corresponding column partition set. This
set is computed during the computation of the row partition set and consists of
all columns that correspond to non-zero entries in one of the rows in the row
partition set and have not yet been assigned to a row permutation set.

In Fig. 2.3 the construction of the row partition permulist for a hypergraph
H = (V, F) from a hypertree T is shown. To initiate the construction of the row
partition we call

notyetchosen = E.
permulist = ().

compute_row_permutation(root(T), notyetchosen, permulist).

After processing this sequence of calls, permulist is a set of sets containing hyper-

2.3 Comparison 9

procedure compute_column_permutation(permulist)
permulist ... contains sets of rows (hyperedges)

that constitute the row permutation.
Let notyetchosen contain all columnindices (hypernodes).
Let permulist2 be the empty set to be intended

to contain sets of columnindices (hypernodes).
for each p in permulist do

Let v be the set of hypernodes in notyetchosen

that occur in elements of .

Let notyetchosen = notyetchosen — v.

Append v to permulist2 and

let v be the column partition corresponding to .
next
return permulist2.
end

Figure 2.4: Procedure for computing a column partition set.

edges (rows), which will be used to compute a column partition. The computation
of the column partition works as given in Fig. 2.4.

By doing the following calls to procedures we complete our set of row partitions
with a set of corresponding column partitions:

permulist2 = compute_column_partition(permulist).

By using the above procedures an ordered partitioning of rows and columns of the
matrix is returned. This partitioning may be interpreted as a unique permutation
modulo the exchange of rows and columns inside a partition set.

2.3 Comparison

How does the effort for computing hypertree reorderings relate to the effort for
computing (r)CMK? The effort for (r)CMK usually consists in a short time for
finding a point to start the breadth first search from, followed by the breadth
first search itself. This is rather cheap compared to the effort for computing
a heuristic hypertree decomposition. One can see in the section “Reorderings
Produced” tables with times and options used by the heuristic for computing

10 2. Hypertree Reordering

hypertree decompositions. By adjusting the optional settings of the heuristic,
one can choose between computing times of days or minutes. For our examples
it was tried to reduce the computing time to minutes on common PC hardware.
From extended experiments it turned out, that either the algorithm is able to
find a good hypertree decomposition in a few minutes or it would find no good
decomposition at all.

The timing results for the test instances are all in the range of less than five
minutes on a Pentium 4 machine with 512 MB of main memory running at 2
GHz. Detailed infos on the timing can be found in the corresponding chapters
describing the test cases.

The quality of the solutions returned can be measured by assigning the result to
one of two classes. Either a rather continuous profile is obtained or some big block
destroys the continuity of the profile. Which of the two cases actually happens
can be decided already by using (computationally) inexpensive methods.

Chapter 3

Numerical Experiments

This chapter summarizes some numerical results.

3.1 The Implementation

All experiments concerning hypertree decomposition were carried out in the fol-
lowing way: First a matrix was generated and saved in a sparse matrix file format,
which is structured as follows.

<dimension of matrix>
<row index 1> <column index 1> <value of entry 1>

<row index m> <column index m> <value of entry m>

The first line contains the dimension of the matrix. Every consecutive line con-
tains the row index and the column index of an element of the matrix as well as
its value.

The sparse matrix file can be converted to a hypergraph, which can be used as
an input for hypertree decomposition. This conversion consists of the following
steps. Let the column indices of the matrix be the nodes of the hypergraph.
For each row generate a hyperedge by simply including all column indices that
correspond to non-zero entries in the row under consideration. The corresponding
code sparse2hg.cc is given below.

