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Predicting the interactive rendering time
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HyperSlice
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Abstract—In this paper we present a method for predicting the rendering time to display multi-dimensional data for the analysis of

computer simulations using the HyperSlice [36] method with Gaussian process model reconstruction. Our method relies on a

theoretical understanding of how the data points are drawn on slices and then fits the formula to a user’s machine using practical

experiments. We also describe the typical characteristics of data when analyzing deterministic computer simulations as described by

the statistics community. We then show the advantage of carefully considering how many data points can be drawn in real time by

proposing two approaches of how this predictive formula can be used in a real-world system

Index Terms—Multi-dimensional visualization, surrogate modeling, Gaussian process regression, interactive rendering.

✦

1 MOTIVATION

M ANY scientific studies investigate the relationship between

several explanatory variables (inputs) and one or more

system response variables (outputs), thereby leading to multi-

dimensional data sets. Such data can arise in exploration of the

input-output map for applications ranging from weather, physics

and biological processes to image segmentation systems. In these

cases, the output is actually a complex object such as a segmented

image or 3D+time weather data. A key step towards learning about

the mechanisms that are present in a computational model or laws

that govern natural phenomena is to study how changes in the

input variables affect the output. Visual inspection of individual

outputs is suitable in small multiples, but does not scale well with

increasing numbers of parameters, because of the large number

of runs that are required to adequately represent model behavior

in the region of interest. To more comprehensively compare

outputs, automation can be taken a step further, for instance, by

processing the outputs with feature extractors or fitness functions

that are relevant to the driving questions. An interactive, visual

investigation of the resulting feature density distribution or fitness

landscape then becomes possible [6], [22], [24], but is subject

to some fundamental numerical challenges that are topic of this

paper.

The general approach to study deterministic computer models

is known in the statistics community as the design and analysis

of computer experiments [27]. This method involves reconstruct-

ing a continuous functional representation of the relationships

among variables of the system from a discrete set of samples
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and then investigating the input/output relationship of the func-

tion. Numerical methods for this purpose include local derivative

computation, global sensitivity indices [26], and response surface

exploration [1]. However, these derived computations have to be

set up carefully to yield meaningful results.

The most well known example of non-interactive visualiza-

tions of the relationships is the scatterplot matrix which works

on discrete samples. Another example are continuous plots of

“average” behavior over the range of each dimension, as exem-

plified in Chapman et al. [3]. However, any 2D or 3D view of a

multi-dimensional space necessarily requires aggregation of that

space. We can only “see” a subsection of the parameter space at

one time. Therefore, one must create multiple static views, each

looking at the data from a different perspective. The scatterplot

matrix, for example, shows a 2D projection of the data for each

pair of dimensions.

By allowing for user interaction one is not limited to a

predetermined set of views. When the view selection changes then

a new view of the data must be built. However, if the visualization

system does not respond quickly to the user’s interaction then the

cognitive connection with the visualization is lost [30] along with

the advantage of adding interaction in the first place. Arguments

about what exact response time makes a visualization interactive

vary. However, view updates somewhere between 10fps to 60fps

are typically deemed acceptable.

One interactive, multi-dimensional, continuous visualization

method is HyperSlice [36], which presents the user with a matrix

of 2D slices of a multi-dimensional continuous function around

a particular viewpoint in space. HyperSlice allows the user to

change the location of the viewpoint around which they are view-

ing. Given this method, it would be ideal to know if the number

of points or the dimensionality of the dataset will overwhelm the

graphics capabilities of the user’s machine and slow the frame

rate. Hence, we need a way to evaluate a priori what the frame rate

will be given our data. The main aim of this paper is developing a

methodology to estimate the rendering time of a multi-dimensional

visualization system in the form of a predictive formula. We can
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even invert this formula so that, given a desired frame rate, we

can compute the number of points possible to render in the given

time. This inversion can be used, for example, to guide the user to

sub-sample the dataset when the predicted rendering time will be

too slow.

In order to be able to predict the rendering time we must

come up with a function for the average rendering time based

on the size of the N× d multi-dimensional dataset as well as the

search distance, r over all possible view points. The advantage of a

predictive formula is that, once fit, one can estimate the rendering

time for all unknown values of N and r. In addition, we can use

this function to examine the time and accuracy trade-off in terms

of point spread versus number of samples.

A proper prediction function should describe the number of

pixels that will need to be drawn based on the scene geometry.

In order to adapt this function to each user’s hardware platform,

we require a universal methodology that can be run on each

user’s environment to make accurate predictions. Combining this

strong theoretical foundation with a fitting step makes our method

robust to further developments in GPU technology and algorithm

development. We can simply recompute the time it takes the

GPU to filter and draw the points without having to worry about

hardware-specific optimizations.

The contributions of this paper are:

• An evaluation of how to render multi-dimensional slices on

the GPU and how we can use that to predict the number of

pixels drawn on screen.

• A fitting procedure for predicting rendering times on an

individual user’s hardware.

• An application of the prediction formula where we show

an algorithm for subsampling data until we can render

interactively. We also show a UI dialog box for selecting

the number of samples based on the predicted rendering

time.

2 RELATED WORK

The prediction of rendering times is a staple of the 3D rendering

community, (e.g., see early work by Funkhouser and Séquin [7]).

However, these are in a three-dimensional rendering domain. It

has yet to be analyzed in the multi-dimensional domain, which

we do here. Another difference with our setting is that we have a

known scene geometry that we can take into account. Furthermore,

our focus is on the conversion of this high-dimensional data

representation to 2D and not global illumination.

One could perform an iterative search method, for exam-

ple bisection search, on the number of sample points that one

could render in interactive time. However, that would need to

be performed for every different combination of d, N, and r.

This bisection search may be prohibitively expensive if we are

determining the number of samples of a complex simulation where

each sample takes hours or days to compute.

2.1 Multi-D visualization

Analyzing multi-dimensional data locally is typically done by

constraining each dimension within an interval [31]. Arguably, the

most popular method to visually inspect multi-dimensional data

is a scatter plot or scatter plot matrix (SPloM). Alternatively, one

can use parallel coordinates [12] or some type of radial chart [13].

