Preprint
Published

version: http://dx.doi.org/10.1142/S0218843016500027

International Journal of Cooperative Information Systems
© World Scientific Publishing Company

APPLICATION OF DYNAMIC INSTANCE QUEUING TO
ACTIVITY SEQUENCES IN COOPERATIVE BUSINESS PROCESS
SCENARIOS

JOHANNES PFLUG

Faculty of Computer Science, University of Vienna, johannes.pflug@Qunivie.ac.at
Vienna, Austria

STEFANIE RINDERLE-MA

Faculty of Computer Science, University of Vienna, stefanie.rinderle-ma@univie.ac.at
Vienna, Austria

Received (Day Month Year)
Revised (Day Month Year)

The optimization of their business processes is a crucial challenge for many enterprises.
This applies especially for organizations using complex cooperative information systems
to support human work, production lines, or computing services. Optimizations can touch
different aspects such as costs, throughput times, and quality. Nowadays, improvements
in workflows are mostly achieved by restructuring the process model. However, in many
applications there is a huge potential for optimizations during runtime as well. This holds
particularly true for collaborative processes with critical activities, i.e., activities that
require a high set up or changeover time, typically leading to waiting queues in instance
processing. What is usually suggested in this situation is to bundle several instances
in order to execute them as a batch. How the batching is achieved, however, has been
only decided on static rules so far. In this paper, we feature Dynamic Instance Queuing
(DIQ) as an approach towards clustering and batching instances based on the current
conditions in the process, e.g., attribute values of the instances. Specifically, we extend
our previous work on applying DIQ at single activities towards a queuing approach that
spans activity sequences (DIQS). The approach is evaluated based on a real-world case
study from the manufacturing domain. We discuss limitations and further applications
of the DIQ idea, e.g., with respect to collaborative human tasks.

Keywords: Business Process Management Systems; Process-aware information systems;
Process analysis; Process optimization; Cooperative Information Systems

1. Introduction

Enterprises usually regard Business Process Management as an enabler for optimiz-
ing their business processes. The streamlined and effective implementation of their
business processes can constitute the key advantage over their competitors in the
market. As business processes can become very complex consisting of several hun-
dreds of business activities with a highly collaborative character during design time

rinderas8
Schreibmaschinentext
Preprint
Published version: http://dx.doi.org/10.1142/S0218843016500027

rinderas8
Rechteck

L‘November 7 2015 16:26 WSPC/INSTRUCTION FILE

pplication_0f_DIQ7_t0_Activity_Sequences

2 Johannes Pflug, Stefanie Rinderle-Ma

Process type schema S,,:

Prepare
patient

Prepare Integrate Autom.
apparatus sample test

[aut=TRUE

Validate
results

|AActivated} Running v Completed I

Fig. 1. Laboratory Process in a Hospital T

as well as serve as basis for several thousands of active process instances during run
time (e.g., in the automotive industry), their manual optimization is no option.
In turn, the provision of (tool-supported) optimization strategies during design and
run time is crucial.

1.1. Motivation

Business processes are captured by process models following a meta model such
as BPMN at design time. Figure [I] depicts the process model for a laboratory
process in a hospital (slightly simplified case study taken from Ij:H) The interaction
of a high number of solitary human tasks constitutes the overall process. Based
on process models, analysis techniques such as simulation can be applied to, for
example, identify over-long process chains, to decrease process throughput times,
or to balance workload on the resources. Optimizing the process models at design
time is crucial in order to optimize the process models before they are actually
implemented and enacted within a Process-aware information systems (PAIS).
PAIS foster the implementation, management, execution, and analysis of busi-
ness processes. At runtime based on a schema describing a certain process type,
e.g., a patient treatment process or an insurance claim, process instances can be
initiated and executed. Each of these process instances represents a certain case for

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 3

this process type, for example, processing a blood sample for patient Smith through
process instance I; in Figure

Even if the process model has been optimized at design time, further opti-
mization can become necessary during runtime. Let us explain this based on the
laboratory example (cf. Figure : after running the process for some time it was
learned that processing the samples automatically was expensive due to the high
preparation expenses (time-wise and monetary). The high change over times led to
waiting queues of process instance at runtime. Such waiting queues mostly arise if a
certain number of process instances arrive at an activity with restricted resources,
e.g., one apparatus or one clerk. Such process activities are referred to as critical
activities %Y. To tackle this problem for the laboratory process, the preparation and
execution of the automatic sample check was scheduled to certain time frames (e.g.,
every fourth day at 9 am) in order to batch as many instances as possible and hence
achieve a reduction of costs and time.

Although batching instances on the apparatus seems to be promising, the real-
ization by a static rule as proposed might not exploit the full potential for optimiza-
tion. The reason is that the rule does not take into consideration the actual runtime
situation at a certain point in time, for example, that due to a holiday season it
might be even better to wait for 5 days to obtain a good efficiency of the laboratory
automaton. Particularly for processes that involve human tasks a strict prediction
of what will happen during runtime is not possible. Hence, it could be promising to

investigate means for Dynamic Instance Queuing during runtime of the processes
27

1.2. Problem Description and Objectives

As motivated by the laboratory example, ignoring waiting queues in collaborative
information systems during runtime might become expensive. Different approaches
have been proposed that offer queuing (also in combination with batching %) for
process optimization and as a strategy to prevent delays and deadline violations 4.
Although queuing and batching as proposed in %19 become effective at runtime,
the underlying rules and strategies are still static, i.e., fixed at design time. Liu and
Hu " for example, proposed First-In-First-Out (FIFO) logic for processing the
instances in the queue. Hence, the specifics of the current situation in the system
known by the PAIS are again not taken into consideration. Recent approaches
advocate queue mining for service processes as ex-post analysis for predicting delays
33 Service processes are another good example for the necessity to analyze and
manage queues in business processes, also dynamically.

In this paper, we elaborate on the principle of Dynamic Instance Queuing, i.e.,
aggregating incoming instances at critical activities based on automatic decisions
during runtime 27, For understanding the conceptual extensions provided in the pa-
per at hand, we want to first draw the reader’s attention to the following two cases:
either we can think of dynamically queuing instances at one (critical) activity (de-

ovember 7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

4 Johannes Pflug, Stefanie Rinderle-Ma

~N
DlQA ot Manual
[aut=TRUE test
A
Take
sample

[otherwise

Validate
results

R RS

Prepare Integrate
(LI LLITIT]

apparatus A sample N

DIQS

[work queue

~

RS permutation

Fig. 2. Applying DIQS versus DIQA

noted as DIQA) or Dynamic Instance Queuing can be applied over a sequence of
activities (denoted as DIQS) as we will analyze in this paper. In Figure |2 for exam-
ple, DIQA would mean to queue at activity Manual test, whereas DIQS refers to
queuing at any of the activities incorporated by the sequence Prepare apparatus,
Integrate sample, Autom. test as indicated by the yellow box. In particular, we
address the following research objectives:

O1 The integration of DIQ in workflow engines as well as available configuration
parameters.

02 The application of DIQ in the sequence pattern (DIQS).

O3 The evaluation of the performance of DIQS both on a theoretical basis and in
a case study from

1.3. Contribution

The general idea of DIQ is that process instances at a critical activity or at crit-
ical process patterns are collected and automatically batched based on clustering
techniques. We will provide an overview of how the DIQ algorithm works in general
in Section [2| Note that this paper grounds on our previous work presented in 27,
but extends and elaborates it in many ways: first of all, DIQ is applied to activ-
ity sequences (DIQS) instead of single activities. Moreover, a detailed description
of implementing and integrating DIQ into a PAIS architecture is provided. A new
case study from the manufacturing domain has been conducted and DIQS is com-
pared to DIQA on basis of this case study. Finally, discussion and related work are
reworked and extended.