#include <iostream>
#include <map>
#include <list>
#include <unistd.h>

using namespace std;
int main(int argc, char **argv)
{ int c, transpose = 0;

while((c = getopt(argc, argv, "t")) != -1)
{ switch(c)

11

12 3. Numerical Experiments

{ case ’t’: transpose = 1; break;
default: break;

}
}
long n,m,size = 0,k,1;
double d;
cin >> n;
m = n;
bool *test
for(long i

new bool[n+1];
0; i <= n; i++)test[i] = false;

map<long, list<long> > matrix;

for(; 'cin.eof();)

{ cin > k >> 1 > d;
list<long> liste;
if(!cin.eof ())

{ if (transpose == 0)

{ matrix.insert(pair<long,list<long> >(1,liste));
map<long, list<long> >::iterator it = matrix.find(1);
test[1] = true;
it->second.push_back(k);

}

else

{ matrix.insert(pair<long,list<long> >(k,liste));
map<long, list<long> >::iterator it = matrix.find(k);
test[k] = true;
it->second.push_back(1l);

cout << n << endl;
map<long, list<long> >::iterator f2 = matrix.begin(), 12 = matrix.end();
for(; £f2 !'= 12; f2++)
{ list<long>::iterator f1 = f2->second.begin(), 11 = f2->second.end();
cout << f2->first << " " << f2->second.size();
for(; f1 !'= 11; fl++)cout << " " << (xf1);
cout << endl;

}
for(long i = 1; i<n; i++)if(test[i] == false)cout << i <<" 1 "<<i<<endl;
delete test;

After being converted to a hypergraph the new method can be applied with
different options to the matrix. If option —b is used, the new method yields as
an output two permutation vectors for the hypergraph, i.e., the input matrix, in
the following simple file format:

//Hyperedgepermutation:
<old index 1> <new index 1>

3.2 The Test Matrices 13

<o0ld index n> <new index n>
//Hypernodepermutation:
<old index 1> <new index 1>

<old index n> <new index n>

For each row index there is exactly one entry in the section “Hyperedgepermu-
tation” of the file and for each column index there is exactly one entry in the
section “Hypernodepermutation”.

The permutation file together with the matrix file can be used to generate visual
representations using MATLAB.

3.2 The Test Matrices

The experiments of this report were performed using three types of test matrices:

1. Random matrices from a special generator (see Section 3.2.1).
2. Random matrices from MATLAB (see Section 3.2.2).

3. Structured matrices motivated by quantum chemistry applications (see Sec-
tion 3.2.3).

3.2.1 Random Matrix Generator

For creating the first type of test matrices the following random matrix generator
was developed:

#include <iostream>
#include <stdlib.h>
#include <limits.h>
#include <set>

using namespace std;

long ran(int n)

{ double d = (double)random();
d /= 2147483648;
d *= n;
return long(d);

14 3. Numerical Experiments

}

int main()
{ srandom(time(0));
long n, maxsize, trials;
cin >> n >> maxsize >> trials;
if (maxsize > n)maxsize = n;
set<long> x[n],y[n];
cout << n << endl;
for(long i = 0; i < trials; i++)
{ long j,k;
j = ran(n);
k = ran(n);
if (x[j].size() < maxsize && y[k].size() < maxsize)
{ x[j].insert(k);
y[k].insert(j);
x[k] .insert(j);
y[j].insert (k) ;
}
}
for(long i = 0; i < n; i++)
{ set<long>::iterator f = x[i].begin(), 1 = x[i].end();
for(; £ '= 1; f++)cout << i+l << " " << *f+1 << " 1" << endl;
}

return 0O;

This generator produces symmetric matrices of arbitrary size, whose maximum
number of non-zero entries in each row and in each column is bounded by a given
constant.

One can pass the size of the matrix, the bound of the non-zero entries in each
row/column and the number of trials. In each trial a new pair of row and column
indices is randomly generated. If the index pair can contain a non-zero element
without hurting the non-zero bound, then the corresponding element of the matrix
is set to one, otherwise the next trial—if any—is carried out.

The first series of 5 matrices has a bound of 3 for the maximum of non-zeros
in each row/column and 300 trials are done. The next series of 5 matrices also
has 3 as a bound for the non-zeros of and makes 10, 000 trials. Compared to the
first series, this series contains more entries and constitutes a symmetric matrix
whose adjacency graph is (almost) 3-regular. This kind of matrices idecompose
well and the resulting structure after reordering is an almost triangular matrix.
Choosing the bound of non-zeroes in each row and column to be 5 and using
100,000 trials increases the connectivity of the matrices considerably and the
matrix after reordering does not look very promising.