The Prosection Matrix [35] allows the user to explore the

density of input parameter settings that match certain performance

criteria. The user specifies what constitutes suitable output param-

eters as well as a “tolerance box” which represents the possible

range for input settings. The system then shows a number of 2D

density plots — one for each pair of parameters — indicating how

many of the performance criteria were in compliance.

Often, the data points represent samples of a continuous

function. Hence, it is quite common to reconstruct this continuous

function as best as possible. It is imperative to also consider the

visual analysis of such continuous multi-dimensional functions.

In this regard, HyperSlice [36] plots two-dimensional orthogonal

slices of a continuous function around a local viewpoint. This

allows the user to visually inspect the behaviour of the function

around this point. One advantage of HyperSlice is that it improves

the quantitative means for analysis of our multi-dimensional

function at least locally by measuring 2D distances. It is difficult

to understand distances in multi-dimensional spaces and 2D has

been shown to work better for quantitative understanding than

3D [34]. HyperMoVal [24] also relies on the user to define a slab

around a particular 2D slice. The sample points within this slab are

considered relevant to the view and drawn on screen. The focus

of HyperMoVal is visualizing how well a model fits sampled data.

Their desire is to show how “close” data points fall to a regression

line.

Tuner [33] uses the HyperSlice method to visualize the effects

of each parameter around a particular candidate point. Tuner is

focused on finding the optimum parameter settings for a computer

simulation subject to a number of criteria. The optimum parameter

setting must be “high” in the sense of maximizing the objective

function but also “stable” in the sense that changes in the pa-

rameter settings will not produce large changes in the objective

measure. This local sensitivity analysis is visually supported with

a HyperSlice view of the high-dimensional parameter space.

2.2 Multi-D interpolation

For estimating a continuous function, a popular technique is kernel

regression [32]. In this case, the estimated value at a particular

point in the parameter space, x′, is computed by averaging over all

sample points weighted by a kernel function. Formally this can be

expressed as

f̂ (x) =
n

∑
i=1

ϕ(xi− x′) f ′(xi) (1)

for n sample points, xi, and ϕ(·) is an approximating kernel

function. In this case f ′(xi) is the normalized sample value of the

function f (·) at location xi ∈ R
d in parameter space. The normal-

ization factor ensures that we can compute the known values of

the sample points. This factor is either automatically computed as

in the case of Gaussian process regression or explicitly computed

from the local neighborhood.

Often the squared exponential kernel is chosen for ϕ(·). This

function has one or more bandwidth parameters which control the

amount of smoothing between each sample point. The amount of

smoothing also affects the distance at which a data point will have

an effect on our regression function. While the bandwidth can be

set manually, it can also be set by examining the spatial variation

in f (x). The Gaussian process model (GP) [25], uses statistical
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variation to fit the kernel bandwidth appropriately. In the squared

exponential case,

ϕ(xi− x′) =
d

∑
j=1

e
θ j(xi, j−x′j)

2

, (2)

where j denotes the particular value for a certain dimension so

xi, j is the value of the jth dimension of sample i. The value x j is

the jth dimension of the prediction point. Therefore, we have a

separate parameter, θ j for regression for each dimension. Another

approach, exemplified by Hong et al. [10], is to set the kernel

bandwidth to take into account the Voronoi cells around each data

point. In either case, we recognize that setting the bandwidth is

data-dependent. Therefore, we test rendering performance for a

number of different kernel sizes.

3 PROBLEM DESCRIPTION

One method of studying the input/output relationship of computer

simulations is known as the black-box model. The black-box in

this case refers to the simulation code itself. Under this analysis

method one does not make any assumptions as to the inner

workings of the simulator. Instead, we model the simulator as

an unknown continuous function that takes a number of numerical

inputs and produces a number of numerical outputs. We know the

domain of the inputs. What we want to study is how varying the

inputs affects the output.

While we don’t know anything about how the simulation

works, we can sample it by selecting a particular input setting

through the simulation and recording the outputs. We can then use

a proper continuous reconstruction method built from a number

of samples in order to estimate the response surface. This fitted

continuous function is known as an emulator in the statistics

literature. We can then study the input/output relationship using

the emulator instead.

3.1 1D analysis example

A common choice in the statistics community for this emulator is

known as the Gaussian process model [25]. One advantage of the

Gaussian process model is that the form is very well known and

easy to analyze. It also allows us to measure the uncertainty of the

estimation. In order to illustrate the advantages we will go through

a 1D example here using a known function f (x) = sin(x)+cos(2x)
as a stand-in for some simulation code.

We begin by taking a number of discrete samples of the

function. Ideally we take as many as possible but this may be

limited in terms of time or budget. Since we do not know anything

about the behavior of the function in the region we are sampling,

we sample in some uniform random fashion. The function as well

as the sample locations are shown in Fig. 1.

We would prefer to take as many samples as possible in

order to learn as much about the various peaks and valleys. The

interpolation method we choose depends on how we expect the

values to change between the sample points. If we expect linear

behavior then fitting a piecewise linear function would be ideal. If

we expect more complex behavior then we should fit higher-order

functions. We show 3 different fitting methods for our function in

Fig. 2: piecewise linear (blue), cubic spline (green), and Gaussian

process model (red) along with the true function (black). In this

case the cubic spline and Gaussian process model interpolations

are very close to the true function, but the true function normally

would not be known beforehand.
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Fig. 1: An example of taking 10 uniformly distributed samples of

the function f (x) = sin(x)+ cos(2x). The dots show the sampling

locations.

The basic assumption of the Gaussian process model, however,

is that the function behavior between the sample points is random

in the sense it could take any path as long as it intersects the points

and the correlation function we select gives the general form of the

function between the points. However, the distribution of possible

paths follows a multi-variate Gaussian distribution through the

sample points we’ve selected. The mean of this distribution is

the most likely path, which is typically what is visualized. By

modeling the behavior this way we also get a model for the

uncertainty at any point in the domain. This uncertainty grows

in proportion to the distance to the sample points. In Fig. 3 we

show the Gaussian process estimation of the above function given

the sample points along with the standard error of the estimation.

The error grows very quickly when extrapolating, for example

when x < 2. This is because we are moving away from all sample

points. This is why in real applications it is important to sample

near the edge of the domain.