Section [3] will explain all phases of the DIQ algorithm in detail and further
elaborate on a) incorporating sequences into queuing, i.e., considering DIQS on top
of DIQA and b) analyzing the usage of different clustering algorithms within the
algorithm. By contribution a) we address objective O2. Sectionwill also comment
on how the algorithm was implemented.

Tackling objective O3 we will provide a real-world case study from the manufac-

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 5

turing domain in Section [4| By contrast to the case study presented in 2 based on
one activity requiring a printer as critical resource, in the manufacturing case study
we consider a sequence of activities. It is first evaluated which reduction of instance
processing time can be achieved by applying DIQS when compared to the current
real-world processing time (FIFO). Then we evaluate DIQS over DIQA in Section
Bl An interpretation of the results is provided in order to explain the reasons for
the processing time reduction.

In the discussion (cf. Section [6)), we elaborate on extensions of DIQ in PAIS such
as supporting further process patterng’ as well as taking behavior of resources into
account. Moreover, our assumptions will be discussed: (a) a process that contains
at least one activity or sequence-workflow pattern at a critical activity (b) finishing
times of the instances are not fixed (c) resource behavior is deterministic. Related
approaches from the area of PAIS research as well as from other areas, e.g., in
messaging systems, are demarcated in Section [7] Finally, Section [§] concludes and
shows future research directions.

Employing process technology to conduct daily work more efficiently is one of the
most convincing arguments for the application of these systems in practice. This
paper provides the next brick when building comprehensive support for runtime
optimization in PAIS. Moreover, DIQ in combination with techniques for instance
21155300 constitutes a means to support cooperation in PAIS. Take
as an example a lab setting where several organizational entities and their business

synchronization

processes share a resource. Here, DIQ with instance synchronization can support
the cooperative usage of the resources in an efficient and effective way.

2. Foundations of Dynamic Instance Queuing

In this section, we will first present the general concept of the Dynamic Instance
Queuing approach, followed by a more detailed elaboration on its different phases.

2.1. General Approach

Dynamic Instance Queuing (DIQ) is an algorithm based on artificial intelligence
techniques that aims at reducing the processing time at critical activities by opti-
mizing the maximum throughput. We refer to an activity as being critical if due
to restricted resources assigned to the activity, a significant number of instances
cannot be processed momentarily after arriving in the resource’s work list contin-
uously throughout the workflow execution and thus leading to a waiting queue. So
far, queuing has been adopted for process optimization in a merely static manner,
i.e., the strategy in which order the instances are processed from the queue is fixed.
However, in PAIS, it is quite difficult to foresee dynamic behavior, particularly in
the context of long running processes and at the presence of a multitude of process

@Typical process patterns comprise of sequences, parallelism, or alternative branches. For an
overview see www.workflowpatterns.com.

www.workflowpatterns.com

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

6 Johannes Pflug, Stefanie Rinderle-Ma

instances. This hampers the definition of strategies for processing instances at crit-
ical activities at design time. We argue that determining the processing strategy
for instance queues at runtime (dynamic queuing) offers the potential to reduce the
processing time in a flexible, easy-to-implement way that is appropriate for a lot of
application domains.

@ @ ® @ ®

i i S R i
o s eSS QDS

State
management

Collecting Classification

Buffering ' Processing

Fig. 3. Different phases of Dynamic Instance Queuing (adapted from 27)

Figure 3| shows the generic concept of Dynamic Instance Queuing. The core idea
is that similar instances can be processed faster in a row by making use of opti-
mizations such as reduced changeover times, caching or gaining of routine by human
resources than randomly distributed instances. Incoming instances at a critical ac-
tivity are at first collected (step 1) and, when the first resource shifts to idle state
due to a lack of instances, are classified into groups (step 2). The classification is
based on instance attributes such as patient age or color mode depending on the use
case. The instance classes are then transferred to the buffers of the queuing system
where each buffer represents one instance cluster (step 3). The instances from one
buffer are then processed at once by the resource (step 5). The state management
service provides a continuous assessment of the effectiveness of the current setting
which is required for an effective mapping of instance clusters on resources (step 4).

By classifying the instances in a logic way, the algorithm uses the fact that
processing times are often not independent from the instance order: their processing
times decrease when similar instances are handled sequentially. Saving potentials
arise from

e the elimination of changeover times by machines when handling similar mate-
rials/components or

e optimized performance by computer technologies such as caching

e lower processing times by humans when working on similar work items, e.g.,
gaining routing, acquiring experience

One or more of the above mentioned reasons exist in nearly every application
scenario. For the laboratory process displayed in Figure [1] instances reflecting the
processing of samples on one laboratory apparatus could be clustered based on

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences T

instance attributes analysis technique or sample size. In the industrial domain,
optimization potential arises from eliminating changeover times at machines. As
reordering instances in the resource’s work list does not have negative impact on
temporal parameters such as the throughput time both on a instance and a cu-
mulated basis for the single-tasks and sequence pattern 28, positive effects of DIQ
directly affect the overall performance.

2.2. Dynamic Instance Queuing applied to activities (DIQA) and
sequences (DIQS)

In a previous work, we investigated how DIQ works on critical activities (DIQA)
27 Usually business processes are composed of different structural patterns such as
sequences, parallel/alternative branchings, or loops Y. Could throughput times be
further reduced when applying DIQ on process patterns instead of single activities?
Figure[2]displays a fragment of the health care process presented in the introduction.
In the top figure, DIQA is applied to an activity Prepare apparatus. By contrast,
on the bottom the entire sequence of activities Prepare apparatus, Integrate
sample, and Autom.test is covered by DIQS.

The major difference between a sequence and an activity (i.e. single-task pattern)
is the optimum alignment. For a single-task, there is exactly one ideal alignment in
terms that all similar instances for a certain processing rule are arranged in a row.
In a sequence pattern, where several different single-tasks are orchestrated, there
is a different optimum alignment for each task (note that if equal single-tasks were
orchestrated, a loop-pattern arises). In consequence, this optimum arrangement can
only be obtained by reordering the work items for each individual resource’s work
list that is associated to the incorporated tasks of the sequence. Therefore, DIQ
is expected to perform better on sequences than on single-tasks. In Section [5} we
provide a quantitative comparison of DIQA and DIQS based on a manufacturing
case study.

2.3. Temporal Concurrency Concept

Figure [3]shows one iteration of the Dynamic Instance Queuing approach. One itera-
tion contains the collection of arriving instances as long as all resources are busy, fol-
lowed by the classification step and finally the processing of the instances. However,
during runtime, iterations might overlap since new instances are arriving steadily,
hence necessitating a concurrency concept as depicted in Figure [l The horizontal
layers represent the phases of Dynamic Instance Queuing (Collecting, Classification,
Buffering, Processing and the State Management Service) as explained in Section
[2.1] All phases are being executed constantly, however they are assigned to different
iterations within the workflow. An iteration is constituted by the sum of instances
between two subsequent classification steps from the collecting to the processing
phase. In Figure |4l the entirety of same-colored /patterned intercepts represents one
iteration in our Dynamic Instance Queuing approach.

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

8 Johannes Pflug, Stefanie Rinderle-Ma

to 4 B t

@ Collecting [(o0 @ @ o o

@ Classification

(® Buffering

(® Processing

State
management

lteration 0 [#§] Iteration 1 Iteration 2

. Iteration i

Fig. 4. Temporal concurrency approach

In the following, let t; represent the time of the i-th classification, while ¢y is
considered to be the start of Dynamic Instance Queuing, i.e. the time when the first
instance arrives. At first, arriving instances need to be collected for a certain time.
The classification of instances represents a point in the time line, visualized as the
dot in phase 2. From then on, the classified instances are buffered and, concurrently,
the processing of the first instances from the buffers begins. The process of buffering
is finished, when all contained instances are moved to a resource and hence, all
buffers are empty. The time when the last instance is processed also constitutes the
end of one iteration. This means, e.g., iteration 0 starts at time ty and ends at to.
In general, iteration i starts at time t; and is finished by time ;5.

