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Abstract. We present a deterministic (1 + o(1))-approximation (n1/2+o(1) + D1+o(1))-time
algorithm for solving the single-source shortest paths problem on distributed weighted networks
(the CONGEST model); here n is the number of nodes in the network, D is its (hop) diameter,
and edge weights are positive integers from 1 to poly(n). This is the first non-trivial deterministic
algorithm for this problem. It also improves (i) the running time of the randomized (1 + o(1))-
approximation Õ(n1/2D1/4 +D)-time1 algorithm of Nanongkai [STOC 2014] by a factor of as large as
n1/8, and (ii) the O(ε−1 log ε−1)-approximation factor of Lenzen and Patt-Shamir’s Õ(n1/2+ε +D)-
time algorithm [STOC 2013] within the same running time. Our running time matches the known
time lower bound of Ω(n1/2/ logn+D) [Das Sarma et al. STOC 2011] modulo sub-polynomial terms,
thus essentially settling the status of this problem which was raised at least a decade ago [Elkin
SIGACT News 2004]. It also implies a (2+o(1))-approximation (n1/2+o(1) +D1+o(1))-time algorithm
for approximating a network’s weighted diameter which almost matches the lower bound by Holzer
and Pinsker [OPODIS 2015].

In achieving this result, we develop two techniques which might be of independent interest and
useful in other settings: (i) a deterministic process that replaces the “hitting set argument” commonly
used for shortest paths computation in various settings, and (ii) a simple, deterministic, construction
of an (no(1), o(1))-hop set of size n1+o(1). We combine these techniques with many distributed
algorithmic techniques, some of which from problems that are not directly related to shortest paths,
e.g. ruling sets [Goldberg et al. STOC 1987], source detection [Lenzen, Peleg PODC 2013], and
partial distance estimation [Lenzen, Patt-Shamir PODC 2015]. Our hop set construction also leads to
single-source shortest paths algorithms in two other settings: (i) a (1+o(1))-approximation no(1)-time
algorithm on congested cliques, and (ii) a (1+o(1))-approximation no(1)-pass n1+o(1)-space streaming
algorithm. The first result answers an open problem in [Nanongkai, STOC 2014]. The second result
partially answers an open problem raised by McGregor in 2006 [sublinear.info, Problem 14].
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1. Introduction. In the area of distributed graph algorithms we study the com-
plexity for a network to compute its own topological properties, such as minimum
spanning tree, maximum matching, or distances between nodes. A fundamental ques-
tion in this area that has been studied for many years is how much time complexity is
needed to solve a problem in the so-called CONGEST model (e.g. [32, 62, 21, 15, 52]).
In this model (see Section 2 for details), a network is modeled by a weighted undi-
rected graph G, where each node represents a processor that initially only knows its
adjacent edges and their weight, and nodes must communicate with each other over
bounded-bandwidth links to discover global topological properties of the network. The
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communication between nodes is carried out in rounds, where in each round each node
can send a small, logarithmic-size message to each neighbor. The time complexity is
measured as the number of rounds needed to finish the task. It is usually measured
by n, the number of nodes in the network, and D, the diameter of the communication
network (when edge weights are omitted). Typically, D � n.

In this paper, we consider the problem of approximating single-source shortest paths
(SSSP). In this problem, a node s is marked as the source node, and the goal is for every
node to know how far it is from s. The unweighted version – the breadth-first search
tree computation – is one of the most basic tools in distributed computing, and is well
known to require Θ(D) time (see e.g. [61]). In contrast, the only available solution for
the weighted case is the distributed version of the Bellman-Ford algorithm [8, 30], which
takes O(n) time to compute an exact solution. In 2004, Elkin [20] raised the question
whether distributed approximation algorithms can help improving this time complexity
and showed that any α-approximation algorithm requires Ω((n/α)1/2/ log n + D)
time [21]. Das Sarma et al. [15] (building on [62, 48]) later strengthened this lower
bound by showing that any poly(n)-approximation (randomized) algorithm requires
Ω(n1/2/ log n+D) time. This lower bound was later shown to hold even for quantum
algorithms [24].

Since running times of the form Õ(n1/2 + D) show up in many distributed al-
gorithms (e.g. MST [49, 62], connectivity [70, 63], and minimum cut [60, 34]) it is
natural to ask whether the lower bound of [15] can be matched. The first answer to this
question is a randomized O(ε−1 log ε−1)-approximation Õ(n1/2+ε +D)-time algorithm
by Lenzen and Patt-Shamir [52]2. The running time of this algorithm is nearly tight if
we are satisfied with a large approximation ratio. For a small approximation ratio,
Nanongkai [58] presented a randomized (1+o(1))-approximation Õ(n1/2D1/4+D)-time
algorithm. The running time of this algorithm is nearly tight when D is small, but
can be close to Θ̃(n2/3) even when D = o(n2/3). This created a rather unsatisfying
situation: First, one has to sacrifice a large approximation factor in order to achieve
the near-optimal running time, and to achieve a (1 + o(1)) approximation factor, one
must pay an additional running time of D1/4 which could be as far from the lower
bound as n1/8 when D is large. Because of this, the question whether we can close the
gap between upper and lower bounds for the running time of (1 + o(1))-approximation
algorithms was left as the main open problem in [58, Problem 7.1]. Secondly, and
more importantly, both these algorithms are randomized. Given that designing de-
terministic algorithms is an important issue in distributed computing, this leaves the
important open problem whether there is a deterministic algorithm that is faster than
Bellman-Ford’s algorithm, i.e., that runs in sublinear-time.

Our Results. In this paper, we resolve the two issues above. We present a
deterministic (1 + o(1))-approximation (n1/2+o(1) +D1+o(1))-time algorithm for this
problem (the o(1) term in the approximation ratio hides a 1/polylog n factor and the
o(1) term in the running time hides an O(

√
log log n/ log n) factor). Our algorithm

almost settles the status of this problem as its running time matches the lower bound
of Das Sarma et al. [15] up to an no(1) factor.

Since an α-approximate solution to SSSP gives a 2α-approximate value of the net-
work’s weighted diameter (cf. Section 2), our algorithm can (2 + o(1))-approximate the
weighted diameter within the same running time. Previously, Holzer and Pinsker [41]
(building on [42]) showed that for any ε > 0, a (2 − ε)-approximation algorithm for
this problem requires Ω̃(n) time. Thus, the approximation ratio provided by our

2Note that the result of Lenzen and Patt-Shamir in fact solves a more general problem.
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algorithm cannot be significantly improved without increasing the running time. The
running time of our algorithm also cannot be significantly improved because of the
lower bound of Ω(n1/2/ log n + D) [15] for approximate SSSP which holds for any
poly(n)-approximation algorithm.

Using the same techniques, we also obtain a deterministic (1+o(1))-approximation
no(1)-time algorithm for the special case of congested clique, where the underlying
network is fully connected. This gives a positive answer to Problem 7.5 in [58].
Previous algorithms solved this problem exactly in time Õ(n1/2) [58] and Õ(n1/3) [11],
respectively, and (1+o(1))-approximately in time O(n0.158) [11]3. We can also compute
a (2 + o(1))-approximation of the weighted diameter within the same running time.
The lower bound of Holzer and Pinsker [41] also applies in this setting: computing a
(2− o(1))-approximation of the diameter requires Ω̃(n) time in the worst case.

Our techniques also lead to a (non-distributed) streaming algorithm for (1 + o(1))-
approximate SSSP where the edges are presented in an arbitrary-order stream, and an
algorithm with limited space (preferably Õ(n)) reads the stream in passes to determine
the answer (see, e.g., [56] for a recent survey). It was known that Õ(n) space and one
pass are enough to compute an O(log n/ log log n)-spanner and therefore approximate
all distances up to a factor of O(log n/ log log n) [29] (see also [28, 5, 27, 22]). This
almost matches a lower bound which holds even for the s-t-shortest path problem
(stSP), where we just want to compute the distance between two specific nodes s
and t [29]. On unweighted graphs one can compute (1 + ε, β)-spanners in β passes
and O(n1+1/k) space [27] (for some integer β depending on k and ε), and get (1 + ε)-
approximate SSSP in a total of O(β/ε) passes. In 2006, McGregor raised the question
whether we can solve stSP better with a larger number of passes (see [1]). Very
recently Guruswami and Onak [37] showed that any p-pass algorithm on unweighted
graphs requires Ω̃(n1+Ω(1/p)/O(p)) space. This does not rule out, for example, an
O(log n)-pass Õ(n)-space algorithm. Our algorithm, which solves the more general
SSSP problem, gets close to this: it takes no(1) passes and n1+o(1) space.

In all these models, we have formulated our algorithms to compute (1 + o(1))-
approximate SSSP. More generally, we can, for any 0 < ε ≤ 1 compute a (1 + ε)-
approximation taking (

√
n+D) ·2O(

√
logn log (ε−1 logn)) rounds in the CONGEST model,

2O(
√

logn log (ε−1 logn)) rounds in the congested clique model, and 2O(
√

logn log (ε−1 logn))

passes with n · 2O(
√

logn log (ε−1 logn)) space in the streaming model, respectively. We
provide the necessary details for deriving these numbers in Section 3, but omit them
later on for the sake of succinctness. We assume throughout that the edge weights are
positive integers in the range {1, . . . ,W} where W is polynomial in n. More generally,
for W of arbitrary size, all of the above asymptotic bounds need to be multiplied by
the factor logW .

Overview of Techniques. Our crucial new technique is a deterministic process that
can replace the following “path hitting” argument: For any c, if we pick Θ̃(c) nodes
uniformly at random as centers (typically c = n1/2), then a shortest path containing
n/c edges will contain a center with high probability. This allows us to create shortcuts
between centers – where we replace each path of length n/c between centers by an
edge of the same length – and focus on computing shortest paths between centers.
This argument has been repetitively used to solve shortest paths problems in various
settings (e.g. [72, 38, 18, 6, 65, 66, 16, 17, 57, 10, 52, 58]). In the sequential model a

3With this running time, [11] can in fact solve the all-pairs shortest paths problem. See also [50]
for further developments in the direction of [11].
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set of centers of size Θ̃(c) can be found deterministically with the greedy hitting set
heuristic once the shortest paths containing n/c edges are known [73, 46]. We are not
aware of any non-trivial deterministic process that can achieve the same effect in the
distributed setting. The main challenge is that the greedy process is heavily sequential
as the selection of the next node depends on all previous nodes, and is thus hard to
implement efficiently in the distributed setting4.