Parameterizing a Gaussian process model means correctly

parameterizing the correlation functions to the data samples. If

the function varies a lot between the sample points then we would

expect low correlation between the sample points, while if the

function is relatively stable between the sample points then we

would expect high correlation between the points. In the spatial

sense, this high and low correlation can be seen as the amount of

influence the value of a particular sample point has on the value at

another location a particular distance away.

3.2 Applications in multi-D

Gaussian process regression is very common in the statistics

community to analyze simulations among other types of data. Here

we list a number of examples where Gaussian process regression

along with a uniformly distributed experimental design is used in

order to run an analysis. Using uniform sampling with a Gaussian
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Fig. 2: Here we show different interpolation methods of the

function f (x) = sin(x) + cos(2x) using the same 10 uniformly

distributed sample points. We show the true function as well as

piecewise linear, cubic spline, and Gaussian process interpola-

tions.

process model has been applied in an optimization scenario, as

with Couckuyt et al. [4]. They used a sparse initial sampling and

then built a GP model to emulate microwave filter and textile

antenna simulations. They then incrementally ran additional sam-

ples of the simulation in order to find optimal parameter settings.

This process of finding additional sample locations can be quite

expensive computationally. Hutter et al. [11] develop a method

to find new sample locations when under a time budget. They

then applied this method to find optimal parameters for a search

algorithm for a propositional satisfyability solver. This method

was also used to perform a sensitivity analysis of an arctic sea

ice prediction model [3]. They decomposed the Gaussian process

model to find “average” behavior due to each model parameter.

Linkletter et al. [15] used Gaussian process models to measure

the sensitivity of parameters to a cylinder deformation simulation

to reduce the parameter space from 14 input factors to seven.

Kaufman et al. [14] use compactly supported correlation functions

to build Gaussian process models efficiently on very large data

sets. This was applied to cosmological data. Hensman et al. [9]

used an approach to train a Gaussian process model on 700,000

data points in an 8-dimensional space to build a model to predict

flight delays using a lower rank covariance matrix. Shepherd and

Owenius [29] used Gaussian process models as a classification

tool in order to classify voxels in dPET images in order to find

tumor sites.

As one can see, there are a wide variety of application

domains. However, all these analyses share commonalities. We

show the summary information of these studies in Table 1. The

number of inputs is typically on the order of 5–15 inputs. Each

-2

-1

0

1

2

0.0 2.5 5.0 7.5 10.0

x

fi
t

Function

True function GP model

Fig. 3: The Gaussian process interpolation of the function f (x) =
sin(x)+cos(2x) from 10 uniformly distributed samples. The stan-

dard error of estimation from the model is shown in gray. Note

that the standard error increases with the distance from the sample

points.

of these may correspond to a known factor that can vary in the

real world like wind speed or the velocity of a particle, or an

unknown fixed-quantity in the real world like Planck’s constant or

the gravitational constant. The simulation code typically creates a

complex object like a 3D+time model of the world or a segmented

image. On these outputs scientists define a number of feature

extractors or objective functions which reduce the complex output

to a set of numerical attributes [28]. Therefore, for each simulation

run we get a vector of scalar input factors and the corresponding

vector of scalar outputs. Each scalar output can be considered in a

separate analysis so in this paper we assume that there is only one

scalar output for each input configuration.

The practical number of simulation samples range from a few

hundred to hundreds of thousands. This is due to either time or

monetary constraints. Running more simulations than this simply

takes too long or costs too much. Based on these data we test

our timing function on dimensions 3–8 and run up to 1,000,000

sample points.

3.3 Pipeline description

Despite the wide variety of application areas, all the simulation

studies mentioned follow a standard procedure for analyzing these

simulations. They start with a uniform sampling of the parameter

space. This is usually done with a space-filling design like a

Latin hypercube [18], Halton sequence [8], or Centroidal Voronoi

tesselation [5]. Without any knowledge of the relative importance

of the dimensions they are sampled equally.

The simulation is run using each sample and the outputs are

recorded. If the output is a complex object then feature extractors
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TABLE 1: A summary of the literature described in Sec. 3.2. We show the domain of application of each paper, their analysis goal, as

well as the number of samples and number of input parameters (dimensions) of the simulation used to train the GP model.

Reference Application Dimensions Samples Goal

Couckuyt et al. [4] Microwave filter 5 51 Optimization
Couckuyt et al. [4] Textile antenna 2 14 Optimization

Hutter et al. [11] Propositional logic satisfyability 4 25 Optimization
Chapman et al. [3] Sea ice prediction 13 157 Sensitivity analysis

Linkletter et al. [15] Cylinder deformation model 14 118 Sensitivity analysis
Kaufman et al. [14] Cosmological data 4 20,000 Prediction
Hensman et al. [9] Flight delays 8 700,000 Prediction

Shepherd and Owenius [29] dPET data in radiation oncology 4 6 patient images Classification

are run on the outputs to generate scalar results. We then build

an emulator of this process. Prediction using this emulator must

be fast as we will want to evaluate it at many points. Often, a

Gaussian process model [25] is selected for the emulator.

Fig. 4: Screenshot of Tuner [33] demonstrating the Hyper-

Slice [36] method for rendering an 8-dimensional parameter space

using squared exponential kernel reconstruction on an image

segmentation dataset. Here we show the view using the conditional

mean of the Gaussian process model.

With this emulator the user can now analyze the input/output

relationship of the simulation. This can be done in a variety of

ways, either by looking at static plots [3] or by interactively

exploring the response surface [33]. We show an example of

the HyperSlice technique for interactively exploring the response

surface as implemented in Tuner [33] in Fig. 4. In this case we

show the conditional mean of the Gaussian process model. Tuner

can also show the estimation variability if desired. Interactive

exploration of the Gaussian process model is a relatively new

technique as it is more complex to implement and the limits in

terms of the number of points and how the size of the kernels

affects interactivity is not yet understood. The rest of this paper

will discuss how to address both these questions. We present a

rendering algorithm which is similar to splatting [20] to render

the Gaussian process prediction function using HyperSlice. We

also develop a method to determine when the interactivity of the

rendering will fail taking into account the geometric interpretation

of the Gaussian process model as well as the performance of an

individual user’s machine.