Consider now the phases of buffering and processing. These two intercepts are
designed to be concurrent within one iteration. The buffering begins right after
the classification has taken place. For iteration 4, buffering begins at time t; ;.
Concurrently, the processing of the instances within the first buffers begins. In the
following, the instances from one buffer are transferred to the resource when all
instances from a previous class have been fully processed. This takes place at time
ti;; where ¢ represents the i-th classification and j represents the j-th buffer to be
processed. For example, at time tq 1, all the instances from the first class (buffer) in
iteration 2 have already been processed and the instances from the next unprocessed
buffer will be transferred to the resource. This implicates that the processing step
always takes longer than the process of buffering.

The processing logic remains the same during the entire process life cycle. This
includes the handling of the initial elements, i.e., the instances that are classified
first. When the first instance arrives, the resources are in idle state. Hence, classifi-
cation is executed instantly. It is not performed earlier since any classification works
best with the highest possible number of elements. The emerging cluster consist-

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 9

ing of this single instance will be transferred to one of the resources and processed
momentarily. No waiting times arise, the throughput time and processing time are
the same. With respect to the process model, no queue arises. This is intuitively
understandable, since queuing is necessary only if more instances are arriving than
the resources are able to process. Dynamic Instance Queuing ends when the overall
process is finished.

3. Generic Concept of DIQ

This section describes the components of the DIQ algorithm in a generic way.

3.1. Generic classification component

The classification component classifies incoming work items into groups of simi-
lar instances based on certain instance attributes. As described in Section the
emerging instance classification is mapped onto the buffers and, finally, onto the
resources, i.e., there will be a 1:1 mapping between clusters and buffers hence mak-
ing use of the fact that similar instances might be processed faster in a row than
randomly distributed instances. The key advantage is that the classification compo-
nent defines the processing strategy dynamically during runtime, which makes any
pre-specification of rules and conditions obsolete. In our DIQ approach, the classifi-
cation component is designed in a generic way so it doesn’t provide a predefinition
of the specific classification technique (e.g. clustering algorithms such as k-Means,
OPTICS or supervised learning algorithms) to be used. Consequently, any method
that is appropriate for the specific nature of the particular application scenario can
be implemented.

Algorithm shows the context of the classification component within steps
1 and 2 of the overall approach as depicted in Figure [3] i.e., the classification of
arriving instances at a critical activity and the subsequent distribution onto buffers.
Buffers serve as data structures to store the instances between classification and
processing. The number of buffers is determined by the number of clusters of the
previous classification step. As different classifications within the process execution
may result in different numbers of clusters, the number of buffers may vary over
time. The generic notion of DIQ does not only appear in the classification algorithm
to be used but also in its actual specification. Depending on the application scenario,
one could impose an adequate lower or upper bound to the number of clusters in
order to achieve the best performance. The order in which the instances are queued
within the buffers is adjustable as well. Besides basic logic such as First-in-first-out,
one could envisage a certain priority order on the buffers to work well with the later
processing behavior of the resources.

Note that Algorithm 3] reflects the first two steps of Dynamic Instance Queuing
within one iteration. In Section [2.3] the temporal concurrency concept of Dynamic
Instance Queuing has been introduced where it has been shown how the algorithm
works over several iterations. In the case study (Section 7 a specification of the

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

10 Johannes Pflug, Stefanie Rinderle-Ma

Algorithm 3.1 Classification and queuing concept

1: while Buffers are not empty do

2: gather arriving instances in dataset d;

3: end while

4: C := Classify(d) > Individual classification algorithm to be used
5: for classes ¢ € C do > Individual lower /upper bound for classes
6: select free buffer b;

7 move instances from class ¢ to buffer b; > Based on adequate priority order
8: end for

classification component for a manufacturing process in the industrial area will be
provided.

3.2. State management service

The state management service is responsible for the assignment of instance clusters
on resources. It represents a permanent evaluation of the effectiveness of the current
setting, i.e., the dynamic evaluation of the performance based on runtime variables
to react on changes in the process environment. A state management service is
required if the setting includes at least one activity which can be processed by two
Or more resources.

The performance evaluation is always both depending on the specific scenario
in which DIQ is meant to be implemented and on the trade-off between time, costs,
flexibility, and quality of service (cf. critical parameters for business process redesign
as stated in “4). Some of these parameters seem to be hard to reach at the same
time; especially time and costs appear to be at conflict. A generic decision function
should incorporate all relevant parameters for the specific application scenario. From
a temporal point of view, especially the throughput time, waiting time, processing
time tend to be most relevant, while cost variables typically include costs per time
unit, energy consumption or initialization costs. Flexibility and quality of service
parameters are hard to quantify and often not included in performance analyses.
However, indicators such as prioritization demands, compliance, or number of errors
might be concerned.

Based on the described parameters, the state management service fulfills the
following functions:

e Assignment of instance clusters to resources refers to the mapping of
instances being processed at a certain activity by the best available resource.
The evaluation of the best resource is based on a scenario-dependent individual
decision function. This becomes necessary if the setting includes at least one
activity that can be processed by two or more resources.

e Management of resource states controls the state (active or inactive) of
resources dependent from the process environment during runtime.

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 11

As for the classification component, a specification for the generic state man-
agement service will be provided in the case study (Section . In 27 we describe a
decision function that encounters both time and costs parameters and is applicable
for a lot of scenarios.

3.3. Implementation of Dynamic Instance Queuing

As DIQ follows a generic approach, it can be integrated in any conventional PAIS.
Figure [5| shows the architecture of a typical workflow engine 2. The workflow
engine as the core element receives notification about completed work items (step
1). A work item corresponds to an instance in a business process. The workflow
engine examines the workflow specification to determine what work node needs to
be activated (step 2). In steps 3 and 4, the workflow engine consults a resource
broker in order to evaluate a resource for the activated work node. Finally, the
work will be assigned to the appropriate resource’s work queue (step 5).

| resource broker

A
® @

A

completed ©) o -
work items WOTrKIow engine

inbound queue 4

@
r UJ
workflow e
designer % 4' workflow definitions

Fig. 5. Integration of DIQ in a generic workflow engine (based on)

resource 1

_[T1T1]
IED resource 2
_[T1T1]

resource i

outbound queues

The DIQ component is located between workflow engine and the resource’s
working queues. Based on the results from the classification (as described in Section
, the DIQ component arranges the work items in a way that similar instances
can be processed in a row. As one can see, our implementation of DIQ follows
a self-contained approach. This keeps the DIQ component independent from the
implementation of the host workflow engine.

DIQ includes two interfaces that share the runtime status with the host workflow
engine. Figure [6] offers a schema for the operation of this design. It shows a draft of
a prototypical process containing i resources with DIQ activated. The left side of
the figure represents a global view of the process. The little dots represent instances
within the process; their color represent similarities among instances. Instances
within the ovals are currently processed by the i-th resource.

During runtime, global variables are captured by any PAIS, such as number
of instances within the system, the current performance (as assessed by the state

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

12 Johannes Pflug, Stefanie Rinderle-Ma

Global view Instance view

instance
variables

DIQ, DIQ, DIQ

Fig. 6. Runtime schema

management service) or the global time. These variables are read by each DIQ
component via an interface, as represented by the rectangle. However, one needs to
distinguish the instance view of the process as shown on the right side of Figure
[(l The instance to be considered is located right before the second resource that
has DIQ activated. Each instance possesses instance attributes. These instance at-
tributes are dependent of the application domain. In the scenario described in a
subsequent section of this article, for example, these would be the length, width,
and depth of a single raw material. Based on these attributes, the classification of
similar instances is executed by the DIQ component. The instance variables are
read independently by any DIQ component when the specific instance arrives at
the respective pattern.