3.2 The Test Matrices 15

3.2.2 MATLAB’s Random Matrices

The second series of test matrices was generated using MATLAB’S command
sprandsym, which produces sparse symmetric random matrices. The matrices
have a density of 0.03 and 0.05, which is the number of non-zeros in relation to
the number of elements in the matrix. In contrast to the matrices in the first
series, there is no restriction on the number of elements in each row and column.
It turns out that the computation time required to compute solutions to problems
based on these matrices is similar to the computation time for the first test series.

3.2.3 Structured Matrices from Applications

The last class of matrices was motivated by a single symmetric matrix from
quantum chemistry. Since this matrix could not be decomposed sufficiently well
because of its “density”, its structural features were used to constructed a new
matrix, which can be decomposed.

The original matrix is symmetric and can be divided into four blocks, where
the upper left block and lower right block are square. The upper left block is
approximately four times the size of the lower left block. The lower right block
is essentially a random symmetric matrix. In the upper left block the dominant
elements of the matrix are concentrated around the main diagonal. In the upper
right block, the dominant entries are also concentrated around the main diagonal.
The abstraction of this matrix was a diagonal matrix as its upper left block, a
random matrix as its lower right block, and a “diagonal” matrix as its upper right
block as can be seen in Fig. 3.2.3.

The original symmetric matrix has a size of 2176 x 2176, whereas the test matrix
used is of size 1000 x 1000 and has a much lower density than the original matrix.

The following generator scfstep.cc performs this task. One can pass as param-
eters the size of the matrix and the size of the four blocks of the matrix as well
as the density of the random block.

#include <iostream>
#include <stdlib.h>
#include <limits.h>
#include <set>

using namespace std;

long ran(int n)

{ double d = (double)random();
d /= 2147483648;
d *= n;
return long(d);

16

3. Numerical Experiments

300

400

500

600

700

800

900

1000

. o e 1
0 100 200 300 400 500 600 700 800 900 1000

nz = 2992

Figure 3.1: The abstraction of the matrix from quantum chemistry

int main()
{ srandom(time(0));

long n, m, trials;
double ratio;
cin >> n >> m >> trials;
if(m > n)m = n;
set<long> x[n],y([n];
cout << n << endl;
for(long 1 = 0; 1 < m; 1++){ x[1].insert(1l); y[1].insert(l); }
ratio = (n-m)/double(m);
for(long r = 0; r < m; r++)
{ long index = mt+long(ratio*r);
x[r].insert(index) ;
y[index] .insert(r);
x[index] .insert(r);
y[r].insert(index);
}
for(long i = 0; i < trials; i++)
{ long j,k;
j = ran(n-m);
k = ran(n-m);
x[j+m] . insert (k+m) ;
y [k+m] . insert (j+m) ;
x[k+m] . insert (j+m) ;
y[j+m] . insert (k+m) ;
if(i > 0 && i <= m){ x[i].insert(i); y[i].insert(i); }

3.3 The Reorderings Produced 17

}

for(long i = 0; 1 < nj; i++)

{ set<long>::iterator f = x[i].begin(), 1 = x[i].end();
for(;f!=1;f++)cout << i+1 << " " << *f+1l << " 1" << endl;

}

return O;

}

3.3 The Reorderings Produced

The test instances obey the following naming system: gss—100—3—300.x denotes
the z-th instance in a series of instances generated using the random generator
producing (almost) regular symmetric matrices of size 100 x 100. The matrices are
almost 3-regular and 300 trials have been used. Similarly gss — 100 —3 — 10000.x
matrices have been generated with 10000 trials. gss—100—5—100000.x matrices
are almost 5 regular 100 x 100 matrices generated with 100000 trials. sprs—100—
y.x matrices have been generated using MATLAB’s command sprandsym. Those
matrices are symmetric 100 x 100 matrices having a density of y percent. Finally
scfstep — 1000 — 800 — 300 denotes the quantum chemistry matrix abstraction
of size 1000 x 1000 with the upper left block of size 800 x 800. The lower right
block will be filled with 300 trials.