In this paper, we develop a new deterministic process to pick Θ̃(c) centers. The
key new idea is to carefully divide nodes into O(log n) types. Roughly speaking, we
associate each type t with a value wt and make sure that the following properties hold:
(i) every path π with Ω(n/c) edges and weight Θ(wt) contains a node of type t, and (ii)
there is a set of O(n/c) centers of type t such that every node of type t has at least one
center at distance o(wt). We define the set of centers to be the collection of centers of
all types. The two properties together guarantee that every long path will be almost
hit by a center: for every path π containing at least n/c edges, there is a center whose
distance to some node in π is o(w(π)) where, w(π) is the total weight of π. This is
already sufficient for us to focus on computing shortest paths only between centers as
we would have done after picking centers using the path hitting argument. To the best
of our knowledge, such a deterministically constructed set of centers that almost hits
every long path was not known to exist before. The process itself is not constrained to
the distributed setting and thus might be useful for derandomizing other algorithms
that use the path hitting argument.

To implement the above process in the distributed setting, we use the source
detection algorithm of Lenzen and Peleg [54] to compute the type of each node. We
then use the classic ruling set algorithm of Goldberg et al. [36] to compute the set of
centers of each type that satisfies the second property above. (A technical note: we
also need to compute a bounded-depth shortest-path tree from every center. In [58],
this was done using the random delay technique. We also derandomize this step by
adapting the partial distance estimation algorithm of Lenzen and Patt-Shamir [53].)

Another tool, which is the key to the improved running time, is a new hop set
construction. An (h, ε)-hop set of a graph G = (V,E) is a set F of weighted edges
such that the distance between any pair of nodes in G can be (1 + ε)-approximated
by their h-hop distance (given by a path containing at most h edges) on the graph
H = (V,E ∪F ) (see Section 2 for details). The notion of hop set was defined by Cohen
[13] in the context of parallel computing, although it has been used implicitly earlier,
e.g. [72, 47] (see [13] for a detailed discussion). The previous SSSP algorithm [58] was
able to construct an (n/k, 0)-hop set of size kn, for any integer k ≥ 1, as a subroutine
(in [58] this was called shortest paths diameter reduction5). In this paper, we show
that this subroutine can be replaced by the construction of an (no(1), o(1))-hop set of
size n1+o(1).

Our hop set construction is based on computing clusters which is the basic
subroutine of Thorup and Zwick’s distance oracles [68] and spanners [68, 69]. It builds
on a line of work in dynamic graph algorithms. In [9], Bernstein showed that clusters
can be used to construct an (no(1), o(1))-hop set of size n1+o(1). Later in [39], we
showed that the same kind of hop set can be constructed by using a structure similar
to clusters while restricting the shortest-path trees involved to some small distance

4We note that the algorithm of King [46] for constructing a blocker can be viewed as an efficient
way to greedily pick a hitting set by efficiently computing the scores of nodes. The process is as
highly sequential like other greedy heuristics.

5This follows the notion of shortest paths diameter used earlier in distributed computing [45]
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and use such a construction in the dynamic (more precisely, decremental) setting. The
construction, however, has to deal with several complications of the dynamic setting
and heavily relies on randomization. In this paper, we build on the same idea, i.e.,
we construct a hop set using bounded-distance clusters. However, our construction is
significantly simplified, to the point that we can treat the cluster computation as a
black box. This makes it easy to apply on distributed networks and to derandomize. To
this end, we derandomize the construction simply by invoking the deterministic clusters
construction of Roditty, Thorup, and Zwick [64] and observe that it can be implemented
efficiently on distributed networks6. A similar type of derandomization by locally
computing approximate hitting sets has been done before by Holzer and Pinsker [41]
when derandomizing Nanongkai’s exact hop set construction [58] on the congested
clique. We note that it might be possible to use Cohen’s hop set construction [13]
instead of Bernstein’s [9] in our application. However, Cohen’s construction heavily
relies on randomness and derandomizing it seems significantly more difficult.

Recent Developments. After the preliminary version of this paper appeared [40],
Becker et al. [7] showed that the no(1) term in our bounds can be eliminated. Elkin
and Neiman showed the first construction of sparse hop sets with a constant number
of hops [25], removing also the inherent dependence on logW , the logarithm of the
largest edge weight, in their construction. The latter carries over to the bounds for
approximating single-source shortest paths in the congested clique model and the
multipass streaming model. They further showed an application of their hop sets in
computing approximate shortest paths from s sources. In particular, using our hop
set and a modification of the framework in [58] and this paper7, this problem can be
solved in (sn)1/2+o(1) +Do(1) rounds. Elkin and Neiman showed a hop set which can
be used to reduce the bound to Õ((sn)1/2 + D) when s = nΩ(1) [25]. In [26], they
also showed further applications of hop sets in the distributed construction of routing
schemes. It was pointed out by Patt-Shamir (see [71]) that using our algorithm as a
black box, one can simplify and obtain improved running time in the construction of
compact routing tables in [53]. (On the other hand, we note that our construction is
based on many ideas from [53].) Our hop set construction also found applications in
metric-tree embeddings [31].

Organization. We start by introducing notation and the main definition in Section 2.
Then in Section 3 we explain the deterministic hop set construction in, which is based
on a variation of Thorup and Zwick’s clusters [68]. In Section 4, we give our main
result, namely the (1 + o(1))-approximation (n1/2+o(1) +D1+o(1))-time algorithm. In
that section we explain the deterministic process for selecting centers mentioned above,
as well as how to implement the hop set construction in the distributed setting. Finally,
our remaining results are proved in Section 5.

2. Preliminaries.

2.1. Notation. In this paper, we consider weighted undirected graphs with
positive integer edge weights in the range {1, 2, . . . ,W}. We usually assume in the
following that W = poly(n), i.e., the edge weights are polynomially bounded. For a
graph G = (V,E), V is the set of nodes and E is the set of edges. We denote by
n := |V | and m := |E| the number of nodes and edges of G, respectively. For a set
of edges E, the weight of each edge (u, v) ∈ E is given by a function w(u, v, E). If

6We note that Thorup-Zwick’s distance oracles and spanners were considered before in the
distributed setting (e.g. [53, 14]).

7More precisely, following Elkin and Neiman [25], one constructs an overlay network of size
√
sn

instead of
√
n as done in this paper.
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(u, v) /∈ E, we set w(u, v, E) =∞. We define w(u, v,G) := w(u, v, E). Whenever we
define a set of edges E as the union of two sets of edges E1 ∪ E2, we set the weight
of every edge (u, v) ∈ E to w(u, v, E) := min(w(u, v, E1), w(u, v, E2)). We denote the
weight of a path π in a graph G by w(π,G) :=

∑
(u,v)∈π w(u, v,G) and the number of

edges of π by |π|.
Given a graph G = (V,E) and a set of edges F ⊆ V 2, we define G ∪ F as the

graph that has V as its set of nodes and E ∪ F as its set of edges. The weight of each
edge (u, v) is given by w(u, v,G ∪ F ) = w(u, v, E ∪ F ) = min(w(u, v, E), w(u, v, F )).

We denote the distance between two nodes u and v in G, i.e., the weight of the
shortest path between u and v, by d(u, v,G). We define the distance between a node u
and a set of nodes A ⊆ V by d(u,A,G) = minv∈A d(u, v,G). For every pair of nodes
u and v we define distance up to range R by

d(u, v,R,G) =

{
d(u, v,G) if d(u, v,G) ≤ R
∞ otherwise .

and for a node v and set of nodes A ⊆ V by d(u,A,R,G) = minv∈A d(u, v,R,G).
For any positive integer h and any nodes u and v, we define the h-hop distance

between u and v, denoted by dh(u, v,G), as the weight of the shortest among all u-v
paths containing at most h edges. More precisely, let Πh(u, v) be the set of all paths
between u and v such that each path π ∈ Πh(u, v) contains at most h edges. Then,
dh(u, v,G) = minπ∈Πh(u,v) w(π,G) if Πh(u, v) 6= ∅, and dh(u, v,G) =∞ otherwise.

We denote the hop-distance between two nodes u and v, i.e., the distance between
u and v when we treat G as an unweighted graph, by hop(u, v,G). The hop diameter
of graph G is defined as D(G) = maxu,v∈V hop(u, v,G). When G is clear from the
context, we use D instead of D(G). We note that this is different from the weighted
diameter, which is defined as WD(G) = maxu,v∈V d(u, v,G). Throughout this paper
we use “diameter” to refer to the hop diameter (as it is typically done in the literature,
see, e.g., [32, 49, 44, 55, 34]). We do not consider superlogarithmic values for the
bandwidth B in this paper.

The following definition formalizes the concept of hop sets introduced by Cohen [13].

Definition 1. Given any graph G = (V,E), any integer h, and ε ≥ 0, we say
that a set of weighted edges F is an (h, ε)-hop set of G if

d(u, v,G) ≤ dh(u, v,H) ≤ (1 + ε)d(u, v,G)

for every pair of nodes u, v ∈ V , where H = (V,E ∪ F ).

In this paper we are only interested in (no(1), o(1))-hop sets of size |F | = n1+o(1). We
refer to them simply as “hop sets” (without specifying parameters).

2.2. CONGEST Model and Problem Formulation. In the CONGEST model,
a network of processors is modeled by an undirected weighted graph G, where nodes
model the processors and edges model the bounded-bandwidth links between the
processors. Nodes are assumed to have unique IDs in the range {1, 2, . . . ,poly(n)} and
infinite computational power8 as the primary focus of this model is communication
complexity. We denote by λ the number of bits used to represent each ID, i.e.,

8In the algorithms developed in this paper this strong assumption is not necessary as the number
of internal computational steps at each node is proportional to the number messages received in all
rounds.
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λ = O(log n). Each node has limited topological knowledge; in particular, every
node u only knows the IDs of each neighbor v and w(u, v,G), the weight of their
connecting edge. As in [58], we assume that edge weights are polynomially bounded,
i.e., the largest edge weight of the graph is polynomial in the number of nodes. This is
a typical assumption as it allows to encode the weight of an edge in one (or a constant
number of) messages.

The distributed communication is performed in rounds. At the beginning of each
round, all nodes wake up simultaneously and then each node u then sends an arbitrary
message of B = O(log n) bits through each edge (u, v), and the message will arrive at
node v at the end of the round. For the algorithms presented in this paper, we consider
the weaker broadcast CONGEST model, where in every individual round the message
sent by each node is the same for all neighbors. The running time of a distributed
algorithm is the worst-case number of rounds needed to finish a task. It is typically
analyzed based on n (the number of nodes) and D (the network diameter) [61].