The described interface architecture carries on the generic approach of DIQ to
the implementation level. That way, DIQ becomes compatible with any conventional
PAIS without implying the need for adaptions in its workflow engine necessary.

4. Case study

In this section, we will describe the application of DIQ in a real-world scenario.
Our case studio focuses on a scenario from the manufacturing domain. We already
conducted a simulation of a health care scenario, where we analyzed a specific task
referring to a print job. In this simulation, we were able to reduce the processing
time in an amount of 13% 7. Different to that, we now focus on a sequence of tasks,
which is more representative for a variety of different scenarios. The described case
study is based on real-world data.

4.1. Application scenario

The production line of a retailer with an own production line comprises individual
construction materials based on standardized, stocked raw materials. More con-
cretely, different types of wooden blank are being transformed to the end product
in subsequent stages of production based on the individual ad-hoc orders from
customers. A single production process starts with an employee fetching the raw

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 13

material needed for the order from the stock. In an automated process, the wooden
blank is being individually cut and milled. If necessary, holes are being drilled. The
automated part of the production process finishes with a sealing step of the raw
material. The end-product is finally being packed by another employee from the
company. This process is visualized in Figure[7}

raw material PPp

O+ o ()

end product 444

Cutting Milling

Fig. 7. Case study - Sequence fragment from the Manufacturing Process

Each order represents the transformation of one or more raw materials into the
requested product. Incoming orders occur continuously, mostly within the store of
the retailer. As customers wait for their order to be completed, detailed production
schedules cannot be computed in advance. Reducing waiting times for the customers
is a central target of the company.

The described sequence of activities is embedded in a larger production process
and implemented through a PAIS. Due to restrictions in scope, we focus on the
subprocess which will serve as the scenario for the implementation of DIQS. All
further investigations and numbers relate to this subprocess.

4.2. Scenario analysis

The case study is based on a dataset that provides detailed information about each
product order, its characteristics, and times for each activity within the manufac-
turing process described in Section [{.1] In this scenario, we consider one product
as an instance within the process of transforming the raw material into an end
product. A product is manufactured individually respecting the customer’s needs.
Hence, the activities’ temporal sequence is dependent on the orders to be given.
In fact, besides fetching and packing, the remaining activities can be executed op-
tionally, i.e., certain activities might be skipped for some instances. This results in
a number of (‘11) + (;) + (;) + (j) = 15 possible workflow executions. We focus on
the production of one day as a characteristic model for the overall manufacturing
process. Note that the potential variations in the process instance executions are
captured by the realistic data set. On the day of interest, 50 orders are triggered
with the first one incurring at 8:08:13 and the last one at 18:12:32.

The throughput time of one instance turns out as the sum of the activities’
processing times and waiting times. The processing time constitutes as the duration

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

14 Johannes Pflug, Stefanie Rinderle-Ma

|Feitching | |5Cut;i;19 || Milling | | DriI;ing | | Sea;ing | | Pacl:<ing |

Fig. 8. Case study - Average processing times within the manufacturing scenario

of the respective activity (fetching, cutting, milling, drilling, sealing or packing) for
one instance. However, due to limited resources within the production line, periods
also include some waiting times when certain machines are busy. This is the case
when more instances (i.e., orders) are being triggered than the existing machines
are able to handle and hence results in the arising of waiting queues. The time an
instance is kept within a waiting queue is being considered the waiting time.

The mean average processing time of one instance is 751,4 seconds, which di-
vides into average times for fetching (8,2 sec.), cutting (51,1 sec.), milling (46,4
sec.), drilling (33,8 sec.), sealing (553, 8 sec.) and packing (28,1 sec.). A graphical
representation of the average processing time of one instance is provided in Figure
The throughput time, however, includes waiting times within the production line.
Figure |§| shows the average throughput times, i.e. the sum of waiting time (shaded
area) and processing time (colored area) per activity. One can see that massive
waiting times occur. We refer to those activities as being critical (cf. Section ,
as due to restricted resources assigned to the activity, a significant number of in-
stances cannot be processed momentarily after arriving in the resource’s work list.
Note that activities with waitingtime + processingtime = 0 exist since not every
production step is always executed for each single instance.

Fetching V W %ﬂ
Cutting %. 119,44 s

Milling V//// 107,65
Z
Drilling |77} | 100,26 5
Packing |/ /I 497,045

& Avg. waiting time before activity . Avg. processing time of activity

Fig. 9. Case study - Average throughput times of the production tasks

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 15

4.3. Applying DIQ in the manufacturing scenario

In Section [4:2) we illustrated that the process from a real-world scenario includes
critical activities. Dynamic Instance Queuing offers a way to reduce the throughput
time of instances at these kind of activities. The actual processing time of an activity
is the time that is needed by the respective machine to execute the corresponding
production step, i.e., the processing time is deterministic and immutable from the
process environment. However, the waiting time of an instance before an activity
is not only dependent of the kind of work to do, but might result from so called
changeover times. These periods need to pass if instances with different properties
are meant to be processed subsequently. This means that a proper alignment of the
instances can reduce changeover times. DIQ estimates an optimized alignment of
instances based on a classification of the instance properties.

Consider Figure As an instance corresponds to a product, it possesses its
relevant properties: kind of material, its length, depth and width. The properties
of the raw material depend on the individual end product to be manufactured,
which involves the target dimensions (matrix of length, width and depth), the in-
formation whether the material shall be milled or drilled, and if so, the number of
holes, their depth and circumstance. A declaration whether the product needs to
be sealed (sealing bool) and in which way (sealing both-sided) must be provided.
Furthermore, an end-product is always associated to a distinct order.

order_datetime target_dimensions material_enum
milling_bool length_mm
1 «| drilling_bool . 1 width_mm
number_of_holes depth_mm
hole_depth
hole_circumference
sealing_bool

sealing_bothsided

Fig. 10. Case study - Instance properties

Each single instance property is relevant to the throughput time (sum of waiting
time, idle time and processing time) of at least one activity (as shown in the mapping
provided by Table . For example, the processing time of milling is dependent from
the kind of material to be manufactured. This means that the overall throughput
time of one instance is subject to the linear combination of twelve parameters. This
number of combinations makes it impossible to foresee their implications on instance
processing time during runtime. Moreover, the complexity cannot be tackled by
a rule-based system where the property conditions need to be defined a-priori.

ovember 7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

16 Johannes Pflug, Stefanie Rinderle-Ma

Using the DIQ approach, it is not necessary to make these specifications a-priori.
The alignment of properties is done dynamically during runtime using a artificial
intelligence classification methods (as described in the section beneath).

Table 1. Case study - Mapping of relevant properties on activities

Activity | Relevant properties

Fetching | material enum, length mm, width mm, depth mm

Cutting | target dimensions

Milling | milling bool, material enum

Drilling | drilling_bool, number of holes, hole depth, hole circumstance

Sealing | sealing bool, sealing both-sided

Packing | target dimensions

4.4. Specification of the classification component

Applying DIQ necessitates the specification of the classification component at first
(cf. Figure [3). The classification component aims at finding similar instances ac-
cording to their properties and joins them into groups. The rationale behind is that
similar jobs can be processed in a row more efficiently than in an arbitrary manner
probably causing changeover times. Changeover times occur when a machine has to
switch between instances with different attributes, e.g., by adjusting the drilling hole
measures. A classification strategy offers the potential to find an optimized instance
distribution that reduces changeover times significantly, which directly affects the
overall throughput times. As described in Section [£:3] the instances in our scenario
possess 13 different properties reflected by numerical parameters which enables the
application of a variety of classification techniques.

In the given example, we embark the use of a clustering method. Clustering
techniques meet the flexible character of DIQ since they do not require a training
set and thus are applicable without further preparatory work. However, there is
a variety of clustering approaches that can be considered for the implementation.
Basically, there are two kinds of algorithms. In centroid clustering methods, groups
are represented by a central vector. They base on a given order of objects and thus a
fixed number of clusters. Using a replacement algorithm, the individual elements are
exchanged until a certain target criteria is met. Density based clustering methods
separate a set into areas of higher and lower density. Some objects are considered
to be more related to nearby objects than to objects farther away.