4 REQUIREMENTS

In order to provide background for our predictive function we

first need to consider what the multi-dimensional “scene” we are

trying to render looks like. The fundamental data type we are given

are sample points of the simulation. This section describes how

these sample points are transformed into higher-order geometric

primitives and then what happens when slicing them in order to

be drawn on screen.

4.1 Scene geometry

Here we will describe the spatial interpretation of the Gaussian

process model so that one can build an intuition for the geometric

portion of the prediction formula. This spatial interpretation is

very close to the form used for the splatting algorithm.

The spatial interpretation of the Gaussian process model using

squared exponential correlation is a set of multi-dimensional

ellipsoids, one for each sample point. One may be tempted to think

this is due to uncertainty at the sample points but this is not the

case here as the outputs of a computer simulation are considered

exact. The ellipsoids are due to giving the correlation functions

compact support. In order to see why this is the case we first begin

by looking at the formula for the “best linear unbiased prediction,”

at an arbitrary location in the parameter space, x′, which is,

ŷ(x′) = µ +~r(x′)R−1(~Y −µ)′, (3)

here ~r is a vector of functions, one per sample point and each

element of r, ri, is the correlation between sample point xi and x′.
~Y is a vector of the sampled outputs. µ is the estimated process

mean. R is the N×N correlation matrix between the sample points

using the same correlation function. We also note that neither R−1

nor (Y − µ) depend on x′ so we let the vector, ~ϒ = R−1(~Y − µ)′.
Then, we can write Eq. 3 in a linear form,

ŷ(x′) = µ + r(x′)~ϒ

= µ +
N

∑
i=1

ri(x
′)ϒi.

The value ϒi is f ′(xi) and ŷ is f̂ from Eq. 1 which is normalized

by R−1 from Eq. 3.

A common choice for r(·) is the squared exponential cor-

relation function which has infinite support and is strictly pos-

itive meaning that it is defined everywhere in the domain and

always returns some positive value however small. The squared

exponential correlation sets a different falloff parameter for each

dimension. For visualization purposes these small values don’t

contribute a perceivable effect. Therefore, we set a lower bound

on the correlation value which we denote, ε = 1×10−9, essentially
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giving the correlation function compact support which can also be

done directly as in Kaufman et al. [14]. The squared exponential

correlation function is radial meaning the correlation amount

between points decreases as the distance increases. This ε value

essentially creates a d-dimensional ellipsoid region around each

sample point with principal axis lengths related to the correlation

falloff parameter. The sample point will only influence predictions

within this region.

4.2 HyperSlice effect on scene geometry

The last step is using some method to examine this multi-

dimensional scene on a computer screen. Our chosen display

method is the HyperSlice [36] technique to which will draw 2-

dimensional slices through these multi-dimensional ellipsoids on

screen. HyperSlice relies on the user selecting a viewpoint which

determines the location in the multi-dimensional parameter space

where to position of the slices. In Fig. 5 we show the representa-

tion for the HyperSlice technique in both 2 and 3 dimensions. In

2D the slicing plane (what one sees) is a line. In 3D it is a 2D

plane slicing through the space. In higher dimensions it is also a

2D slicing plane.

r

Plane intersection

Plane

(a) 2D view

r

Plane intersection

Plane

(b) 3D view

Fig. 5: Diagrams showing how the HyperSlice [36] method

“slices” through the kernels of the Gaussian process model in

both 2D (a) and 3D (b). The slicing plane is denoted as “Plane”

in the figure. This is the plane the user views. Only the points,

denoted in green, fall within a distance r of the slicing plane will

influence the rendered image. All other points can be filtered out

as they do not affect the image. We then compute the influence of

the unfiltered (green) points on the slicing plane.

Only the points within range r of the slicing plane have an

effect on the final image on the slice. The conceptual algorithm

works by first filtering out all points that do not fall within range,

r, of the slicing plane. Then, for all points within this range, we

determine where the drawing plane intersects the ellipsoid which

determines its impact on the drawing plane.

4.3 Algorithm

The GPU has vertex and fragment processing stages. This is

analogous to the filtering and rendering stages of our rendering

algorithm. We present the full schematic of the rendering algo-

rithm in Alg. 1.

The distance to the slice is a d − 2 dimensional distance

since the remaining 2 dimensions are projected on to the slice

directly. We compute the projection of the point onto the current

2D slice Alg. 1 (line 3). We then compute the distance of the

sample point to the slice in line 4. Because we are only interested

in the distance to the slice itself, and not a particular point on

that slice, we don’t include the two dimensions of the slice in

the distance computation. If this distance is smaller than the

size of the reconstruction kernel, we would need to render a

2D slice through this reconstruction kernel. We use a template

exponential distribution which is then drawn into a quad. This

is a speed-up often used in GPU-based splatting algorithms as

well [20]. However, since these splat-like slices have different

distances from each subplot they affect the subplot by different

amounts depending on the distance. Therefore, we need to scale

the intensity value of the texture by its distance to the slice (line 6).

Input: viewpoint~v, maximum distance r

Output:
(

d
2

)
slices through an N-point, d-dimensional data

set

1 forall the
(

d
2

)
subplots Si do filtering

2 forall the N points p in the vertex buffer do

3 p2D← the 2D projection of p onto the slice Si;

4 dist← the distance of p to the slice Si;

5 if dist < r then rendering

6 tex← the Gaussian splat scaled by dist;

7 p̂2D← transform p2D into screen coordinates;

8 w← compute the splat width (
√

r2−dist2);

9 send 2D quads ( p̂2D(x)±w, p̂2D(y)±w) to the

fragment shader to be shaded with tex;

10 end

11 end

12 end
Algorithm 1: Algorithm for rendering multi-dimensional data

using HyperSlice and Gaussian process regression

In our vertex shader implementation we filter the points as well

as compute the sliced splat size. This splat size is used to generate

a quad that we send to the fragment shader. We use the fragment

shader to compute the final pixel color values within the slice. For

practical visualizations this final pixel color value should be passed

through a colormap. Therefore, in such practical applications, we

recommend to render the pixel values to a floating point texture.