Definition 2 (Single-Source Shortest Paths (SSSP)). In the single-source short-
est paths problem (SSSP), we are given a weighted network G and a source node s,
i.e., each node knows (i) the IDs of its neighbors, (ii) the weight of its incident edges
and (iii) whether it is the source s or not. We want to find the distance between s and
every node v in G, denoted by d(s, v,G), i.e., we want every node v to know the value
of d(s, v,G). In the α-approximate single-source shortest paths problem (SSSP) each
node additionally knows the value α ≥ 1 and the goal is for every node v to know a
distance estimate d̂(s, v) such that d(s, v,G) ≤ d̂(s, v) ≤ α · d(s, v,G).

Recovering shortest paths. We note that although we define the problem to be
computing the distances, we can easily recover the shortest paths in the sense that
every node u knows its neighbor v that is in the shortest path between u and s. This
is because our algorithm computes a distance estimate that satisfies the following
property:

every node u 6= s has a neighbor v such that d̂(s, v) + w(u, v,G) ≤ d̂(s, u),(1)

where d̂(s, v) is the approximate distance between s and v. For any distance approx-
imation d̂(s, ·) that satisfies Equation (1), we can recover the approximate shortest
paths by assigning v as the intermediate neighbor of u in the approximate shortest
path between u and s.

It can be easily checked throughout that the distance estimate that we compute
satisfies Equation (1). This is simply because our algorithm always rounds an edge
weight w(u, v,G) up to some value w′(u, v), and computes the approximate distances
based on this rounded edge weight. For this reason, we can focus only on computing
approximate distances in this paper.

2.3. Toolkit. In the following we review, in more detail, known results used for
designing our algorithm. The first is a weight-rounding technique [47, 12, 73, 9, 57, 10,
58] for scaling down edge weights at the cost of approximation. Intuitively, we will use
this technique to efficiently compute approximate shortest paths up to a fixed number
of hops. As we will use this technique repeatedly, we give a proof in Appendix A for
completeness

Lemma 3 ([58]). Let h ≥ 1 and let G be a graph with positive integer edge weights
in the range {1, . . . ,W}. For every integer 0 ≤ i ≤ blog (nW )c, set ρi = ε2i

h and let Gi
be the graph with the same nodes and edges as G and weight w(u, v,Gi) = dw(u,v,G)

ρi
e
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for every edge (u, v). Then for all pairs of nodes u and v and every 0 ≤ i ≤ blog (nW )c

(2) ρi · d(u, v,Gi) ≥ d(u, v,G) .

Moreover, if 2i ≤ dh(u, v,G) ≤ 2i+1, then

d(u, v,Gi) ≤ (1 + 2/ε)h and(3)

ρi · d(u, v,Gi) ≤ (1 + ε) · dh(u, v,G) ,(4)

where dh(u, v,G) is the h-hop distance between u and v in G.

An important subroutine in our algorithm is a procedure for solving the source
detection problem [54] in which we want to find the σ nearest “sources” in a set S for
every node u, given that u is at distance at most γ from them. Ties are broken by ID.
The following definition is from [53]:

Definition 4 ((S, γ, σ)-detection). Consider a graph G = (V,E), a set of
“sources” S ⊆ V , and parameters γ, σ ∈ N. For any node v let L(v, S, γ, σ,G) denote
the proximity list resulting from ordering the set {(d(u, v,G), u)|u ∈ S∧d(u, v,G) ≤ γ}
lexicographically in ascending order, i.e., where

((d(u, v,G), v) < (d(u′, v,G), u′) ⇐⇒
(d(u, v,G) < d(u′, v,G)) ∨ (d(u, v,G) = d(u′, v,G) ∧ u < u′) ,

and restricting the resulting list to the first σ entries. The goal of the (S, γ, σ)-detection
problem is to compute L(v, S, γ, σ,G) for every node v ∈ V . In the distributed setting
we assume that, as part of the input, each node knows γ, σ, and whether it is in S or
not and the goal is that every node v ∈ V knows its list L(v, S, γ, σ,G).

Lenzen and Peleg designed a source detection algorithm for unweighted networks
in the CONGEST model [54]. Their algorithm maintains, for each node, a tentative
proximity list, where each entry is a pair consisting of a distance value and a source
node in S. The list of every node v is initialized with the pair (0, v), and in every
round, each node sends, to all of its neighbors, the smallest entry in its list (according
to lexicographic order) that it has not transmitted before. Upon receiving a pair
(δs, s), a node first checks if there already is some entry (δ′s, s) with δ′s ≤ δs + 1 in its
tentative proximity list and if not, it adds the pair (δs + 1, s) to its list (and marks it
as not yet transmitted). Lenzen and Peleg show that after min (γ,D) + min (σ, |S|)
rounds, the first σ entries in the list maintained by every node v correspond to
L(v, S, γ, σ,G). Holzer and Pinsker [41] had two observations about this algorithm.
The first observation is that the guarantees of the algorithm directly carry over to the
broadcast CONGEST model as in every round each node sends the same message to
all of its neighbors. The second observation is that one can also run the algorithm
on weighted networks (see also [53, proof of Theorem 3.3]), by replacing each edge of
some weight L with an unweighted path of length L where all the nodes added for
some weighted edge (u, v) are “simulated” by either u or v. Note that the “simulated”
nodes are never sources. Furthermore, the tentative lists of the “simulated” nodes
do not have to be maintained explicitly. The following modification of the algorithm
for weighted graphs is functionally equivalent to the simulation approach: every time
a node u wants to send some entry entry (δs, s) to some neighbor v via an edge of
weight w(u, v,G), it delays this message by w(u, v)− 1 rounds; upon reception, v first
checks if there already is some entry (δ′s, s) with δ′s ≤ δs + w(u, v,G) in its tentative
proximity list and if not, it adds the pair (δs + w(u, v,G), s) to its list (and marks it
as not yet transmitted).



ALMOST-TIGHT DISTRIBUTED ALGORITHM FOR APPROXIMATING SSSP 9

Theorem 5 (Implicit in [54]). In the broadcast CONGEST model, there is a
deterministic algorithm for solving the (S, γ, σ)-detection problem in min (γ,WD) +
min (σ, |S|) rounds on weighted networks, where WD is the weighted diameter.

We remark that in an earlier version of this paper we have, for example in the
streaming model, used an additional source detection algorithm of Roditty, Thorup,
and Zwick [64].9 Using a second algorithm is however not essential as the algorithm
by Lenzen and Peleg [54] provides all necessary guarantees.

Another subproblem arising in our algorithm is the computation of ruling sets.
The following definition was adapted from the recent survey of Barenboim and Elkin
[4, Section 9.2].

Definition 6 (Ruling Set). For a (possibly weighted) graph G = (V,E), a subset
U ⊆ V of nodes, and a pair of positive integers α and β, a set T ⊂ U is an (α, β)-ruling
set for U in G if

1. for every pair of distinct nodes u, v ∈ T , it holds that d(u, v,G) ≥ α, and
2. for every node u ∈ U \ T , there exists a “ruling” node v ∈ T , such that
d(u, v,G) ≤ β.

The classic result of Goldberg et al. [36] shows that in the distributed setting, for
any c ≥ 1, we can compute a (c, cλ)-ruling set deterministically in O(c log n) rounds,
where λ is the number of bits used to represent each ID in the network. Since it was
not explicitly stated that this algorithm works in the broadcast CONGEST model, we
sketch an implementation of this algorithm in Appendix C (see [4, Chapter 9.2] and
[61, Chapter 22] for more detailed algorithm and analysis).

Theorem 7 (implicit in [36]). In the broadcast CONGEST model, there is a
deterministic algorithm that, for every c ≥ 1, computes a (c, cλ)-ruling set in O(c log n)
rounds, where λ is the number of bits used to represent each ID in the network.

3. Deterministic Hop Set Construction. In this section we present a de-
terministic algorithm for constructing an (no(1), o(1))-hop set (see Definition 1). In
Subsection 3.2 we first give an algorithm with a weaker guarantee that computes a set
of edges F that reduces the number of hops between all pairs of nodes in the following
way for some fixed ∆ ≥ 1: if the shortest path has weight R, then using the edges
of F , we can find a path with Õ(R/∆) edges at the cost of a multiplicative error of
o(1) and an additive error of no(1)∆. Our algorithm obtains F by computing the
clusters of the graph. We explain clusters and their computation in Subsection 3.1. In
Subsection 3.3, we show how to repeatedly apply the first algorithm for different edge
weight modifications to obtain a set of edges F providing the following stronger hop
reduction for all pairs of nodes: if the shortest path has h hops, then, using the edges
of F , we can find a path with Õ(h/∆) hops at the cost of a multiplicative error of o(1)
and no additive error. Finally, in Subsection 3.4, we obtain the hop set by repeatedly
applying the hop reduction.

3.1. Deterministic Clusters. The basis of our hop set construction is a struc-
ture called cluster introduced by Thorup and Zwick [68] who used it, e.g., to construct
distance oracles [68] and spanners [69] of small size.

9Roditty, Thorup, and Zwick [64] solve a variant of the source detection problem with γ =
∞ in their centralized algorithm for computing distance oracles and spanners deterministically.
They essentially reduce the source detection problem to a sequence of single-source shortest paths
computations on graphs with O(n) additional nodes and edges. This reduction can be modified in a
straightforward way to generalize their algorithm to arbitrary γ.
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Definition 8. Consider an integer p such that 2 ≤ p ≤ log n and a hierarchy A
of sets of nodes (Ai)0≤i≤p such that A0 = V , Ap = ∅, and A0 ⊇ A1 ⊇ . . . ⊇ Ap. We
say that a node v has priority i if v ∈ Ai \Ai+1 (for 0 ≤ i ≤ p− 1). For every node
v ∈ V the cluster of v in G is defined as

C (v,A, G) = {u ∈ V | d(u, v,G) < d(u,Ai+1, G)} ,

where i is the priority of v.

In the non-centralized models of computation considered in this paper, the straight-
forward way of computing clusters as defined above is not efficient enough for our
purposes. We can however afford to compute the following restricted clusters. For any
node v of priority i, let

Definition 9. Consider p and A as in Definition 8 and R ≥ 0. For every node
v ∈ V the restricted cluster up to distance R of v in G is defined as

C (v,A, G) = {u ∈ V | d(u, v,G) < d(u,Ai+1, G)} ,

where i is the priority of v.