We opt to use a centroid based clustering method since it allows a pre-
specification of the numbers of clusters. The number of clusters represents the
maximum batch size, i.e. the number of raw materials that can be processed in
a batch. One of the most common centroid based clustering methods is the k-
Means algorithm. This algorithm targets to find the & cluster centers and assigns

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 17

the objects to the nearest cluster center in a way that the squared distances from
the clusters are minimized. In the k-Means algorithm, the variables to be consid-
ered must not be known a-priori. This contributes to the dynamic character of the
proposed approach since determining a number of variables would be needed to be
done at design time or by the user during runtime. Both options are less favorable
than the automatic detection by the k-Means algorithm. For DIQ, we implement
the k-Means algorithm as described by MacQueen in 1967 Y. The problem is com-
putationally difficult (NP-hard); however, we MacQueen’s implementation employs
heuristics such that the algorithm performs efficiently.

4.5. Specification of the state management service

As a next step, the state management service is specified for the application scenario.
As shown in Figure[J] massive waiting occur within the process of transforming a raw
material into a construction material. This makes the reduction of the changeover
times the most essential task, aiming at decreasing the overall throughput times.
State management offers the possibility to assess the most efficient number of re-
sources at any time. Based on a decision function, the number of resources to be
applied can be automatically increased or decreased. However, in the setting of our
real-world scenario, the number of resources is fixed as there is exactly one set of
machines available for the processing of the orders. In order to guarantee full com-
parability to the simulation, we don’t apply the dynamic handling of resources in
this scenario. Instead, we enable the person responsible for the process execution
to take actions on the resource handling.

4.6. Implementation

DIQ was simulated under the exact same parameters as the current setting from
the case study based on detailed logs. That way, full comparability is ensured. The
algorithm was implemented in Java using high level concurrency techniques (as
shown in Figure. The centerpiece of the DIQ implementation is a QueuingSystem
class that is responsible for the initialization and coordination of all components.
The threads for existing resources are managed by a ResourceManager class which
offers functions to assign the buffers to the resources and to adapt the number of
active resources as calculated by the decision function from the state management
system. Buffers are similarly managed by a BufferManager. Since it is a real time
simulation, the runtime environment does not have impact on the performance of the
simulation. As proposed before, the k-Means algorithm was chosen for clustering.
For that purpose we used the Java Machine Learning Library (Java-ML) .

4.7. Simulation results

Assessing the performance of DIQ in the given scenario means comparing its tem-
poral efficiency with traditional approaches. In the given example, traditional ap-
proach means the status quo technique, which is a first-in-first-out (FIFO) logic.

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

18 Johannes Pflug, Stefanie Rinderle-Ma

This means, jobs are processed in the same order they have been triggered be-
fore. As described in Section [£.6] comparability between the simulation of the two
techniques is guaranteed.

Figure [11] shows some details of the temporal performance of DIQ. In the first
diagram, the cumulated throughput time of all jobs is compared. The cumulated
throughput time is the sum of the periods between the time of a job being triggered
and its processing end, which is the packing of the construction material. This period
takes 291966 seconds using the status quo FIFO-logic, while applying the DIQ
approach, the sum of the throughput times is only 257248 seconds. This corresponds
to a reduction of almost 13%.

Cumulated through- Number of jobs Cumulated time delta of
put time (sec.) finished first jobs finished first (hrs)
\ HEEN A 31 A 18:41:00
300000 — 30 18
257 248
250000 25 15
200000 20 18 12
9:02:22
150 000 15 9
100 000 10 6
50000 5 3
1
—1
FIFO DIQ FIFO DIQ eq FIFO DIQ

Fig. 11. Case study - Performance of DIQ compared to FIFO approach

Considering the endpoints of the instances, more specifically the time a con-
struction material has been successfully packed, the situation is as follows: applying
DIQ, 31 of the 50 jobs are finished faster than applying FIFO logic, which finishes
first for only 18 instances. One job is equally fast processed by both approaches.
Considering the extent of the durations the instances were processed faster, the
analysis is even more obvious (right plot of Figure : The 31 instances that were
processed more efficiently by DIQ were in a sum finished more than 18 : 41 : 00
hours faster than applying FIFO. Respecting the correspondent number for the
first-in-first-out approach (appr. 9 hours), DIQ is in a total 9 : 38 : 38 hours faster.

An important parameter for a lot of scenarios is the total throughput time, i.e.
the duration between the arrival of the first order and the completion of the last
item. This time span is 40669 seconds for the FIFO approach, while DIQ reduces
the throughput time to 39494 seconds. But how good can you be at all? For that
matter, we applied another simulation. An optimum schedule represents an ideal

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 19

processing order in terms of processing efficiency. In this theoretical simulation,
we evaluated a near optimum throughput time of 36559 seconds, if instances are
processed in a setting optimized for reduced changeover times. However, the validity
of this comparison is limited as evaluating an optimum schedule requires a-posteriori
knowledge, as the times of new orders cannot be known in advance. This means an
optimum schedule can only be known subsequent to the workflow execution. For
a workflow execution in which the trigger time of jobs is unknown in advance as
the case study at hand, an optimum schedule is never available. A processing logic
could only evaluate a schedule based on knowledge from the past, e.g. the orders
from previous days. This might be referred to as a different approach, optimizing
before runtime (contrary to DIQ which optimizes during runtime without a-priori
knowledge needed).

4.8. Runtime behavior

In the previous section, we described that applying DIQ results in a significant
performance gain, represented by a reduction of the overall throughput time at the
critical activity of around 13%. Having a closer look at the runtime behavior of DIQ),
it becomes more transparent how the algorithm transforms its potential to decrease
throughput times into real performance gains. To illustrate this effect, Figure
shows the evolution of the cumulated throughput time (vertical axis) in the course
of the given period (horizontal axis). The solid line represents application of FIFO
logic, while the dotted one represents application of DIQ (cumulated throughput
times of 291966 sec. and 257248 sec. respectively after processing all 50 instances, see

Cumulated through-
A g

puttime (sec.)
291 966

A
P
5

Dynamic
instance queuing

.........

—— First-In-First-Out

time

Fig. 12. Case study - Runtime behavior of DIQ

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

20 Johannes Pflug, Stefanie Rinderle-Ma

Section . However, Figure [12|illustrates that the performance of DIQ is varying
during the course of the observed period: During some interactions, DIQ and FIFO
perform similarly, while in others FIFO is more efficient or DIQ excels. Only at the
end of the period under investigation, DIQ remains working more efficiently and
finally culminates in the overall throughput time of 257248 seconds.

The reason for this runtime behavior is as follows: DIQ groups instances with
similar properties in order to reduce the processing time. The more unprocessed in-
stances are available for clustering (step one “collecting” from Figure , the better
the classification can work. This means the order is modified more intensely. Com-
pared to FIFO-logic, some instances have a significant lower waiting time, while
others have a higher one. In the overall process, these temporary deviations balance
out.

A Instances in system

10

N>

Q Q Q Q QO Q Q Q Q Q Q Q- time
& 9F o WP 4P o g

Fig. 13. Case study - Instance distribution during workflow execution

This observation is supported by Figure [I3] The diagram shows the number of
instances in the system at certain times within the period under consideration ap-
plying DIQS. Dark dots represent finished instances, i.e. the jobs that are currently
processed are included in the number of instances. The intervals around the turning
points after which DIQS runs less efficiently than FIFO (as shown in Figure
are highlighted. One can see that in both periods, the number of instances in the
system decreases significantly, which means a high number of instances are com-

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 21

pleted. When an instance is completed, its numbers incorporate the statistics, i.e.
the instance’s throughput time is added to the cumulated throughput time.