The options used for calling the new reordering algorithm for different instances
were the following: The option —b just indicates to the heuristic to output per-
mutation vectors rather than hypertree decompositions. The option —u indicates
to the heuristic to use the “single node split” split procedure, when searching for
a separator. This method works by isolating single nodes in the hypergraph from
the rest of the hypergraph. The second option used in the context of the test cases
in this report is —d which means: use dual vertex connectivity. In this method
the dual graph of the hypergraph is computed. Then the vertex connectivity of
the dual graph is determined. One can give a threshold for the size of a cut which
is feasible with the option —wvnn, where nn is the size of a minimum vertex cut
with which we are satisfied. For a more detailed exposition on the subject consult
8, 9].

The running times listed in the last column in each table were measured on a
dual Pentium 4 system running at 2 GHz, having 512 MB of RAM. The operating
system on this machine is SuSE Linux 8.1.

3.3.1 Generated Random Matrices

This series of matrices originates from the C++ - random generator producing
(almost) regular matrices.

18 3. Numerical Experiments

Name of test case | Options | Runtime [s]
gss-100-3-300.1 budv4 109
gss-100-3-300.2 budv4 36
gss-100-3-300.3 budv4 32
gss-100-3-300.4 budv4 35
gss-100-3-300.5 budv4 32
gss-100-3-10000.1 | budv4 173
gss-100-3-10000.2 | budvb 28
gss-100-3-10000.3 | budvb 49
gss-100-3-10000.4 | budvb 39
gss-100-3-10000.5 | budvbd 25
gss-100-5-100000.1 | budvl8 112
gss-100-5-100000.2 | budv18 90
gss-100-5-100000.3 | budv20 162
gss-100-5-100000.4 | budv20 119
gss-100-5-100000.5 | budv20 79

Whenever the run times in the table are significantly higher than the standard
deviation and average suggest, more time has been spent on computing solu-
tions to linear programs arising in connection with the computation of the vertex
connectivity of a hypergraph. Usually, higher running times indicate a higher
connectivity of the hypergraph under consideration. One can see in Figs. 3.2-3.5
that the gss-100-3-x.y instances are well decomposable. The profile ist contin-
uous and stays close to the diagonal. In Figs. 3.6-3.7 there are already big blocks
that cannot be decomposed very well.

3.3.2 MATLAB’s Sparse Random Matrices

This section contains results for test matrices generated using MATLAB’s function
sprandsym.

Name of test case | Options | Runtime [s]
sprs-100-3.1 budv10 81
sprs-100-3.2 budv10 71
sprs-100-3.3 budv10 78
sprs-100-3.4 budv10 71
sprs-100-3.5 budv10 81
sprs-100-5.1 budv10 379
sprs-100-5.2 budv10 231
sprs-100-5.3 budv10 220
sprs-100-5.4 budv10 167
sprs-100-5.5 budv10 171

3.3 The Reorderings Produced

20

80f- *

100

100

a0}

60

gss—100-3-300.1.dat

X R
R '
o
8 e
. ‘.
L
. -~ L4
.
PRRPETS .
¢ '

201,

40|’

60

100

40

60

80

100

row-column permutations

80

row-row permutations

Tl) _
. d)
. ‘L “
R
.o 4
T .. L
-' “.‘t‘.
. . & .
. i
s 7
. .
. b 1)
. *
L F Y
4 . .

20

80

100

40 A

60| .

50 100
nz = 247

rev. CuthillMcKee

201",

80

100

20
401,-; 5

60| -

0 50

nz = 247

Figure 3.2: Reorderings for gss-100-3-300.1

gss—-100-3-300.5.dat

wof, "
a0
60f".

8of-

201~

40¢°

60

100

60

80

100

row-row permutations

row-column permutations

80| "

A . ¥ 20
e . '-l"" ..
e 401, o
L v . B
' . i DA .
+ . S0 60 :
. s . .
w 3 . g
Tag et e 801", Lot
a . 100 e

100

401" .