3.1.1. Computing Priorities A. The performance of our algorithms relies on
the total size of the clusters, which in turn depends on how we compute nodes’
priorities. If randomization is allowed, we can use the following algorithm due to
Thorup and Zwick [68, 69]: set A0 = V and Ap = ∅, and for 1 ≤ i ≤ p− 1 obtain Ai
by picking each node from Ai−1 with probability ((lnn)/n)1/p. It can be argued that
for A = (Ai)0≤i≤p the size of all clusters, i.e.,

∑
v∈V |C (v,A, G)|, is O(pn1+1/p) in

expectation [68]. We now explain how to deterministically compute the priorities of
nodes (given by a hierarchy of sets of nodes A = (Ai)0≤i≤p) such that the total size of
the resulting clusters is

∑
v∈V |C (v,A, G)| = O(pn1+1/p).

Thorup and Zwick [68] introduced the notion of bunches to analyze the sizes of
clusters. For every node u ∈ V , we define the bunch and, for every 0 ≤ i ≤ p− 1, the
i-bunch, both restricted to distance R, as follows:

Bi(u,A, R,G) = {v ∈ Ai \Ai+1 | d(u, v,G) < d(u,Ai+1, G) and d(u, v,G) ≤ R}

B(u,A, R,G) =
⋃

0≤i≤p−1

Bi(u,A, R,G) .

The crucial insight is that v ∈ B(u,A, R,G) if and only if u ∈ C (v,A, R,G). Thus, it
suffices to choose a hierarchy of sets Ai such that |Bi(u,A, R,G)| ≤ O(n1/p) for every
u ∈ V and 0 ≤ i ≤ p− 1.

Our algorithm for deterministically computing this hierarchy of sets of nodes
follows the main idea of Roditty, Thorup, and Zwick [64]. Its pseudocode is given in
Procedure 1. As a subroutine this algorithm solves a weighted source detection problem,
i.e., for suitable parameters q, A, and R, it computes for every node v the proximity
list L(v,A,R, q,G) containing the q = Õ(n1/p) nodes of A that are closest to v – up
to distance R; if there are fewer than q nodes of A in distance R to v, L(v,A,R, q,G)
contains all of them. Our algorithm for constructing the hierarchy of sets (Ai)0≤i≤p is
as follows. We set A0 = V and Ap = ∅ and to construct the set Ai+1 given the set
Ai for 0 ≤ i ≤ p− 2 we first find for each node v ∈ V the set L(v,Ai, R, q,G) using a
source detection algorithm. Then we view the collection of sets {L(v,Ai, R, q,G)}v∈V
as an instance of the hitting set problem over the universe Ai, where we want to find
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a set Ai+1 ⊆ Ai of minimum size such that each set L(v,Ai, R, q,G) contains at least
one node of Ai+1, i.e., a hitting set. We let Ai+1 be an approximate hitting set whose
size is within a factor of 1 + lnn of the optimum10 produced by the deterministic
greedy heuristic (always adding the element “hitting” the largest number of “un-hit”
sets) [43, 3]. Following [68], we explicitly set Ap = ∅ to avoid the introduction of
special notation for clusters of the largest priority. In the following we prove the
desired bound on the size of the bunches, which essentially requires us to argue that
setting q = Õ(n1/p) is sufficient.

Procedure 1: Priorities(G, p, R)
Input: Weighted graph G = (V,E) with positive integer edge weights, number

of priorities p ≥ 2, distance range R ≥ 1
Output: Hierarchy of sets A = (Ai)0≤i≤p

1 q ← d2n1/p ln (3n)(1 + lnn)e
2 A0 ← V
3 for i = 0 to p− 2 do
4 Compute L(v,Ai, R, q,G) for every node v ∈ V using a source detection

algorithm
5 C ← ∅
6 foreach v ∈ V do
7 if |L(v,Ai, q, R,G)| = q then C ← C ∪ {L(v,Ai, R, q,G)}
8 Compute a (1 + lnn)-approximate minimum hitting set Ai+1 ⊆ Ai using a

greedy heuristic

9 Ap ← ∅
10 return A := (Ai)0≤i≤p

Lemma 10 (Implicit in [64]). Given a finite collection of sets C = {S1, . . . , Sk}
over a universe U and a parameter x ≥ 1 such that |Si| ≥ 2x ln (3k) for all 1 ≤ i ≤ q,
there exists a hitting set T ⊆ U of size at most |T | ≤ |U |/x such that T ∩ Si 6= ∅ for
all 1 ≤ i ≤ q.
We give a proof of Lemma 10 in Appendix B for completeness.

Lemma 11. Given a weighted graph G = (V,E) with positive integer edge weights
and a parameters p ≥ 2 and R ≥ 1, Procedure 1 computes a hierarchy A = (Ai)0≤i≤p
of sets of nodes such that∑

u∈V
|C (u,A, R,G)| =

∑
u∈V
|B(u,A, R,G)| = O(pn1+1/p log n) .

Proof. We first show by induction that |Ai| ≤ n1−i/p for all 0 ≤ i ≤ p − 1. If
i = 0 the claim is trivially true because we set A0 = V . We now assume the induction
hypothesis |Ai| ≤ n1−i/p and argue that |Ai| ≤ n1−(i+1)/p. Our algorithm computes
a (1 + lnn)-approximate hitting set of the collection of sets C containing each set
L(v,Ai, q, R,G) of size q (i.e., not considering all such sets that have size strictly less
than q). Let k ≤ n be the number of sets contained in C. As each set in C has size

10In principle, local computation is free in the models considered in this paper and we could thus
compute a minimum hitting set exactly. However, we decided to present the algorithm in a way that
avoids solving NP-complete problems by local computation.
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q = d2n1/p ln (3n)(1 + lnn)e ≥ 2x ln(3q) for x = n1/p(1 + lnn), we know by Lemma 10
that there is a hitting set A′ for C of size at most |Ai|/x = |Ai|/(n1/p(1 + lnn)) ≤
n1−i/p/(1 + lnn) and thus the minimum hitting set Ai+1 computed by the greedy
heuristic has size at most (1 + lnn)|A′| ≤ n1−i/p. Note that each set L(v,Ai, q, R,G)
might have been empty and in this case the algorithm would have computed Ai+1 = ∅,
the trivial hitting set.

We now show that for every node u ∈ V and every 0 ≤ i ≤ p− 1, Bi(u,A, R,G) ≤
q = O(n1/p log n), which immediately implies the desired bound on the total size
of the bunches and clusters. We argue by a case distinction that Bi(u,A, R,G) ⊆
L(u,Ai, R, q,G) and thus, by the definition of the set of the q closest nodes in Ai,
|Bi(v,A, R,G)| ≤ |L(u,Ai, R, q,G)| ≤ q. If |L(u,Ai, R, q,G)| < q, then clearly
L(u,Ai, R, q,G) = {v ∈ Ai | d(u, v,G) ≤ R} ⊇ Bi(v,A, R,G). Otherwise we have
|L(u,Ai, R, q,G)| = q and, as the algorithm computed a suitable hitting set, we have
Bi(u,A, R,G) ⊆ L(u,Ai, R, q,G).

As an alternative to the algorithm proposed above, the hitting sets can also
be computed with the deterministic algorithm of Roditty, Thorup, and, Zwick [64]
which produces so-called “early hitting sets”. For this algorithm we have to set q =
O(n1/p log n), and obtain slightly smaller clusters of total size O(pn1+1/p). However,
since the logarithmic factors are negligible for our purpose, we have decided to present
the simpler algorithm above.

3.1.2. Computing Clusters. Given the priorities of the nodes, the clusters can
be computed by finding, for every priority i and for every node v of priority i, the
shortest paths up to nodes whose distance to v is more than (or equal to) their distance
to nodes of priority more than i. In the pseudocode of Procedure 2 we formulate
this algorithm as a variant of weighted breadth-first search. We will not analyze
the performance of this algorithm at this point since it depends on the models of
computation that simulate it (see Subsection 3.1.1 and Section 5 for implementations
of the algorithm and performance analyses).

We summarize our guarantees with the following theorem.

Theorem 12. Given a weighted graph G = (V,E) with positive integer edge
weights and parameters p ≥ 2 and R ≥ 1, Procedure 2 computes a hierarchy of sets A =
(Ai)0≤i≤p, where V = A0 ⊆ A1 ⊆ · · · ⊆ Ap = ∅, such that

∑
v∈V |C (v,A, R,G)| =

Õ(pn1+1/p). It also computes for every node v the set C (v,A, R,G) and for each node
w ∈ C (v,A, R,G) the value of d(v, w,G).

3.2. Hop Reduction with Additive Error. Consider the following algorithm
for computing a set of edges F . First, deterministically compute clusters with p =
b
√

log n/ log (9/ε)c priorities (determined by a hierarchy of sets A = (Ai)0≤i≤p) up to
distance R = n1/p∆, where ∆ is a parameter controlling both the extent of the hop
reduction and the quality of the resulting approximation. Let F be the set containing
an edge for every pair (u, v) ∈ V 2 such that v ∈ C (u,A, R,G) and set the weight of
such an edge (u, v) ∈ F to w(u, v, F ) = d(u, v,G), where the distance is returned by
the algorithm for computing the clusters. Procedure 3 presents the pseudocode of this
algorithm.