The course of the indicators highlights the difference between DIQ and FIFO
processing: while DIQ optimizes the workflow as a whole, FIFO optimizes the
throughput time for each single instance.

5. Evaluation of DIQS over DIQA

The case study provided an implementation of the Dynamic Instance Queuing ap-
proach in the context of a sequence-pattern. This corresponds to DIQS as described
in Section DIQA, in contrast, applies Dynamic Instance Queuing on activity
patterns. This technique is embarked in a simulation from the health care domain 27:
The setting covers the printing management in a hospital, where 15 to 40 employees
shares two common network units to print medical documents and material. Each
print job is sent to one of the two printers, depending on the circumstances of the
load. DIQ was applied to evaluate a suitable order of these print jobs according to
the diverse number of characteristics these instances possess. By doing so, average
changeover times could be reduced by 14%.

To evaluate DIQS over DIQA, we conduct the case study from Section [4] again.
However, we apply DIQ on just one of the activities instead on the whole sequence
of activities. For this, we chose fetching, as it is the most critical activity in our
scenario (cf. Figure E[) Relevant properties to this activity are the the kind of
material to be processed as well as its length, width and depth (cf. Table . In
contrast, DIQS evaluated a suitable instance order in the work lists of all activities’
resources based on the respective relevant instance attributes. This means DIQA
optimizes the most critical activity fetching, while DIQS optimizes the sequence as
a whole.

The results are shown in Table 2] Applying DIQA, the cumulated throughput
time rises to 279269 seconds, which is 7,89% worse than the corresponding result
based on DIQS, but still 4,55% better than FIFO. Comparing just the average
throughput time for the activity fetching, DIQA and DIQS do not differ significantly
(33/35 seconds respectively). Both perform better than FIFO (38 seconds). So in
this case, DIQS works best for the whole process and equal for the most critical
activity.

FIFO DIQA DIQS
cumulated throughput time 291966 279269 257248
(sec)
average throughout time at 38,2 33,1 34,5

activity fetching (sec)

Table 2. Comparing strategies FIFO, DIQA and DIQS

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

22 Johannes Pflug, Stefanie Rinderle-Ma

6. Discussion

Reijers et al. B2 evaluate the overall performance of a process by means of four
criteria, i.e., time, costs, flexibility, and quality of service. Our concept allows a
reduction of throughput times in a considerable extent. The decrease is based on
the classification of elements to groups of similar instances which offers potentials
to reduce the processing times. DIQ works best in scenarios with an improper ratio
between number of instances and resource capacity. The more instances are queued,
the better results can be obtained. For that matter, DIQ should be considered
in application scenarios where the process environment is dynamically changing,
important process specifications, i.e. arrival distributions and capacity development,
cannot be estimated in an adequate quality, and economic or temporal realities do
not allow to develop, test and implement complex static rule systems.

Our approach for DIQ meets several requirements. It is applicable to any con-
ventional Process-Aware Information System since it is a self-contained component
that does not imply the need for adaptations in other parts of the PAIS. The opti-
mization takes place during runtime, so no previous specifications have to be made.
This distinguishes DIQ from classic scheduling and production planning approaches.
They promise exceptional results, but require detailed information or predictions
about future parameters. In contrast DIQ works without any a-priori knowledge.

In fact, every process is different and has unique characteristics. DIQ therefore
represents a framework that can be adapted on the specific circumstances of the ap-
plication scenario: Individual decision functions might be defined that support the
trade-off between the particular variables of the workflow comprehensively. More-
over, any classification technique might be chosen in order to cope the instance
attributes from the process best. That way, universal applicability is guaranteed
without neglecting the individuality of each workflow scenario.

DIQ allows the reduction of throughput times at critical activities. Applying DIQ
might have implications on subsequent parts of the PAIS. Our algorithm permutes
the order of the instances based on their similarity, which possibly influences the
processing efficiency of resources that do not apply DIQ. These implications have
not been part of this investigation, but are analyzed in 28.

The following assumptions have been made for the implementation of DIQ so
far: (a) considering processes that contain at least one activity or sequence-workflow
pattern at a critical activity (b) finishing times of the instances are not fixed (c)
resource behavior is deterministic.

The case study and its results described in Section [4] refer to an ideal scenario
with respect to the above assumptions, i.e., the process contains a sequence of
activities, the finishing times of the jobs are not specified and the resources are
machines whose behavior is deterministic (in opposite to, for example, a scenario
where humans are involved). As we know from other case studies, e.g., in the health
care domain 47, this kind of scenario can often be found in practice. However, the
assumptions still leave room for further investigations.

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 23

(1) Extension of workflow patterns: DIQ is also applicable in the context of further
workflow patterns such as parallelism. In the industrial domain, for instance,
products are typically manufactured out of several components that are pro-
duced parallelly and are being joined just in the end (supply chain manage-
ment). As Dynamic Instance Queuing relates to the instances involved rather
than the specifications of the workflow, it offers the potential to improve the
processing time in the context of other control-flow patterns as well.

(2) FEuxtension of time aspects: The reduction of processing times is an asset espe-
cially for instances at critical activities. However, we presumed that the finishing
time of the instances are not fixed. Eventually, it is even possible to fulfill dead-
lines that could not have been met with a different approach. For that matter,
it would be profitable to include fixed finishing times for instances based on
a prioritization mechanism. This scenario can also be found in Manufacturing
Planning Systems.

(3) Extension of resource behavior: It cannot be assumed that the resource behavior
is always deterministic. This is especially the case when work is done by humans,
whose individuality cannot be formalized. Different humans may have a specific
behavior, different specializations and strengths which may render them more
or less suitable to performing certain activities. With respect to the current
trend towards human-oriented PAIS *, the behavior of human resources might
be interesting in connection with optimization techniques such as queuing.

(4) Improvement of classification techniques: At the moment, DIQ is designed in a
way that no a-priori definition is needed. However, with little pre-specification,
many prospects occur: Instance properties relevant for the similarity could be
explicitly defined, so that the classification is only applied on relevant attributes.
Furthermore, in reality, not all instance properties have equal impact on the
similarity measure. It might be promising to introduce variables to weigh these
instance properties.

7. Related Work

The core idea of Dynamic Instance Queuing is that similar instances can be pro-
cessed faster in a row by making use of optimizations such as caching or gaining of
routine by human resources than randomly distributed instances. We consider our
approach transcendent to several research topics (cf. Figure .

Queuing theory: Queuing theory is a vital research topic in mathematics. The
latest models can cover a variety of factors including uncertainty. Most important
parameters of any model are the average arrival times and processing times, the
number of resources and the capacity. Little’s theorem 18 allows a relation between
the long-term average number of instances, the arrival rate, and the average sojourn
time. Optimization of queues is basically achieved by estimating probability distri-
butions of incoming elements or processing times. However, in PAIS, the prediction
of parameters like arrival times is often impossible due to the dynamic environment

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

24 Johannes Pflug, Stefanie Rinderle-Ma

Queuing
In PAIS

Queuing in
Messaging
Systems

Time Queuing
Aspects Theory

Process
Analysis

Process
Optimi-
sation

Process
Flexibility

Fig. 14. Related research areas

the instances are executed in. Therefore adaptations of mathematical optimizations
to PAIS are limited in ways of flexibility. However mathematical theorems have
served a basis for DIQ.