Then this floating point texture can be rendered to the screen with

a colormap shader program to convert the floating point values to

color values.

One of the main bottlenecks in the rendering pipeline is

transferring vertex data from CPU memory to GPU memory. This

is due to the slower speed of the bus compared to the GPU. We

simply do not want the GPU waiting for pixel data. The best way

to address this, as specified by Xue and Crawfis [37], is to store

vertex data in display lists on the GPU. Then, before calling a draw

command, we only need to update the small amount of viewpoint

information to render the group of slices to the GPU. Hence, we

store all N d-dimensional data points on the GPU. Memory of

current GPUs is large enough that we can easily store millions of

points in a number of dimensions directly on the card.

5 DERIVATION OF SCENE GEOMETRY

We now turn to a formulation for the expected total running time

to draw N points in d dimensions within a slice distance of r.

Our complexity analysis is based on the fact that our rendering

algorithm can be decomposed into a pipeline with filtering and

drawing steps. We also assume, as exemplified in Sec. 3.2,

that our points are uniformly distributed in our data space. Our

mathematical derivation also assumes that the ellipsoids generated
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by the Gaussian process model are, in fact, hyperballs. While

this may seem like an over-simplification, the principle axes

of the ellipsoids are axis-aligned with respect to the parameter

space Sec. 4.1. An ellipse is simply “stretching” the parameter

space by a fixed amount in each direction.

The two stages of rendering mean that the measured time is

the time to run the filtering stage plus the time to run the drawing

stage. However, because of the pipeline setup of the GPU, a low

number of fragments can be drawn “for free” on the spare compute

capacity of the card not being used for filtering. Once this spare

capacity is exhausted, the rendering time will dominate the total

drawing time. Therefore, the total drawing time, ttotal, is the time

to filter the points plus the time to render the points on screen but

only after a certain number of fragments are drawn. We represent

this breaking point with I(frags > a) which is an idicator function

that returns 0 when the number of fragments is less than the break-

point, a, and 1 otherwise.

ttotal = tfilter + I(frags > a)∗ trender (4)

5.1 Filtering

In the filtering step (lines 4 and 5 of Alg. 1) we must take each data

point and compute its distance to each plot in order to determine

if it is worth the effort to actually draw the quad. For each sample

point and for each slice, we compute the distance from the sample

point to the slice. If the distance is less than r we must draw it.

Since we have subplots for each pair of dimensions there are(
d
2

)
subplots in total. Filtering is a constant time per point but

is architecture-dependent. We denote this time, t f , and the total

filtering time, tfilter, is

tfilter = t f

(
d

2

)
N. (5)

5.2 Rendering

During the rendering step, we only need to process a fraction of

the points N, that are visible. We call this fraction N′. The rest

of the points are discarded in the filtering code on the GPU. In

the case of HyperSlice, the rendering time is significant. Besides

having to determine the size of the quad to be rendered in lines 7

and 8 of Alg. 1, the actual rendering time depends on the number

of pixels covered by the quad since each pixel requires a constant

time to draw. Because of this, our formulation for the rendering

time must include the quad size for each point rendered, qi, and

the time to render each pixel in a quad, tH,

trender = tH

N′

∑
i=1

qi. (6)

5.3 Expected total time

Eq. 4 gives us the total running time for a particular configuration

of N points in d dimensions and for a particular viewpoint ~v.

However, we are interested in how well the rendering algorithm

performs under many different configurations of points and view-

points. The worst case performance is when we need to draw the

full kernel. In other words, when the kernels are not cut off by the

edges of the parameter space and the view point is in the center.

However, we would like to know how the rendering will perform

as the user views a set of different plots. Hence, a much more

useful measurement is the average time to draw the view over

all possible point configurations and all possible viewpoints. In

order to compute this, the expected rendering time, E[ttotal], is an

average over all point configurations and viewpoints in the unit

cube [0,1]d :

E[ttotal] = t f

(
d

2

)
N + I(frags > a)tHE[N′]E[q], (7)

Here, the first term represents the time to filter all N points over the(
d
2

)
plots and the second term is the time to draw any points that

pass the filter. I(frags > a) is an indicator function that returns 1 if

the total number of fragments produced over all points is greater

than some threshold, a.

The total amount of rendering we need to do is the number

of points passing the filtering stage times the size of these points.

The quantity tH is the time to draw a single fragment using the

HyperSlice method, E[N′] is the expected number of points within

a distance of r from all 2D slices of the subplot matrix and E[q] is

the expected size of a quad drawn.

E[N′] is based on the the total number of sample points we

need to process times the expected percentage of points that will

be within range of the slices. There are N points to process for

each of the
(

d
2

)
subplots. For a single 2D slice, we denote the

expected percentage of points within a distance r in d dimensions

N̂′(r,d). The percentage of points can be expanded into

E[N′] =

(
d

2

)
N · N̂′(r,d)

=

(
d

2

)
N ·

d−2

∑
i=0

(−1)i

(
d−2

i

)
πd−2−ird−2+i

Γ
(

d−2+i
2

+1
) . (8)

N̂′(r,d) is a summation of higher and higher dimensional spheres

as they are sliced by 2-dimensional planes. For the full derivation,

please see Sec. A of the appendix.

For the HyperSlice technique the quantity E[q] depends on the

size of the spherical reconstruction kernel which depends on r and

d. We denote this quantity Q̂(r,d). This represents the expected

number of fragments produced on a particular slice when the

sample point is within a distance r of the slice. As described in

Sec. B of the appendix, E[q] expands into,

E[q] = Q̂(r,d)

=
1

N̂′(r,d)

d−2

∑
i=0

(−1)i

(
d−2

i

)
[corner(d, i,r)

− side(d, i,r)

+ center(d, i,r)]

=
1

N̂′(r,d)

d−2

∑
i=0

(−1)i

(
d−2

i

)[
4π(d−i)/2−1rd+i

Γ((d + i)/2+1)

−
3π(d−i−1)/2rd+i+1

Γ((d + i+3)/2)

+
2π(d−i)/2−1rd+i+2

Γ((d + i)/2+2)

]
. (9)

Here the corner(d, i,r), side(d, i,r), and center(d, i,r) functions

correspond to derivations 1, 2, and 3 listed in Sec. B.3.2 respec-

tively. While the current formula appears quite complex, it is fast

and easy to evaluate on a computer. In fact without this formula

the computations would be intractable. There might exist a more
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comprehensible formula, however, this is beyond the scope of this

paper and is a subject for future work.