Lemma 13. Let F ⊆ V 2 be the set of edges computed by Procedure 3 for a weighted
graph G = (V,E) with positive integer edge weights and parameters ∆ ≥ 1 and
0 < ε ≤ 1. Then F has size Õ(pn1+1/p), where p = b

√
(log n)/(log (9/ε))c, and in the
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Procedure 2: Clusters(G, p, R)
Input: Weighted graph G = (V,E) with positive integer edge weights, number

of priorities p ≥ 2, distance range R ≥ 1
Output: Clusters of G as specified in Theorem 12

1 A = (Ai)0≤i≤p ← Priorities(G, p, R)
2 For each 1 ≤ i ≤ p− 1 and every node v ∈ V compute d(v,Ai, R,G)

3 foreach u ∈ V do // Compute cluster of every node
// Initialization

4 Let i be the priority of u, i.e., u ∈ Ai \Ai+1

5 foreach v ∈ V do δ(u, v)←∞
6 δ(u, u)← 0
7 C (u)← ∅

// Iteratively add nodes to cluster
8 for L = 0 to R do
9 foreach node v with δ(u, v) = L do

// Check if v joins cluster of u at current level
10 if δ(u, v) < d(v,Ai+1, R,G) then
11 C (u)← C (u) ∪ {v}
12 foreach (v, w) ∈ E do // Update neighbors of v
13 δ′(u,w)← (w(v, w,G) + δ(u, v))
14 if δ′(u,w) < δ(u,w) then δ(u,w)← δ′(u,w)

15 return (C (v), δ(v, ·))v∈V

Procedure 3: HopReductionAdditiveError(G, ∆, ε)
Input: Graph G = (V,E) with positive integer edge weights, ∆ ≥ 1, 0 < ε ≤ 1
Output: Hop-reducing set of edges F ⊆ V 2 as specified in Lemma 13

1 p←
⌊√

logn
log (9/ε)

⌋
2 R← n1/p∆
3 F ← ∅
4 (C(v,A, R,G), δ(v, ·))v∈V ← Clusters(G, p, R)
5 foreach u ∈ V do
6 foreach v ∈ C (u) do
7 F ← F ∪ {(u, v)}
8 w(u, v, F ) = δ(u, v)

9 return F

graph H = G ∪ F , for every pair of nodes u and v, we have

d(p+1)dd(u,v,G)/∆e(u, v,G) ≤ (1 + ε)d(u, v,G) + εn1/p∆/(p+ 2) ,

i.e., there is a path π′ in H of weight w(π′, H) ≤ (1 + ε)d(u, v,G) + εn1/p∆/(p+ 2)
consisting of |π′| ≤ (p+ 1)dd(u, v,G)/∆e edges.
We devote the rest of this section to proving Lemma 13. The bound on the size of F
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immediately follows from Theorem 12. We analyze the hop-reducing properties of F
by showing the following. Let π be a shortest path from u to v in G. Then there is a
node w on π and a path π′ from u to w in H = G ∪ F with the following properties:
(1) The distance from u to w in G is at least ∆.
(2) The path π′ consists of at most p edges of F and at most one edge of G.
(3) The ratio between the weight of π′ in H and the distance from u to w in G is at

most (1 + ε) if w 6= v and if w = v then the weight of π′ in H is at most β (for
some β that we set later).

When we go from u to w using the path π′ instead of the subpath of π we are using
a “shortcut” of at most p + 1 hops that brings us closer to v by a distance of at
least ∆ at the cost of some approximation. Conditions (1) and (2) guarantee that by
repeatedly applying this shortcutting we can find a path π′′ from u to v that has at
most (p+ 1)dd(u, v,G)/∆e hops (as we replace subpaths of π with weight at least ∆
by paths with at most p+ 1 hops). Condition (3) guarantees that the multiplicative
error introduced by using the shortcut is at most 1 + ε, except possibly for the last
time such a shortcut is used, where we allow an additive error of β. We show in
Lemma 14 that we can guarantee a value of β that is bounded by εn1/p/(p+ 2). This
type of analysis has been used before by Thorup and Zwick [69] to obtain a spanner
for unweighted graphs defined from the partial shortest path trees of the clusters,
but without considering the hop-reduction aspect. Bernstein [9] also used a similar
analysis to obtain a hop set for weighted graphs using clusters with full distance range.
We previously used this type of analysis to obtain a randomized hop set which is not
based on clusters, but on a similar notion [39].

To carry out the analysis as explained above we define a value ri for every
0 ≤ i ≤ p− 1 as follows:

r0 = ∆

ri =
(4 + 2ε)

∑
0≤j≤i−1 rj

ε
.

The intuition is that a node u of priority i tries to take an edge of F to shortcut the
way to v by at least ri. If this fails it will find an edge in F going to a node v′ of
higher priority. Thus, to fulfill Condition (3), v′ has to try and shortcut even more
“aggressively”. Consequently, the values of ri grow exponentially with the priority i.

We have chosen the range of the clusters large enough such that nodes of the
highest priority always find the desired shortcut edge in F . We will show that the
additive error incurred by this strategy is at most

β =
∑

0≤i≤p−1

2ri .

This value can in turn be bounded as follows.

Lemma 14. β ≤ εn1/p∆/(p+ 2).

Proof. We first show that, for all 0 ≤ i ≤ p− 1,
∑

0≤j≤i rj ≤ 7i∆/εi. The proof
is by induction on i. For i = 0 we have r0 = ∆ = 70∆ by the definition of r0 and for
i ≥ 1 we use the inequalities ε > 0 and ε ≤ 1 and the induction hypothesis as follows:

∑
0≤j≤i

rj =
∑

0≤j≤i−1

rj + ri =
∑

0≤j≤i−1

rj +
(4 + 2ε)

∑
0≤j≤i−1 rj

ε
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≤
∑

0≤j≤i−1 rj

ε
+

6
∑

0≤j≤i−1 rj

ε
≤

7
∑

0≤j≤i−1 rj

ε
≤ 7 · 7i−1∆

ε · εi−1
≤ 7i∆

εi
.

Using this inequality and the fact that (2p+ 7)7p−1 ≤ 9p for all p ≥ 0 we get

(p+ 2)β

ε
=

(p+ 2)
∑

0≤j≤p−1 2rj

ε
≤ (2p+ 4)7p−1∆

εp
≤ 9p∆

εp
≤ n1/p∆

The last inequality holds as by our choice of p = b
√

log n/ log (9/ε)c:

(9/ε)p = 2p·log (9/ε) ≤ 2

√
logn√

log (9/ε)
·log (9/ε)

= 2
√

logn·
√

log (9/ε)

= 2

√
log (9/ε)
√

logn
·logn

= 2logn·(1/p) = n1/p .

In the following we fix some values of ε and ∆ and let F denote the set of edges
computed by Procedure 3. We now show that F has a certain structural property
before we carry out the hop-reduction proof.

Lemma 15. Let u and v be nodes such that u ∈ Ai \Ai+1 (i.e., u has priority i)
and d(u, v,G) ≤ ri. Either
(1) F contains an edge (u, v) of weight w(u, v, F ) = d(u, v,G) or
(2) F contains an edge (u, v′) to a node v′ ∈ Ai+1 of priority j ≥ i + 1 of weight

w(u, v′, F ) ≤ 2ri.

Proof. Consider first the case v ∈ C (u,A, R,G). Then F contains the edge (u, v)
of weight w(u, v, F ) = d(u, v,G).

Consider now the case v /∈ C (u,A, R,G). Note that by the definition of β we
have ri ≤ β/2 < β and by Lemma 14 we have β ≤ n1/p∆ (where p is the parameter
controlling the construction of clusters). As the algorithm sets R = n1/p∆ we have
ri ≤ R by Lemma 14 and thus d(u, v,G) ≤ R. From the definition of C (u,A, R,G) it
now follows that d(v, u,G) ≥ d(v,Ai+1, G). Thus there exists some node v1 ∈ Ai+1 of
priority p1 ≥ i+ 1 such that d(v, v1, G) ≤ d(u, v,G). By the triangle inequality we get
d(u, v1, G) ≤ d(u, v,G) + d(v, v1, G) ≤ 2d(u, v,G) ≤ 2ri ≤ R. If u ∈ C (v1,A, R,G)
then we are done as F contains the edge (u, v1) of weight w(u, v1, F ) = d(u, v1, G) ≤ 2ri.
Otherwise it follows from the definition of C (v1,A, R,G) that there is some node
v2 ∈ Ap1+1 of priority p2 ≥ p1 +1 ≥ i+1 such that d(u, v2, G) ≤ d(u, v1, G) ≤ 2ri ≤ R.
By repeating the argument above we want to find some node vj ∈ Ai+1 of priority
pj ≥ i + 1 such that d(u, vj , G) ≤ d(u, v,G) ≤ 2ri. As for every node v′ ∈ Ap−1 of
priority p− 1, C (v′,A, R,G) contains all nodes that are at distance at most R from
v′ in G this repeated argument stops eventually and we find such a node.

To finish the proof of Lemma 13 we show in the next lemma that F has the
properties we demanded, i.e., in the shortcut graph H which consists of G and the
additional edges of F , we can approximate shortest paths using a reduced number of
hops.

Lemma 16. For every pair of nodes u, v ∈ V such that d(u, v,G) <∞, the graph
H = G ∪ F contains a path π′ from u to v of weight w(π′, H) ≤ (1 + ε)d(u, v,G) + β
consisting of |π′| ≤ (p+ 1)dd(u, v,G)/∆e edges.

Proof. The proof is by induction on the distance from u to v in G. The claim is
trivially true for the base case d(u, v,G) = 0 in which u = v. Thus, we only need to
consider the induction step in which d(u, v,G) ≥ 1.

Let π denote the shortest path from u to v in G. We now define a sequence of
nodes u0, u1, . . . , ul where l ≤ p− 1. For every 0 ≤ j ≤ l, we denote by pj the priority
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of uj . We set u0 = u and, given uj , we define uj+1 as follows. Let x be the node on π
closest to v that is at distance at most rpj from uj in G (this node might be v itself). If
F contains the edge (uj , x) we stop (and set l = j). Otherwise we know by Lemma 15
that F (and therefore also H) contains an edge (uj , u

′) to a node u′ of priority at
least pj + 1. In that case we set uj+1 = u′. We know further by Lemma 15 that
d(uj , uj+1, G) ≤ 2rpj+1−1. Note the definition of this sequence u0, u1, . . . , ul ensures
that l ≤ p− 1 as the priority strictly increases with each node uj . Having defined the
sequence, we denote by x the node on π closest to v that is at distance at most rpl
from ul in G (again, this node might be v itself). The definition of ul guarantees that
F (and thus H) contains the edge (ul, x). Figure 1 illustrates the definition of this
sequence.

u0

u1

u2

ul

x y v

decreasing distance to v

in
cr
ea
si
ng

pr
io
ri
ty

Fig. 1: Schematic illustration of the definition of the sequence of nodes u0, u1, . . . , ul, x.
The bottom line represents the shortest path π from u to v. The thick, blue edges
are the edges from F used to shorten the distance to v. The dashed, blue edges are
not contained in F and imply the existence of edges to nodes of increasing priority.
The node y is the successor of x on π and the thick, red edge (x, y) from G is the last
edge on the shortcut path from u0 to y. The dotted lines indicate repetitions that are
omitted in the picture.