Queuing in PAIS: Queuing is part of basically any PAIS, mostly implicitly,
sometimes explicitly. Existing approaches, as described in 42, cover arising queues
as a result of an imbalanced ratio between available resources and the number of
process instances to be handled by the PAIS. Explicit queuing is addressed by Liu
and Hu™, who apply dynamic batch processing to Workflow Management Systems.
A recent approach to model batch activities in BPMN is provided in Y. Van der
Aalst et al. 40 however, understand queues as a mean to handle escalations in
PAIS. A similar idea to Dynamic Instance Queuing is pursued by combining queuing
with batching #2219, However, first of all, batching requires that the resources are
able to process batches, i.e., the parallel processing of a set of instances. Secondly,
batching at one critical activity often results in batch-wise arrival of instances at
preceding activities in the process that are not designed for batch processing. Hence,
a reduction of processing time by batching at one critical activity might cause
subsequent queues and subsequently lead to no reduction or even increase of the
overall processing time. Therefore, in this paper, we adopt a sequential processing
strategy rather than a batch-based one. More precisely, even though instances are
grouped together based on similar features, they are not processed as batches but
within separated queues. An approach for queue mining is proposed by 35. Contrary
to the runtime optimization idea of DIQ, queue mining features an ex-post analysis
technique for predicting future delays in instance execution.

Queuing in Messaging Systems and Middleware: Kumar et al. describe a
novel self-adaptation algorithm that has been designed to scale efficiently for thou-
sands of streams and aims to maximize the overall business utility attained from
running middleware-based applications. In a subsequent work, Kumar T3 enhances

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 25

his approach by a dynamic element to react on the resources available ("resource
awareness”). The approaches culminate in a distributed stream processing mid-
dleware that provides sharing-aware component composition #3. In this approach,
optimizations are achieved a-posteriori by implicitly evaluating each iteration. Our
approach, however, strives to achieve optimizations during runtime. Regarding mid-
dleware systems, load balancing is a major topic. As load is represented by a queue
of tasks, dynamic processing strategies are a possibility for optimization. An exem-
plary approach is presented by Drougas 0 as well as by 0. Amini et al. # describe
an algorithm that is designed to meet the challenges of extreme-scale stream pro-
cessing systems, where over-provisioning is not an option, by making the best use of
resources even when the proffered load is greater than available resources. This sce-
nario is similar to the approach presented in this paper in the way that the need for
DIQ also arises when a resource does not have the capacity to handle all instances
in time. However, Dynamic Instance Queuing is a process oriented approach, while
load balancing has kind of a static character by definition as it is a methodology
that applies typically in multilayer architectures.

Time aspects in PAIS: Since time aspects constitute a major challenge for the
modeling and the execution of business processes. Different approaches address this
issue BALOALT2AE34E29) Tt has been investigated, for example, how to capture time as-
pects at design time, in particular, to cover uncertainty of processing times and to
determine critical paths. At runtime, adherence of the process instances to imposed
time restrictions such as deadlines is monitored. Escalation strategies %% provide
means to deal with violations of time restrictions and deadlines. All these questions
become more challenging when considered for process choreographies . An anal-
ysis of existing approaches based on time patterns can be found in 14, The work
presented in this paper does not directly relate to the above mentioned approaches.
Since the presented approach reduces the processing time for all process instances
within a certain time frame, it might be even counter-productive for handling possi-
ble deadline violations of single process instances, but is more suited for optimizing
the processing time of a set of process instances being executed within the same
time frame.

Process Analysis: Business process analysis ranges from model verification at
design-time to the monitoring of processes at run-time . Especially process veri-
fication has matured to a level where it can be used in practice over the last years.
Especially petri nets seem to be a way to seize compliance, as initially shown in the
approach of van der Aalst 38, Subsumed the term “business process change”, tech-
niques to cover corporate transformations have been developed. In that context,
business process reengineering is the task of adapting the business’ workflows to
the organization’s needs. Process monitoring, however, is a task that is done during
runtime. In DIQ, process monitoring is implemented within the state management

component (Section [3.2]).
Process Optimization: Techniques for optimizing business processes are of par-

November 7, 2015 16:26 WSPC/INSTRUCTION FILE
pplication _of DIQ to Activity Sequences

26 Johannes Pflug, Stefanie Rinderle-Ma

ticular interest for business process re-engineering. The core challenge when opti-
mizing business process is to find the redesign strategies. As described in 43, in
practice, they are often engineered within an expert workshop. For different reasons
it would be more beneficiary to provide strategies that can be applied in certain
situations in order to support the user. In'34, an overview of existing approaches on
best practices or heuristics for business process redesign is provided that address
different optimization factors such as time, costs, quality, or flexibility. This paper
narrows the optimization factors down to time (and as a side-effect probably costs).
However, more factors can be included into the considerations. However, the main
difference is that this approach enables an automatic optimization of throughput
times at runtime that do not require any redesign measures.

Process Flexibility: Multiple research efforts have focused on introducing a higher
degree of flexibility in processes. Reichert B characterizes flexible process support
by four major flexibility needs, namely support for variability, looseness, adaptation,
and evolution. Pesic et al. 22 t 20l address the evolution of processes
and offer recommendations based on past experiences and additionally on a specific
process goal. Approaches in which ontologies or semantic rules serve as a basis
for the recommendations have been addressed as well 2. A different strategy is
the introduction of ad-hoc workflows. An ad-hoc workflow is a workflow in which
deviations from the pre-defined process flow are allowed. Ad-hoc workflows have
been investigated e.g. by 29, In DIQ, compliance is considered an essential goal; so
process deviations don’t represent a mean to achieve a higher degree of flexibility.
Instead, we aim to improve processing strategy by leaving it to the runtime.

and van der Aals

8. Summary & Future Work

This paper centers on optimizing collaborative business processes by dynamically
queuing process instances at critical activities during runtime. Critical activities
are characterized by high changeover times and limited resources and might lead
to an accumulation of waiting process instances during runtime. They tend to ap-
pear especially in systems with different human tasks involved whose collaborative
interactions characterize the overall process. So far, approaches have tackled this
phenomenon by bundling instances for batch execution based on static rules. DIQ
exploits runtime information on arriving instances and bundles them based on those
attributes that influence their processing at the critical activity, e.g., number of holes
at a drilling machine or layout options at a printer. In this paper we extended the
DIQ concept for single activities (DIQA) to DIQ on sequences patterns (DIQS).
We discussed the implementation details on a DIQ component including its embed-
ding into a PAIS. Further on, the DIQS concept was extensively evaluated based
on a real-world case study from the manufacturing domain. The results showed
that DIQS leads to a reduction of 13% of the throughput time when compared to
a first-in-first-out processing strategy. In addition, we compared the application of
DIQA and DIQS on the same case study where DIQS excelled DIQA by 7,89%.

ovember

7 2015 16:26 WSPC/INSTRUCTION FILE

N ;
\Application_of_DIQ_to_Activity_Sequences

Application of Dynamic Instance Queuing to Activity Sequences 27

As discussed in the paper, the DIQ approach offers several ways of extension.
First of all, it has to be investigated how DIQ performs on more advanced process
patterns such as parallel and alternative branchings as well as loops. Secondly, the
mechanistic characteristics of the case studies conducted so far, i.e., printer and
manufacturing, will be extended to considering processes with human interaction
as well. We regard this as particularly interesting since critical manual activities are
very likely as well, e.g., a full patient waiting room at a clinic.

Finally, we plan to integrate the DIQ component with a workflow engine, i.e., the
Cloud Process Execution Engine CPEE (cpee. org)) in order to test and demonstrate
DIQ online, i.e., during instance execution. One real-world scenario would be a
virtual factory setting such as considered within the EU FP7 project ADVENTURE
(http://www.fp7-adventure.eu/).

ACKNOWLEDGEMENTS

This work was partially supported by the Commission of the European Union within
the ADVENTURE FP7-ICT project (Grant agreement no. 285220).

References

1. T. Abeel, Y. V. de Peer, and Y. Saeys. Java-ml: A machine learning library. Journal
of Machine Learning Research, 10:931-934, 2009.

2. T. Almeida, S. Vieira, and M. A. Casanova. Flexible workflow execution through an
ontology-based approach. In Workshop on Ontologies as Software Engineering Arti-
facts, 2004.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec-
tures and Applications. Springer, Berlin, 2004.