These formulas take into account the size of the kernel even

if part of it is clipped by the edge of the parameter space. This

is very important for larger kernels in higher dimensions. There,

the volume of a kernel is very small but the radius may be very

large and therefore the kernel is always clipped by the edges of

the parameter space. These corner and edge terms will dominate

in higher dimensional cases or for large values of r. In lower

dimensional cases, or smaller values of r the center term will

contribute more to the final rendering time.

6 FITTING

With a proper mathematical formulation of the scene geometry

in terms of how many pixels are produced on screen, we now

describe the second missing piece of the prediction. Namely, a

procedure for tuning this formula to a particular user’s imple-

mentation and hardware configuration. For the purposes of these

timings we set our correlation cutoff value (see Sec. 4.1), ε , to

1× 10−9. This value allows us to link the kernel radius, r, with

the kernel bandwidth parameter in the GP model. The values t f

and tH in Eq. 7 are dependent on a particular hardware. Hence,

we engage in an empirical stage to determine these values for a

particular rendering environment.

The architecture of each GPU is different and efficiencies on

one architecture may not carry over to another. Therefore, it is

impossible to argue from first-principles how to derive t f and tH
for a particular GPU. We fit these parameters by doing a regression

analysis on empirical results obtained from examining the time to

render a frame for various values of d, N, and r. While the values

we derive are specific to a particular architecture, the method we

present is applicable elsewhere.

In order to fit Eq. 7 we note that the first term represents the

number of points we need to check to be filtered. This is constant

with respect to the kernel size, r. The second term, the drawing

time, increases with respect to r. The filtering time dominates for

small values of r while the drawing time dominates for larger

values of r. Therefore, there will be a point in terms of number of

fragments drawn, that we designate a, at which point the dominant

term will change from the first to the second. In order to fit this

behaviour we used a segmented regression model which changes

behaviour according to the value of a {0,1} indicator function

I(frags < a) where frags is the total number of fragments drawn.

This function returns 0 if frags < a. Therefore, we can form the

regression formula as:

trender = N

(
d

2

)
t f + I(frags > a)tHfrags. (10)

This formula contains three parameters to be estimated: t f

(the time to filter one sample point), tH (the time to render one

fragment), and a (the crossover point).

6.1 Sampling

For each dimension, we would like to ensure that we have a good

coverage of the number of fragments we are drawing. Hence, we

must choose different values of r for each d. In order to obtain a

sensible range of values for Q̂(r,d) we begin by using dimension 3

as a baseline and vary radii from 0 to 0.5 in that dimension to come

up with a reasonable range of Q̂(r,d). Given this desired range

of fragments, for the remaining dimensions we can numerically

invert Eq. 9, given d and hence, obtain a range of radii r.

The last remaining issue is that for each setting of d, N, and r

we must generate enough iterations such that the average number

of points affecting the slices, N′, converges to the theoretical

expected value, E[N′]. This is the expected number of points we

will need to draw over all possible uniform distributions of points

and viewpoints. In our case we found that 20 viewpoint changes,

redrawing the screen for a fixed viewpoint 5 times, and 3 sample

point distributions for a total of 300 timing measures resulted in

good convergence.

We compute the number of fragments drawn on screen inter-

nally by the application. We can do this because we know the

position of the focus point, locations of all the sample points,

and the kernel information. The number of fragments in our

calculations is the percentage the quad takes up on the subplot.

In other words, if a quad takes up an entire subplot then it

has area 1. This measurement serves as a proxy for the number

of fragments generated in the GPU. OpenGL offers a query

object, GL SAMPLES PASSED, that should return the number

of fragments needed to draw the screen. This is very convenient

and would correctly account for the rasterization method used.

However, in our experiments this query would return several dif-

ferent values for the exact same scene, which does not make sense.

Due to this inconsistency, we went with an internal calculation.

We can record the rendering time with either the CPU timer

or the GPU timer. The CPU timer better represents the user’s

perception of how long it takes to draw the screen since it includes

the time necessary to transfer data back and forth to the GPU.

However, this timer is much noisier than the GPU timer. In our

tests we found that on average the CPU timing differed from the

GPU timing by a constant amount. Therefore, we used the GPU

timer for our timing. The GPU timer is still quite noisy however

and in order to smooth out this noise we redrew each screen five

times for each change of viewpoint and then averaged the times.

6.2 Final model

If we then apply these estimates of filter and draw time to

Eq. 7, the full form of our prediction model, conditional on the

dimension, d, is

ttotal(d,N,r) = t f (d)

(
d

2

)
N + I(frags > a)tH(d)E[N

′]E[q]

= t f (d)

(
d

2

)
N + I(frags > a)tH(d)

(
d

2

)
NN̂′(r,d)Q̂(r,d)

ttotal(d,N,r) =

(
d

2

)
N

[
t f (d)+ I(N̂′(r,d)Q̂(r,d)> a(d))tH(d)N̂′(r,d)Q̂(r,d)

]
,

(11)

where t f (d), tH(d), and a(d) are the parameters we fit and N̂′(r,d)

and Q̂(r,d) are from Eq. 8 and Eq. 9 respectively. The parameters

are conditional on the dimension, d, because we fit each dimension

separately so we have a different value of t f , tH, and a for each

dimension. We fit these parameters using segmented regression as

described in Sec. 7.1.

7 TIMING RESULTS

We now present the results of running our timing experiments. Our

test machine is a Macbook Pro with Retina display with a 2.6GHz
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Fig. 6: Scatterplots of the time to render using the HyperSlice method. Each dimension is analyzed separately. The x-axis is the number

of fragments drawn on screen and the y-axis is the number of seconds recorded by the GPU timer for the frame to draw. The blue line

is the predicted rendering time using our fitted formula.

Intel Core i7, 16GB of RAM, and an NVIDIA GeForce GT 650M

graphics card with 1GB of graphics memory. In order to produce

consistent results we disabled the GPU power management exten-

sion. With it enabled the system varies the clock speed of the GPU

while the experiments are running, producing inconsistent results.