Consider first the case that x = v. Let π′ denote the path 〈u0, . . . , ul, x〉. This path
has at most p hops and since d(u, v,G) ≥ 1 we trivially have p ≤ (p+ 1)dd(u, v,G)/∆e.
Furthermore we can bound the weight of π′ as follows:

w(π′, H) =
∑

0≤j≤l−1

w(uj , uj+1, H) + w(ul, x,H)

≤
∑

0≤j≤l−1

d(uj , uj+1, G) + d(ul, x,G)

≤
∑

0≤j≤l−1

2rpj+1−1 + rpl

≤
∑

0≤j≤p−1

2rj

= β ≤ (1 + ε)d(u, v,G) + β .

Consider now the case x 6= v. Let y be the neighbor of x on π (that in G is closer
to v than x is). We will define the path π′ from u to v as the concatenation of two
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paths π1 and π2. Let π1 be the path 〈u0, . . . , ul, x, y〉. We will define the path π2 from
y to v later on. Note that π1 consists of |p1| ≤ p+ 1 hops. We will now show that

(5) w(π1, H) ≤ (1 + ε)d(u, y,G) .

In order to get this bound we will need some auxiliary inequalities. By Lemma 15 we
have, for all 0 ≤ j ≤ l − 1,

(6) d(uj , uj+1, G) ≤ 2rpj+1−1

and by the definition of rpl we have

(7) εrpl = (4 + 2ε)
∑

0≤j≤pl−1

rj .

Remember that x is the node on the path π closest to v that is at distance at most rpl
from ul in G. Since the neighbor y of x is closer to v than x is, this definition of x
guarantees that d(ul, y,G) > rpj . As d(ul, y,G) ≤ d(ul, x,G) + d(x, y,G) by the
triangle inequality, we have

(8) d(ul, x,G) + d(x, y,G) > rpj .

By the triangle inequality we also have

d(ul, x,G) ≤
∑

0≤j≤l−1

d(uj , uj+1, G) + d(u, x,G)

and thus

(9) d(ul, x,G)−
∑

0≤j≤l−1

d(uj , uj+1, G) ≤ d(u, x,G) .

We now obtain Inequality (5) as follows:

w(π1, H) =
∑

0≤j≤l−1

w(uj , uj+1, H) + w(ul, x,H) + w(x, y,H)

=
∑

0≤j≤l−1

d(uj , uj+1, G) + d(ul, x,G) + d(x, y,G)

= (2 + ε)
∑

0≤j≤l−1

d(uj , uj+1, G) + d(ul, x,G) + d(x, y,G)

− (1 + ε)
∑

0≤j≤l−1

d(uj , uj+1, G)

(6)
≤ (2 + ε)

∑
0≤j≤l−1

2rpj+1−1 + d(ul, x,G) + d(x, y,G)

− (1 + ε)
∑

0≤j≤l−1

d(uj , uj+1, G)

≤ (2 + ε)
∑

0≤j≤pl−1

2rj + d(ul, x,G) + d(x, y,G)

− (1 + ε)
∑

0≤j≤l−1

d(uj , uj+1, G)
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(7)
= εrpl + d(ul, x,G) + d(x, y,G)− (1 + ε)

∑
0≤j≤l−1

d(uj , uj+1, G)

(8)
< ε(d(ul, x,G) + d(x, y,G)) + d(ul, x,G) + d(x, y,G)

− (1 + ε)
∑

0≤j≤l−1

d(uj , uj+1, G)

= (1 + ε)

d(ul, x,G)−
∑

0≤j≤l−1

d(uj , uj+1, G)

+ (1 + ε)d(x, y,G)

(9)
≤ (1 + ε)d(u, x,G) + (1 + ε)d(x, y,G)

≤ (1 + ε)(d(u, x,G) + d(x, y,G)) = (1 + ε)d(u, y,G)

Note that d(y, v,G) < d(u, v,G). Therefore we may apply the induction hypothesis
on y and get that the graph H contains a path π2 from y to v of weight w(π2, H) ≤
(1 + ε)d(y, v,G) + β that has |π2| ≤ (p + 1)dd(y, v,G)/∆e hops. Let π′ denote the
concatenation of π1 and π2. Then π′ is a path from u to v in H of weight

w(π′, H) = w(π1, H) + w(π2, H)

≤ (1 + ε)d(u, y,G) + (1 + ε)d(y, v,G) + β

= (1 + ε)(d(u, y,G) + d(y, v,G)) + β

= (1 + ε)d(u, v,G) + β .

It remains to bound the number of hops of π′. To get the desired bound we first
show that d(u, y,G) ≥ ∆. By the triangle inequality we have

d(ul, y,G) ≤
∑

0≤j≤l−1

d(uj , uj+1, G) + d(u, y,G) .

As argued above, we have d(ul, y,G) > rpj and∑
0≤j≤l−1

d(uj , uj+1, G) ≤
∑

0≤j≤pl−1

2rj .

By the definition of rpl we therefore get:

d(u, y,G) ≥ d(ul, y,G)−
∑

0≤j≤l−1

d(uj , uj+1, G)

≥ rpl −
∑

0≤j≤pl−1

2rj = (4/ε)
∑

0≤j≤pl−1

rj ≥ r0 = ∆ .

Now that we know that d(u, y,G) ≥ ∆, or equivalently d(u, y,G)/∆ ≥ 1, we get the
following for counting the number of hops of π′ by adding the number of hops of π1 to
the number of hops of π2:

|π′| = |π1|+ |π2| ≤ p+ 1 + (p+ 1)dd(y, v,G)/∆e
= (p+ 1)(1 + dd(y, v,G)/∆e)
= (p+ 1)d1 + d(y, v,G)/∆e
≤ (p+ 1)dd(u, y,G)/∆ + d(y, v,G)/∆)e
= (p+ 1)d(d(u, y,G) + d(y, v,G))/∆e
= (p+ 1)dd(u, v,G)/∆e .
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Thus, π′ has the desired number of edges.

3.3. Hop Reduction without Additive Error. Consider a shortest path π
from u to v with h hops and weight R ≥ ∆. With the hop reduction of Procedure 3
we can compute a set of edges F such that in G ∪ F we find a path from u to v with
Õ(R/∆) hops of weight approximately R (where we incur an additive error of roughly
∆no(1)). We now use the weight-rounding technique of Lemma 3 and repeatedly
apply this algorithm to obtain a set of edges F such that in G ∪ F there is a path
from u to v with O(h/∆) hops and weight approximately R. As in general R can
only be upper-bounded by nW (where W is the maximum edge weight of G) and h
can be upper-bounded by n, the second type of hop reduction seems more desirable.
Additionally, if h is sufficiently larger than ∆, then the additive error inherent in the
hop reduction of Procedure 3 can be counted as a small multiplicative error.11

The second hop reduction algorithm roughly works as follows. For every possible
distance range of the form 2j . . . 2j+1 we scale down the edge weights of G by a certain
factor and run the algorithm of Procedure 3 on the modified graph Ĝj to compute a set
of edges F̂j . We then simply return the union of all these edge sets (with the weights
scaled back to normal again). Procedure 4 shows the pseudocode of this algorithm.

Procedure 4: HopReduction(G, ∆, h, ε, W )
Input: Weighted graph G = (V,E) with positive integer edge weights in

{1, . . . ,W}, ∆ ≥ 1, h ≥ 1, 0 < ε ≤ 1
Output: Hop-reducing set of edges F ⊆ V 2 as specified in Lemma 17

1 ε′ ← ε
6

2 ∆′ ← 3∆
ε′

3 F ← ∅
4 for j = 0 to blog(nW )c do
5 Ĝj ← (V,E)

6 ρj ← ε′2j

h

7 foreach (u, v) ∈ E do w(u, v, Ĝj)←
⌈
w(u,v,G)

ρj

⌉
8 F̂j ← HopReductionAdditiveError(Ĝj, ∆′, ε′)
9 foreach (u, v) ∈ F̂j do

10 F ← F ∪ {(u, v)}
11 w(u, v, F )← min(w(u, v, F̂j) · ρj , w(u, v, F ))

12 return F

Lemma 17. Let F ⊆ V 2 be the set of edges computed by Procedure 4 for a weighted
graph G = (V,E) with positive integer edge weights in {1, . . . ,W} and parameters
∆ ≥ 1, h ≥ 1, and 0 < ε ≤ 1. Then F has size Õ(pn1+1/p log nW ), where p =
b
√

(log n)/(log (54/ε))c, and if h ≥ n1/p∆/(p+ 2), then in the graph H = G ∪ F we
have, for every pair of nodes u and v,

d(p+2)h/∆(u, v,H) ≤ (1 + ε)dh(u, v,G) .

11Note that for smaller values of h, π itself has a small enough number of hops and thus there is
no need to find a path in G ∪ F with a small number of hops and weight approximately R.
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Proof. Let u and v be a pair of nodes and set j = blog dh(u, v,G)c, i.e., 2j ≤
dh(u, v,G) ≤ 2j+1. Let π be a shortest ≤ h hop path in G, i.e., π has weight
w(π,G) = dh(u, v,G) and π consists of |π| ≤ h hops. The algorithm sets ε′ = ε/6
and uses a graph Ĝj which has the same nodes and edges as G, but in which every
edge weight is first scaled down by a factor of ρj = ε′2j/h and then rounded up
to the next integer. By Lemma 3 we have d(u, v, Ĝj) · ρj ≤ (1 + ε′)dh(u, v,G) and
d(u, v, Ĝj) ≤ (1 + 2/ε′)h ≤ 3h/ε′.

Consider the set of edges F̂j computed in Procedure 4 (such a set does indeed
exist because dh(u, v,G) ≤ nW ). By Lemma 13, there is a path π′ in Ĥj = Ĝj ∪ F̂j
of weight at most (1 + ε′)d(u, v, Ĝj) + ε′n1/p∆′/(p + 2) and with at most |π′| ≤
(p+ 1)dd(u, v, Ĝj)/∆

′e hops. Since we have d(u, v, Ĝj) ≤ 3h/ε′ and the algorithm sets
∆′ = 3∆/ε′, we get

|π′| ≤ (p+ 1) ·

⌈
d(u, v, Ĝj)

∆′

⌉

≤ (p+ 1) ·
⌈

3h

ε′∆′

⌉
= (p+ 1) ·

⌈
h

∆

⌉
≤ (p+ 1)

(
h

∆
+ 1

)
=

(p+ 1)h

∆
+ (p+ 1)

≤ (p+ 1)h

∆
+ 4p ≤ (p+ 1)h

∆
+ n1/p ≤ (p+ 1)h

∆
+
h

∆
=

(p+ 2)h

∆
.