4. L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive control of
extreme-scale stream processing systems. In In ICDCS 2006, pages 71-79, 2006.

5. K. Anderson. Web services and related technologies, 2006.

6. R. Bobrik, M. Reichert, and T. Bauer. View-based process visualization. In Business
Process Management, volume 4714 of LNCS, pages 88-95. Springer Berlin Heidelberg,
2007.

7. Y. Drougas, T. Repantis, and V. Kalogeraki. Load balancing techniques for distributed
stream processing applications in overlay environments. In Int’l Symp. on Object and
Component-Oriented Real-Time Distributed Comp., pages 33—42, 2006.

8. J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems. In
Int’l Conf. on Advanced Information Systems Engineering, pages 286-300, 1999.

9. J. Eder and A. Tahamtan. Temporal conformance of federated choreographies. In
Database and Expert Systems Applications, pages 668—675. Springer-Verlag, 2008.

10. S. Kabicher-Fuchs and S. Rinderle-Ma. Work experience in PAIS - concepts, measure-
ments and potentials. In Int’l Conf on Advanced Information Systems Engineering,
pages 678-694, 2012.

11. I. Konyen, B. Schultheiss, and M. Reichert. Design of a laboratory process. Technical
report, University of Ulm, 1996.

12. V. Kumar, B. Cooper, and K. Schwan. Distributed stream management using utility-
driven self-adaptivemiddleware. In Int’l Conf. on Autonomic Computing, pages 3-14,
2005.

cpee.org
http://www.fp7-adventure.eu/

November ,
pplication _of DIQ to Activity Sequences

28

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

7 2015 16:26 WSPC/INSTRUCTION FILE

Johannes Pflug, Stefanie Rinderle-Ma

V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan. Resource-aware
distributed stream management using dynamic overlays. In Proc. Int’l Conf. on Dis-
tributed Computing Systems, pages 783-792, 2005.

A. Lanz, B. Weber, and M. Reichert. Workflow time patterns for Process-Aware infor-
mation systems. In Enterprise, Business-Process and Information Systems Modeling,
volume 50, pages 94-107. Springer Berlin Heidelberg, 2010.

M. Leitner, J. Mangler, and S. Rinderle-Ma. Definition and enactment of instance-
spanning process constraints. In Web Information Systems Engineering - WISE 2012,
pages 652658, 2012.

H. Li and Y. Yang. Dynamic checking of temporal constraints for concurrent work-
flows. Electronic Commerce Research and Applications, 4(2):124-142, 2005.

J. Li, Y. Fan, and M. Zhou. Timing constraint workflow nets for workflow analysis.
IEEE Trans. on Systems, Man, and Cybernetics, 33(2):179-193, Mar 2003.

J. D. C. Little. A proof for the queuing formula: L= Aw. Operations Research,
9(3):383-387, 1961.

J. Liu and J. Hu. Dynamic batch processing in workflows: Model and implementation.
Future Generation Computer Systems, 23(3):338 — 347, 2007.

J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Berkeley Symposium on Mathematical Statistics and Probability, pages
281-297, 1967.

J. Mangler and S. Rinderle-Ma. Rule-based synchronization of process activities. In
2011 IEEE 13th Conference on Commerce and Enterprise Computing(CEC), pages
121-128. IEEE, 2011.

S. L. Mansar and H. A. Reijers. Best practices in business process redesign: Validation
of a redesign framework. Computers in Industry, 56(5):457-471, 2005.

M. Netjes, I. Vanderfeesten, and H. Reijers. “intelligent” tools for workflow process
redesign: A research agenda. In Business Process Management Workshops, volume
3812, pages 444-453. Springer Berlin Heidelberg, 2006.

Y. Pan, Y. Tang, H. Ma, and N. Tang. Workflow analysis based on fuzzy temporal
workflow nets. In Computer Supported Cooperative Work in Design II, volume 3865,
pages 545-553. Springer Berlin Heidelberg, 2006.

M. Pesic and W. Aalst. A declarative approach for flexible business processes man-
agement. In Business Process Management Workshops, volume 4103, pages 169—-180.
Springer Berlin Heidelberg, 2006.

M. Pesic, M. Schonenberg, N. Sidorova, and W. Aalst. Constraint-based workflow
models: Change made easy. In On the Move to Meaningful Internet Systems 2007:
CooplS, DOA, ODBASE, GADA, and IS, volume 4803, pages 77-94. Springer Berlin
Heidelberg, 2007.

J. Pflug and S. Rinderle-Ma. Dynamic instance queuing in process-aware information
systems. In Proc. 28th Annual ACM Symposium on Applied Computing (SAC ’18),
pages 1426-1433, 2013.

J. Pflug and S. Rinderle-Ma. Analyzing the effects of reordering work list items for se-
lected control flow patterns. In IEEE 19th International Enterprise Distributed Object
Computing Workshop, pages 14-23, September 2015.

H. Pichler, M. Wenger, and J. Eder. Composing Time-Aware web service orchestra-
tions. In Advanced Information Systems Engineering, pages 349-363, 2009.

L. Pufahl and M. Weske. Batch activities in process modeling and execution. In
Service-Oriented Computing, pages 283—-297. Springer, 2013.

M. Reichert and B. Weber. Enabling Flezibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies. Springer, Berlin-Heidelberg, 2012.

November ,
pplication _of DIQ to Activity Sequences

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

7 2015 16:26 WSPC/INSTRUCTION FILE

Application of Dynamic Instance Queuing to Activity Sequences 29

H. A. Reijers and S. Liman Mansar. Best practices in business process redesign: an
overview and qualitativeevaluation of successful redesign heuristics. Omega, 33(4):283~
306, 2005.

T. Repantis, X. Gu, and V. Kalogeraki. Synergy: Sharingaware component composi-
tion for distributed streamprocessing systems. In Middleware, pages 322-341, 2006.
S. Sadiq, O. Marjanovic, and M. Orlowska. Managing change and time in dynamic
workflow processes. IJCIS, 9(1&2):93-116, 2000.

A. Senderovich, M. Weidlich, A. Gal, and A. Mandelbaum. Queue mining for delay
prediction in multi-class service processes. Inf. Syst., 53:278-295, 2015.

T. Stoitsev, S. Scheidl, and M. Spahn. A framework for light-weight composition and
management of ad-hoc business processes. In Task Models and Diagrams for User
Interface Design, volume 4849 of LNCS, pages 213-226. Springer Berlin Heidelberg,
2007.

R. Strom, C. Dorai, G. Buttner, and Y. Li. Smile: distributed middleware for event
stream processing. In Int’l Conf. on Information processing in sensor networks, pages
553-554. ACM, 2007.

W. van der Aalst. Verification of workflow nets. In Application and Theory of Petri
Nets 1997, volume 1248 of LNCS, pages 407-426. Springer Berlin Heidelberg, 1997.
W. van der Aalst. Challenges in business process analysis. In Enterprise Information
Systems, volume 12 of LNCS, pages 27-42. Springer Berlin Heidelberg, 2009.

W. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based escalation in process-
aware information systems. Decision Support Syst., 43(2):492-511, 2007.

W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5-51, 2003.

W. van der Aalst and K. van Hee. Workflow Management. MIT Press, 2002.

	Introduction
	Motivation
	Problem Description and Objectives
	Contribution

	Foundations of Dynamic Instance Queuing
	General Approach
	Dynamic Instance Queuing applied to activities (DIQA) and sequences (DIQS)
	Temporal Concurrency Concept

	Generic Concept of DIQ
	Generic classification component
	State management service
	Implementation of Dynamic Instance Queuing

	Case study
	Application scenario
	Scenario analysis
	Applying DIQ in the manufacturing scenario
	Specification of the classification component
	Specification of the state management service
	Implementation
	Simulation results
	Runtime behavior

	Evaluation of DIQS over DIQA
	Discussion
	Related Work
	Summary & Future Work