7.1 Data fitting

We plot the rendering time as a function of number of fragments

drawn in Fig. 6 for different values of N, d, and r. We treat each

dimension separately as our estimation procedure is volume-based

and volumes are not readily comparable between dimensions.

In particular, the units of volume depend on the dimensionality

and the relationship between radius and volume, for example, a

3-dimensional ball is very different from a 5-dimensional ball.

Furthermore, the dimensionality of the data is usually given and

not variable while one can vary the number of sample points. The

x-axis in the figure is the actual number of fragments drawn on

screen and the y-axis is the time, in seconds, to draw the frame.

As predicted by Eq. 7, the rendering time remains constant while

the GPU is primarily filtering points and then increases linearly

with the number of fragments once the drawing stage dominates.

To fit these data we first computed the fragments and rendering

time per sample by dividing the recorded fragments and time by

N
(

d
2

)
since our prediction function, Eq. 10, is linear in N

(
d
2

)
. We

also filtered out any experiments where the rendering time was

greater than 1 second since this would extend the sampling time

and we are primarily concerned with finding interactive times. We

then fit a basic linear model and a 2-segment regression model

using the segmented package [21] in R. If the slope of the

two segments did not differ significantly then we simply used the

linear model and set the break-point to 0. For these dimensions

the rendering time always dominates. We found that if the ratio

between slopes of the 2-segment regression was greater than 10

then we got a better fit with the 2-segment regression than with a

single linear fit.

The blue line shown in Fig. 6 is the predicted rendering

time versus the number of fragments drawn. Here the blue line

goes directly through the cloud of timing points. The multiple

horizontal lines within each dimension correspond to the different

values of N we used in our experiments. We can also see as the

dimensionality increases, the filtering time begins to dominate.

This is because for each subplot of the HyperSlice we must filter

all N points and the number of subplots increases as O(d2). We

can also see how the slope of the rendering time line (tH in Eq. 10

and Table 2) decreases as the dimensions increase. This is because

the screen size for running the experiments is fixed so as the

number of dimensions increase the area of each individual plot

becomes smaller since we have
(

d
2

)
HyperSlices. Therefore, in

higher dimensions we have fewer pixels to process.

The table of parameters by dimension for our reference system

is listed in Table 2. Here the relationship between the number of

dimensions and the fitted parameters is more apparent. For lower

numbers of dimensions (3–5), it is difficult to directly measure

the filtering time (t f ) as the rendering time always dominates. In

this case t f is just the y-intercept of the fit line for the rendering

time. For higher values of d (d > 5), we can directly measure

the filtering time. The reason t f increases between dimensions 8

and 9 is because in the filtering code we parallelize the distance



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2532333, IEEE
Transactions on Visualization and Computer Graphics

10

computations in OpenGL using the vec4 type for every group

of dimensions. So, an additional group of vec4s is required for

dimensions 9–12 and computing distances with these additional

vec4s takes slightly more time.

TABLE 2: Table showing the calibrated parameters, a, t f , and tH,

as a result of running a segmented regression fit using the data we

gathered from our timing experiments and Eq. 11. The factors t f

and tH are in nanoseconds and a is defined in terms of fragments

per sample.

d a t f (ns) tH (ns)

3 0.000 48.100 3470
4 0.000 15.600 2130
5 0.000 7.430 1380
6 0.00504 8.550 1030
7 0.00859 8.560 755
8 0.0123 8.400 569
9 0.0214 11.200 427
10 0.0267 11.200 342
11 0.0316 11.100 263
12 0.0404 11.100 255

7.2 Accuracy

As with the filtered scatterplot, we compared our predicted run-

ning time against new timing data using the same experimental

conditions. We do this in order to test new values of r. We then

compared the predicted rendering time against the empirically

recorded ones. Fig. 7 shows the absolute and relative errors for

prediction using the HyperSlice method and squared exponential

kernel regression.

Many of the largest relative errors occur for the smallest total

rendering times so any miscalculation will result in a large relative

error. The actual difference, is shown as a histogram in Fig. 7a.

Each sub-plot is a separate dimension. We show the difference

between the predicted and measured rendering times, in seconds,

on the x-axis. Every dimension has a strong spike at 0 indicating

that most of our predictions are off by a very small amount with

only a few being very inaccurate. We also show the relative error

as a hexagonal-binned plot in Fig. 7b. A hexagonal-binned plot [2]

is a 2d density plot using a hexagonal grid as the binning primitive.

The x-axis is the percent error between the predicted time and the

measured time relative to the recorded time and the y-axis is the

measured time to render the frame. Many of the rendering times

are very small so any error in the prediction results in a very high

relative error.

In order to check the predictive ability of our procedure we

also performed a 5-fold cross validation. For each dimension, we

split the data so that 20% is used for building the model and

the remaining 80% used for testing. We then use the testing set

to compute the difference between the predicted and expected

rendering times. We then repeat this procedure four more times

using the next 20% partition for training. We then compute the

root-mean squared error and maximum absolute error between

the prediction and the recorded values. The results are shown in

Table 3. While the relative errors may seem high these occur when

we are trying to predict very small times so any error will be high

on a relative basis. We also show the Nash-Sutcliffe efficiency [23]

for each dimension, which is the ratio of variance explained by

our model to the total variance. This ranges from −∞ to 1 where

values close to 1 mean that the model explains most of the total

variance. A value over 0 is considered an acceptable level of

performance [19]. All of the values in Table 3 are very close to

one so our model contains a great deal of information from the

data.

TABLE 3: Results of the cross-validation procedure. For each

dimension we compute the root-mean squared error of prediction

as well as the Nash-Sutcliffe efficiency [23], and the relative

maximum error. The Nash-Sutcliffe efficiency is the ratio of the

variance explained by our prediction model to the total variance.