20fs " 20} = IR _
40| - " ’
ol -'-'- e y o
so| i -
100L= T e

nz =261

50 100

Figure 3.3: Reorderings for gss-100-3-300.5

19

20

20 o

60 |-

80

100t

100 b

40}

gss—100-3-10000.1.dat

3. Numerical Experiments

row-column permutations

20
40

60|+

row-row permutations

100 L=

0 50
nz =299

100

rev. CuthillMcKee

100

201"

100

4f "

60| *

80f .

nz =299

Figure 3.4: Reorderings for gss-100-3-10000.1

gss—100-3-10000.5.dat

100

row-row permutations

row-column permutations

@ “ron
2017w, PLIS 20| [
r.;.-t""

60

100 ke~

80f roo ‘_‘,f__.__-.

40

100 S e

60f -

8ot -

100

50
nz =299

100

col. appr. MD

100

204" e
~ -
dof7 e T
60--‘ ,._‘ ": .
]
100> B

nz =299

Figure 3.5: Reorderings for gss-100-3-10000.5

3.3 The Reorderings Produced 21

row-row permutations row—column permutations

gss—-100-5-100000.1.dat

-

0 50 100
nz = 499 nz = 499

100

rev. CuthillMcKee col. appr. MD

100 ot

50
nz = 499

Figure 3.6: Reorderings for gss-100-5-100000.1

row-row permutations row—column permutations

20f*
401"
60}

80} °

- 100 -
20 100 100

40

60(-

rev. CuthillMcKee

80 :-

100 DIPERRT o e 13
0 50 100

0 50 100
nz = 499

Figure 3.7: Reorderings for gss-100-5-100000.5

22 3. Numerical Experiments

Whenever the running times in the table are significantly higher than the stan-
dard deviation and average suggest, more time has been spent on computing
solutions to linear programs arising in connection with the computation of the
vertex connectivity of a hypergraph. Usually, higher running times indicate a
higher connectivity of the hypergraph under consideration. One can see in Figs.
3.8-3.11 the results of reordering the sprs-100-x.y matrices. The sprs-100-3.y
matrices are still decomposable quite well and yield rather continuous profiles, al-
though these instances seem to be harder to decompose than the gss-100-3-x.y
instances. The sprs-100-5.y instances are not well decomposable any more.
One can see in the corresponding figures that there are big blocks, that destroy
the profile.

3.3.3 Matrices from Quantum Chemistry

This section summarizes test results for the matrix class derived from the matrix
from quantum chemistry.

Name of test case Options | Runtime [s]
scfstep-1000-800-300 | bu 36

The run time is significantly lower than in the other test cases, because the —d
option was not used this time. Therefore no time was spent on computing the dual
vertex connectivity of a hypergraph. Only the simplest decomposition method
available was used (option —u).

3.3 The Reorderings Produced

sprs—100-3.1.dat

20

40

60

80

100

row-row permutations

row-column permutations

20

40

60

80

100

=
}:':s-

100

Figure 3.8: Reorderings for sprs-100-3.1

o

20

40

60

sprs—100-3.5.dat

80

100

o %, L 3.0 2 °
100 20

40
60
80

100

row-row permutations

row-column permutations

20

40

60

80

100

100

col. appr. MD

20

40

60

80

RS '._';;.; o

100
0

Figure 3.9: Reorderings for sprs-100-3.5

24 3. Numerical Experiments

row-row permutations row—column permutations
0 g - 0
*e s w . o

20 o " eZ:
LR I

20 [o0

60

sprs—100-5.1.dat

80

100

100

0 :
20 20 :
404 40(
60 60 4
A
Se
80 80/ .3
i
100 100 O
100
nz = 484
Figure 3.10: Reorderings for sprs-100-5.1
g g p
row-row permutations row—column permutations
0
20
40
60
o sprs—100-5.5.dat 80
A BTN R
e Jteatten s ’-.. - 100 -
200, o el peste T3
AR L I 100
o o o Je -
b ." ‘:C. ‘. A .;".v‘ ..:
el . 5
a0rLs Lase R i
o ,:.-y.‘. .- ua'(‘:...
60". .o“..‘ e ."‘ . o
ool G 23d ceeva Sl
N SR T ¥y
e e
e N, e lmadts
1008 2 ot”¢ o me? .
0 50 100
nz =484