The algorithm “scales back” the edge weights of F̂j when adding them to F

and thus w(u, v, F ) ≤ w(u, v, F̂j) · ρj . We now argue that d(p+1)dh/∆e(u, v,H) ≤
(1 + ε′)dh(u, v,G) by bounding the weight of π′ in H = G ∪ F . For every edge
(u, v) of π′ we have w(u, v,H) ≤ w(u, v, F ) ≤ w(u, v, F̂j) · ρj if (u, v) ∈ F̂j and
w(u, v,H) ≤ w(u, v,G) ≤ w(u, v, Ĝj) · ρj otherwise. Thus, w(π′, H) ≤ w(π′, Ĥj) · ρj
and together with the assumption h ≥ n1/p∆/(p+ 2) we get

d(p+2)h/∆(u, v,H) ≤ w(π′, H) ≤ w(π′, Ĥj) · ρj

≤
(

(1 + ε′)d(u, v, Ĝj) +
ε′n1/p∆′

p+ 2

)
· ρj

= (1 + ε′)d(u, v, Ĝj) · ρj +
ε′n1/p∆′ρj
p+ 2

= (1 + ε′)d(u, v, Ĝj) · ρj +
3ε′2jn1/p∆

h(p+ 2)

≤ (1 + ε′)d(u, v, Ĝj) · ρj + 3ε′2j

≤ (1 + ε′)2dh(u, v,G) + 3ε′dh(u, v,G)

≤ (1 + 6ε′)dh(u, v,G)

= (1 + ε)dh(u, v,G) .
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3.4. Computing the Hop Set. We finally explain how to repeatedly use the
hop reduction of Procedure 4 to obtain an (no(1), o(1))-hop set. Procedure 4 computes
a set of edges F that reduces the number of hops needed to approximate the distance
between any pair of nodes by a factor of 1/∆ (where ∆ is a parameter). Intuitively
we would now like to use a large value of ∆ to compute a hop set. However, we want
to avoid large values of ∆ for two reasons. The first reason is that F only reduces the
number of hops if the shortest path has h ≥ ∆no(1) hops. Thus, for shortest paths
that already have h < ∆ hops the hop reduction is not effective. The second reason is
efficiency. The algorithm requires us to compute clusters for distances up to ∆no(1)

and, in the models of computation we consider later on, we do not know how to do
this fast enough for our purposes.

We therefore use the following iterative approach in which we repeatedly apply
the hop reduction of Procedure 4 with ∆ = (p + 2)n1/p = no(1). We first compute
a set of edges F1 that reduces the number of hops in G by a factor of 1/∆. We
then add all these edges to G and consider the graph H1 = G ∪ F1. We apply the
algorithm again on H1 to compute a set of edges F2 that reduces the number of hops
in H1 by a factor of 1/∆. Now observe that the set of edges F1 ∪ F2 reduces the
number of hops in G by a factor of 1/∆2. We show that by repeating this process
p = Θ(

√
log n/ log (

√
log n/ε)) times we can compute a set F that reduces the number

of hops to n1/p. Procedure 5 shows the pseudocode of this algorithm.

Procedure 5: HopSet(G, ε, W )
Input: Weighted graph G = (V,E) with positive integer edge weights in

{1, . . . ,W}, 0 < ε ≤ 1
Output: (n1/p, ε)-hop set F ⊆ V 2 as specified in Theorem 18

1 ε′ ← ε√
logn

2 W ′ ← (1 + ε)nW

3 p←
⌊√

logn
log (54/ε′)

⌋
4 ∆← (p+ 2)n1/p

5 F ← ∅
6 H0 ← G
7 for i = 0 to p− 1 do
8 hi ← n1−i/p

9 Fi+1 ← HopReduction(Hi, ∆, hi, ε′, W ′)
10 F ← F ∪ Fi+1

11 Hi+1 ← Hi ∪ Fi+1

12 return F

Theorem 18. Let F ⊆ V 2 be the set of edges computed by Procedure 5 for a
weighted graph G = (V,E) with positive integer edge weights in {1, . . . ,W} and a
parameter 0 < ε ≤ 1. Then F is an (n1/p, ε)-hop set of size Õ(p2n1+1/p log nW ),
where p = b

√
(log n)/(log (54

√
log n/ε))c.

Proof. The algorithm sets ε′ = ε/
√

log n and p = b
√

(log n)/(log (54/ε′))c and
uses a parameter hi = n1−i/p for each graph Hi. For every 0 ≤ i ≤ p − 2 we set
hi = n1−i/p ≥ n2/p = n1/p∆/(p+ 2) and thus, by Lemma 17, for every pair of nodes
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u and v we have

dhi+1(u, v,Hi+1) = dhi/n
1/p

(u, v,Hi+1) = d(p+2)hi/∆(u, v,Hi+1)

≤ (1 + ε′)dhi(u, v,Hi) .

By iterating this argument we get

dhi(u, v,Hi) ≤ (1 + ε′)idh0(u, v,H0) = (1 + ε′)idn(u, v,G) = (1 + ε′)id(u, v,G)

for every 1 ≤ i ≤ p− 1 and now in particular for i = p− 1 we have

dn
1/p

(u, v,Hp−1) = dhp−1(u, v,Hp−1) ≤ (1 + ε′)(p−1)d(u, v,G) .

Finally, since p− 1 ≤
√

log n we have, by Bernoulli’s inequality ((1 + x)r ≤ 1 + rx for
reals 0 ≤ r ≤ 1 and x ≥ −1),

(1 + ε′)p−1 =

(
1 +

ε√
log n

)p−1

≤
(

1 +
ε√

log n

)√logn

≤ 1 + ε .

As Hp−1 = G ∪ F it follows that dn
1/p

(u, v,G ∪ F ) ≤ (1 + ε)d(u, v,G) and thus
F =

⋃
1≤i≤p−1 Fi is an (n1/p, ε)-hop set.

The main computational cost for constructing the hop set comes from computing
the clusters in Procedure 3, which is used as a subroutine repeatedly. Observe that in
total it will perform O(p log nW ) calls to Procedure 2 to compute clusters, each with
p = Θ(

√
(log n)/(log (

√
log n/ε))) priorities and distance range R = O(p

√
log nn2/p/ε)

on a weighted graph of size Õ(m+ p2n1+1/p log (nW )). Note that if 1/ε ≤ polylog n,
then n1/p = no(1). Thus, Procedure 5 will then compute an (no(1), o(1))-hop set
of size O(n1+o(1) logW ) and it will perform Õ(logW ) cluster computations with
p = Θ(

√
log n/ log log n) priorities up to distance range O(no(1)) on graphs of size

O(m1+o(1) logW ) each, where m is the number of edges of the input graph.

4. Distributed Approximate Single-Source Shortest Paths Algorithm
on Networks with Arbitrary Topology. In this section we describe a deterministic
distributed algorithm for computing distances from a source node s. It consists of
two parts. The first part is constructing a suitable overlay network. A randomized
construction algorithm was given in [58] such that it was sufficient to solve SSSP on
the resulting overlay network in order to solve the same problem on the whole network.
We give a deterministic version of this result in Subsection 4.1. The second part is a
more efficient algorithm for computing SSSP on an overlay network using Procedures
1, 2, 3, 4, and 5 from before (see Subsection 4.2). In Subsection 4.3, we show how to
finish the computation after combining the two parts following [58].

4.1. Computing an Overlay Network Deterministically. An overlay net-
work (also known as landmark or skeleton [67, 52]) as defined in [58] is a virtual network
G′ = (V ′, E′) of nodes V ′ and “virtual edges” E′ that is built on top of an underlying
real network G = (V,E); i.e., V ′ ⊆ V and E′ = V ′ × V ′ such that the weight of an
edge in G′ is an approximation of the distance of its endpoints in G and is ∞ if no
path exists between them in G. The nodes in V ′ are called centers. Computing G′
means that after the computation every node in G′ knows whether it is a center and
knows all virtual edges to its neighbors in G′ and the corresponding weights. We show
in this subsection that there is a Õ(

√
n/ε + D)-time algorithm that constructs an
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Fig. 2: An overview of the main steps of our algorithm. The left picture depicts the
input graph. Thick edges and nodes (in black) in the middle picture depict a possible
overlay network. Dashed edges (in red) in the right picture depict a possible hop set
of the overlay network.

overlay network G′ of Õ(
√
n/ε) nodes such that a (1 + ε/3)-approximation to SSSP

in G′, can be converted to a (1 + ε)-approximation to SSSP in G, as stated formally
below.

Theorem 19. In the broadcast CONGEST model, given any weighted undirected
network G = (V,E) with polynomially bounded positive integer edge weights and source
node s and a parameter 0 < ε ≤ 1, there is an O(

√
nλ(λ+ log (nW )) log (nW )/ε+D)-

time deterministic distributed algorithm that computes an overlay network G′ = (V ′, E′)
and some additional information for every node with the following properties.

• Property 1: |V ′| = O(
√
nλ log (nW )/ε) and s ∈ V ′.

• Property 2: For every node u ∈ V , as soon as u receives a (1 + ε/3)-
approximation d̃(s, v) of d(s, v,G′) for all centers v ∈ V ′, it can infer a
(1 + ε)-approximation of d(s, u,G) without any additional communication.

Note that in this paper we assume that λ = O(log n) and W = poly(n) and hence
the overlay network has size |V ′| = Õ(

√
n/ε) and the running time is Õ(

√
n/ε+D).

Observe that the statement of the theorem makes our algorithm very modular by
separating the tasks of (i) constructing the overlay network and (ii) computing a
(1 + ε/3)-approximation of d(s, v,G′) for all centers v ∈ V ′. In Subsection 4.2 we show
how to perform the second task by implementing the hop-set algorithm of Section 3.
It could however be replaced by any other algorithm providing such a (1 + ε/3)-
approximation, as is for example done in the recent approximate SSSP algorithm by
Becker et al. [7], which also benefits from our deterministic construction of the overlay
network.

Before proving the above theorem, we first recall how similar guarantees were
achieved with a randomized algorithm in [58]12 (see Theorem 4.2 of the arXiv version13
of [58] for details).

• In the first step of [58], the algorithm selects each node to be a center with
probability Θ̃(1/

√
n) and also makes s a center. By a standard “hitting set”

argument (e.g. [72, 16]), any shortest path containing
√
n edges will contain a

center with high probability. Also, the number of centers is Θ̃(
√
n) with high

probability.
• In the second step, the algorithm makes sure that every node v knows (1+O(ε))-

12We note that [58] proved this theorem for general parameters λ and α but we will only need it
for λ = α =

√
n.