All errors are in terms of seconds.

d RMSE Nash-Sutcliffe Relative max error

3 0.0685 0.931 0.624
4 0.0669 0.922 0.703
5 0.0702 0.888 0.403
6 0.0735 0.848 1.340
7 0.0726 0.801 0.383
8 0.0661 0.791 0.556
9 0.0398 0.920 0.601
10 0.0246 0.977 0.461
11 0.0127 0.996 0.386
12 0.00456 1.000 0.233

8 APPLICATION SCENARIOS

As was mentioned in Sec. 1, there are a number of ways to apply

our prediction methodology in a practical visualization system. To

this end we show two application scenarios where our method can

be used to control the number of samples such that we maintain

interactive rates. We show how our method may be used to sample

the simulation in order to maintain a desired frame rate and to

subsample an existing dataset in order to attain interactive frame

rates.

8.1 Constrain sampling

Fig. 8 is a dialog box for the Tuner [33] system. The task is to

enter the number of sample points to take from the simulation. The

dialog is driven by Eq. 10. When the user changes the number of

samples directly (a), the dialog computes the expected frame rate

and displays that to the user in (b). As an alternative method, the

user may value interactivity highly and consequently selects the

number of sample points to take by entering the desired frame rate

(b) and letting the system select the number of samples.

8.2 Subsample points

The goal of this algorithm, presented as Alg. 2 is to reduce the

sample size, N, such that the rendering time reaches an acceptable

30fps. We will do this by removing samples from the set. An issue

with simply removing points and rebuilding the Gaussian process

model is that the bandwidth parameters, θ will change.

In Fig. 9 we show the trade-off between the radius, r, and

the number of points, N, that can be drawn in 30fps. When

subsampling data we expect that the radius around each sample

point will increase as we reduce the number of sample points. The

goal of Alg. 2 is to lower the number of sample points until we

reach this line.

In this fashion we can have a progressive rendering setup using

2 GP models, a low-resolution model for fast rendering and a high-

resolution one for detail views. The system could dynamically

switch between these two when interacting.
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Fig. 7: Histograms showing actual (a) and relative (b) error rates for the HyperSlice method comparing predictions using Eq. 10 to

empirical results. We show (b) as a scatterplot in order to demonstrate that the largest relative errors occur when the drawing times are

smallest. Each dimension is treated separately since the units of volume differ for each dimension and we have computed the filtering

time, t f , and drawing time, tH, separately for each dimension.

Fig. 8: A prototypical example use case for our prediction formula,

Eq. 10. The user is able to either enter the number of sample points

directly in field (a) and the system displays the expected fps in (b)

or enter the desired fps in (b) first and the system calculates the

number of sample points.

9 LIMITATIONS AND FUTURE WORK

In this paper we have presented the characteristics of data used

for analyzing computer simulations under the design and analysis

of computer experiments framework [27]. We investigate how

interactive rendering times may be used in this framework using

the HyperSlice [36] rendering technique implemented on the GPU.

We then describe a method using both the scene geometry and

estimates of the user’s machine capabilities in order to make an

Input: Calibrated prediction formula E[tH
total](N,d,r),

calibrated GP model parameters ~θ
1 tpred← E[tH

total](N,d,r);
2 while tpred < 30fps do

3 N30fps← Numerically solve E[tH
total](N,d,r) for an N

that will give 30fps rendering times;

4 Uniformly remove N−N30fps sample points;

5 r′← Rebuild the GP model, thereby recomputing r;

6 tpred← E[tH
total](N30fps,d,r

′);
7 end
Algorithm 2: A proposed algorithm for subsampling data in

order to achieve interactive rendering times using the Gaussian

process model with the HyperSlice rendering technique.

accurate prediction of the rendering time. We find that timing,

especially using wall-clock time, is extremely noisy and makes

fitting very difficult. It is much more reliable to use the timer

on the GPU itself, however one must take into account the time

needed to return back from the GPU which in our experiments is

about 1ms.

In the future, we will investigate how to reduce the number of

trials needed to properly fit the formula. Currently each dimension

takes about 6 hours to complete and requires the machine to be

dedicated to running the timing code. Reducing the number of

trials will help to alleviate this time consuming task.

It would also be interesting to extend our approach to the

analysis of HyperSlice rendering in general. The basic geometrical

operation in our mathematical model is slicing multi-dimensional

spheres with 2D planes and estimating the area. Therefore our

method should work directly with any radial basis function re-

construction technique like the work by Hong et al. [10] although

we have not directly tested this. We would also like to extend

our mathematical model to take the shape of the reconstruction

primitive into account. This would allow us to analyze the timing

of HyperSlice rendering using a much more broad set of recon-
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Fig. 9: Average number of points that can be rendered in 30 frames

per second for the HyperSlice technique.

struction methods like nearest neighbor or linear regression. The

framework can also be used to estimate the rendering time of

density estimation by setting f (xi) = 1 in Eq. 1. Repeating the

analysis using box primitives would allow us to estimate the time

complexity of some of the recent real-time large-data aggregation

and visualization methods like imMens [17] and NanoCubes [16].

Both these methods use rectangular binning in their density

estimation.

We will also implement our subsampling strategy. There is a

lot of overdrawing occurring which does not contribute at all to the

final plot as the color channel is effectively maxed out, especially

as the value of N and r increases. By detecting when this occurs

and only rendering the first few points we could improve rendering

efficiency.

APPENDIX

For the derivations mentioned in the paper, please see the appendix

in the supplementary material.
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parameter space analysis: A conceptual framework. IEEE Transactions

on Visualization and Computer Graphics, 20(12):2161–2170, Dec. 2014.
3.2

[29] T. Shepherd and R. Owenius. Gaussian process models of dynamic
PET for functional volume definition in radiation oncology. IEEE

Transactions on Medical Imaging, 31(8):1542–1556, Aug. 2012. 3.2,
1

[30] B. Shneiderman. Designing the User Interface. Strategies for Effective
Human-Computer Interaction. Addison-Wesley Publishing Company,
Reading, MA, 1987. (document)

[31] B. Shneiderman. Dynamic queries for visual information seeking. IEEE

Software, 11(6):70–77, Nov. 1994. 2.1

[32] J. S. Simonoff. Smoothing methods in statistics. Springer Series in
Statistics. Springer-Verlang, New York, NY, USA, 1996. 2.2

[33] T. Torsney-Weir, A. Saad, T. Möller, B. Weber, H.-C. Hege, J.-M.
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