100 = 100 == oL ° .
0

Figure 3.11: Reorderings for sprse-100-5.5

3.3 The Reorderings Produced 25

row-row permutations row-column permutations
0 — 0 y
2
200 200} a4
400(400
600 600 ?
scfstep-1000-800-300.dat i
0 800 800 !
200 1000 : 1000
0 500 1000 0 500 1000
nz = 2992 nz =2992
400
600
rev. CuthillMcKee col. appr. MD
800 o 0 -
2 \’}.
1000
0 500 1000 200

nz = 2992
400

600

800

1000
0 500

nz = 2992 nz = 2992

Figure 3.12: Reorderings for scfstep-1000-800-300

Chapter 4

Summary

This report compares the new hypertree reordering method with the reverse
Cuthill McKee algorithm and the column approximate minimum degree ordering
algorithm. Whereas column approximate degree ordering seems not to be able
to cope with the test instances very well, reverse Cuthill McKee yields good re-
sults considering the density of the instances. Other methods were not taken into
consideration since their primary purpose is not profile reduction or single-profile
reduction.

If one compares the single sided profiles of reverse Cuthill McKee and of hyper-
tree decomposition, it turns out that the profile of the hypertree decomposition
reordering is much smaller than the profile of reverse Cuthill McKee. This might
be due to the fact that the single-sided profile allows a matrix to have non-zeroes
everywhere below the diagonal. Reverse Cuthill McKee makes symmetric permu-
tations and therefore the profile fulfills some stronger requirement than being a
good single-sided profile.

From the randomly generated matrices it can be conjectured that the decom-
posability of the matrices follows a threshold phenomenon, where the transition
seems to be between 3 and 6 at least for 100 x 100 matrices. For larger matri-
ces, this threshold might depend on the matrix size. Furthermore it is not clear
whether the transition will still be tight enough (sigmoidal) to be considered a
threshold transition.

Further research will be carried out to make the hypertree decomposition method
available for very large matrices.

26

References

1]

P.R. Amestoy, T. A. Davis, I.S. Duff: An Approximate Minimum Degree
Ordering Algorithm. STAM J. Matrix Anal. Appl. 17 (1996), pp. 886-905.

[2] Y. Bai, R. M. Day, W.N. Gansterer, R. C. Ward: New Algorithmic Tools for

9]

[10]

[11]

Electronic Structure Computations. In Proceedings of the Fourth IMACS
Symposium on Mathematical Modelling (4th MATHMOD), Vienna Univer-
sity of Technology, Vienna, Austria, 2003.

E. H. Cuthill, J. McKee: Reducing the Bandwidth of Sparse Symmetric Ma-
trices. In Proceedings of the 24th Nat. Conf. ACM, 1969, pp. 157-172.

T. A. Davis, J. R. Gilbert, S.1. Larimore, E. G. Ng: A Column Approximate
Minimum Degree Ordering Algorithm. Technical Report TR-00-005, Depart-
ment of Computer and Information Science and Engineering, University of
Florida, 2000.

A. George, J. W. H. Liu: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

A. George, J.W.H. Liu: The Evolution of the Minimum Degree Ordering
Algorithm. SIREV 31 (1989), pp. 1-19.

G. Gottlob, N. Leone, F. Scarcello: Hypertree Decompositions and Tractable
Queries. In PODS’99, Philadelphia, 1999.

T. Korimort: Heuristic Hypertree Decomposition. Ph.D. dissertation, Vi-
enna University of Technology, 2003.

T. Korimort: Heuristic Hypertree Decomposition. Technical Report
AURORA-TR2003-18, Vienna University of Technology, 2003.

J.W.H. Liu, A.H. Sherman: Comparative Analysis of the Cuthill-McKee
and the Reverse Cuthill-McKee Ordering Algorithms for Sparse Matrices.
SINUM 13 (1976), pp. 198-213.

Y. Saad: Iterative Methods for Sparse Linear Systems. PWS Publishing Co.,
Boston, 1996.

27