13http://arxiv.org/pdf/1403.5171v2.pdf
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G Graph defining underlying network, input of algorithm
G′ Graph defining overlay network, output of algorithm
ε Input parameter governing approximation quality
V Node set of G, |V | = n
V ′ Node set G′ called centers, V ′ ⊆ V , |V ′| = O(

√
nλ log (nW )/ε)

W Maximum edge weight of G
D Diameter of G
λ Number of bits used to represent each ID in the network G
ε̃ Parameter set to ε̃ = ε

10

ε̂ Parameter set to ε̂ = ε̃
18λ

h Parameter set to h = bε̂
√
nc

h′ Parameter set to h′ = (1 + 2/ε̂)h
h∗ Parameter set to h∗ = 9λ

√
n

k Parameter set to k = 2h∗ + 2
√
n

k′ Parameter set to k′ = (1 + 2/ε̂)k
j Generic index variable 0 ≤ j ≤ blog (nW )c
ρj Rounding factor set to ρj = ε̂2j

h

Ĝj Graph with edge weights w(u, v, Ĝj) = dw(u,v,G)
ρj

e
ϕj Rounding factor set to ϕj = ε̃2j

k

G̃j Graph with edge weights w(u, v, G̃j) = dw(u,v,G)
ϕj

e
B(v, Ĝj , h

′) Ball of radius h′ around v in Ĝj
t(v) Type of node v, smallest j such that |B(v, Ĝj , h

′)| ≥ h
Uj Set of nodes of type j, Uj ⊆ V
Tj (2h′ + 1, (2h′ + 1)λ)-ruling set Tj for Ĝj of base set Uj

dh
∗
(u, v,G) h∗-hop distance between u and v in G

dk(u, v,G) k-hop distance between u and v in G
d̂(u, v) (1 + ε̃)-approximation of dk(u, v,G)

d̃(s, v) (1 + ε/3)-approximation of d(s, v,G′)

Table 1: Overview of notation used in Subsection 4.1

approximate Θ̃(
√
n)-hop distances between v and all centers using a light-

weight bounded-hop single-source shortest paths algorithm from all centers in
parallel combined with the random delay technique to avoid congestion.

Let us now give an overview of our new approach. We derandomize the first step as
follows: In Subsection 4.1.1 we assign to each node u a type, denoted by t(u). (To
compute these types, we invoke the source detection algorithm of Lenzen and Peleg
[54], as we will explain in Subsection 4.1.1.) The important property of nodes’ types
is that every path π containing

√
n edges contains a special node u of a “desired” type,

meaning that t(u) is not too big compared to w(π,G) (see Lemma 20 for details).
This is comparable to the property obtained from the hitting set argument, which
would be achieved if we made the special node of every path a center. However, this
may create too many centers (we want the number of centers to be Õ(

√
n/ε)). Instead

we select some nodes to be centers using the ruling set algorithm, as described in
Subsection 4.1.2. After this, we get a small set of centers such that every node u of
type t(u) is not far from one of the centers. Thus, while we cannot guarantee that
the path π contains a center, we can guarantee that it contains a node that is not far
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from a center (see Lemma 21 for details).
To derandomize the second step, we use the recent algorithm of Lenzen and

Patt-Shamir [53] for the Partial Distance Estimation (PDE) problem together with
the above Procedures 1, 2, 3, 4, and 5 as we will explain in Subsection 4.1.3.

Since this part of the paper is particularly dense in notation, we summarize the
notation used in this subsection in Table 1.

4.1.1. Types of Nodes. Our algorithm initially spends O(D) rounds to make
n and λ (and if necessary ε) global knowledge. Every node internally sets ε̃ = ε/10,
ε̂ = ε̃/(18λ), h = bε̂

√
nc, and h′ = (1 + 2/ε̂)h. Note that h′ ≤ 3

√
n.

For any integer 0 ≤ j ≤ blog nW c, we let ρj = ε̂2j

h and let Ĝj be the graph with the
same nodes and edges as G and weight w(u, v, Ĝj) = dw(u,v,G)

ρj
e for every edge (u, v).

Note that we have chosen h′ such that d(u, v, Ĝj) ≤ h′ for all pairs of nodes u and v
such that 2j ≤ d(u, v,G) ≤ 2j+1 by Equation (3) of Lemma 3. For any node u, let the
ball of u in Ĝj be B(u, Ĝj , h

′) = {v ∈ V ) | d(u, v, Ĝj) ≤ h′}. Note that for any index j
and nodes u and v, d(u, v, Ĝj+1) ≤ d(u, v, Ĝj); thus, B(u, Ĝj , h

′) ⊆ B(u, Ĝj+1, h
′).

Let the type t(u) of u be the smallest index j such that |B(u, Ĝj , h
′)| ≥ h. We crucially

exploit the following structural property.

Lemma 20. For every path π of G consisting of |π| =
√
n edges there is a node u

on π such that 2t(u) ≤ 2ε̂w(π,G).

Proof. Let ` = d|π|/he ≥ 1/ε′ and let x and y denote the endpoints of π. Parti-
tion π into the path πx consisting of the (`− 1)h edges closest to x and the path πy
consisting of the |π| − (` − 1)h edges closest to y. Further partition πx into ` − 1
non-overlapping subpaths of exactly h edges, and expand the path πy by adding edges
of πx to it until it has h edges. Thus, there are now ` paths of exactly h edges each
and total weight at most 2w(π,G). It follows that there exists a subpath π′ of π
consisting of exactly h edges and weight at most 2w(π,G)/` ≤ 2ε̂w(π,G). Let u and v
be the two endpoints of π′ and let j be the index such that 2j ≤ dh(u, v,G) ≤ 2j+1.
By Equation (3) of Lemma 3 it follows that d(u, v, Ĝj) ≤ h′, which implies that
B(u, Ĝj , h

′) contains π′. Hence |B(u, Ĝj , h
′)| ≥ h and t(u) ≤ j. This shows that

2t(u) ≤ 2j ≤ dh(u, v,G) ≤ w(π′, G) ≤ 2ε̂w(π,G).

Computing Types of Nodes. To compute t(u) for all nodes u, it is sufficient for
every node u to know, for each j, whether |B(u, Ĝj , h

′)| ≥ h. We do this by solving
the (S, γ, σ)-detection problem on Ĝj with S = V , γ = h′ and σ = h, i.e., we
compute the list L(u, S, γ, σ,G) for all nodes u, which contains the σ nodes from S
that are closest to u, provided their distance is at most γ. By Theorem 5 this requires
O(γ + σ) = O(h + h′) = O(

√
n) rounds. For any node u, |L(u, V, h′, h,G)| = h if

and only if |B(u, Ĝj , h
′)| ≥ h. Thus, after we solve the (S, γ, σ)-detection problem on

all Ĝj , using O(
√
n log (nW )) rounds, every node u can compute its type t(u) without

any additional communication.

4.1.2. Selecting Centers via Ruling Sets. Having computed the types of the
nodes, we compute ruling sets for the nodes of each type to select a small subset of
nodes of each type as centers. Remember the two properties of an (α, β)-ruling set T
of a base set U : (1) all nodes of T are at least distance α apart and (2) each node
in U \ T has at least one “ruling” node of T in distance β. We use the algorithm of
Theorem 7 to compute, for every 0 ≤ j ≤ blog nW c, a (2h′+1, (2h′+1)λ)-ruling set Tj
for Ĝj where the input set Uj consists of all nodes of type j. The number of rounds for
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this computation is O(h′ log (nW )) = O(
√
n log (nW )). We define the set of centers

as V ′ = (
⋃

0≤j≤blog (nW )c Tj) ∪ {s}. Property (1) allows us to bound the number of
centers and by property (2) the centers “almost” hit all paths with

√
n edges.

Lemma 21. (1) The number of centers is |V ′| = O(
√
nλ log (nW )/ε). (2) For any

path π containing exactly
√
n edges, there is a node u in π and a center v ∈ V ′ such

that dh
∗
(u, v,G) ≤ ε̃w(π,G)), where h∗ = 9

√
nλ.

Proof. (1) For each j, consider any two nodes u and v in Tj . Since d(u, v, Ĝj) > 2h′

by Property (1) of the ruling set, B(u, Ĝj , h
′)∩B(v, Ĝj , h

′) = ∅. As every node u ∈ Tj
is of type j, |B(u, Ĝj , h

′)| ≥ h for every u ∈ Tj . We can therefore uniquely assign
h nodes to every node u ∈ Tj and thus |Tj | ≤ n/h = O(

√
nλ/ε).

(2) By Lemma 20, there is a node u in π such that 2t(u) ≤ 2ε̂w(π,G). Moreover,
there is a center v in the ruling set Tt(u) such that

(10) d(u, v, Ĝt(u)) ≤ (2h′ + 1)λ ≤ 3h′λ ≤ h∗ ,

where the second inequality is because h′ ≤ 3
√
n. Let π′ be the shortest path between

u and v in Ĝt(u). Then w(π′, Ĝt(u)) = d(u, v, Ĝt(u)) ≤ h∗, and as a consequence π′
contains at most h∗ edges. It follows that

dh
∗
(u, v,G) ≤ w(π′, G) (since π′ is u-v path with ≤ h∗ edges)

=
∑

(x,y)∈E(π′)

w(x, y,G)

≤
∑

(x,y)∈E(π′)

ρt(u) · w(x, y, Ĝt(u)) (since w(x, y, Ĝt(u)) = dw(x,y,G)
ρt(u)

e)

= ρt(u) · w(π′, Ĝt(u))

= ρt(u) · d(u, v, Ĝt(u)) (since π′ shortest u-v path in Ĝt(u))

=
ε̂2t(u)

h
· d(u, v, Ĝt(u)) (since ρt(u) = ε̂2t(u)

h )

≤ ε̂2t(u)

h
· 3h′λ (by (10))

≤ 9λ2t(u) (since h′ = (1 + 2
ε̂ )h ≤ 3h

ε̂ )
≤ 18λε̂w(π,G) (by Lemma 20)

= ε̃w(π,G) . (since ε̂ = ε̃
18λ )

4.1.3. Computing Distances to Centers. Let k = 2h∗ + 2
√
n, where h∗ =

9
√
nλ (as in Lemma 21), and k′ = (1 + 2/ε̂)k. In this step, we compute for every

node u and every center v a value d̂(u, v) that is a (1 + ε̃)-approximation of dk(u, v,G)

such that each node u knows d̂(u, v) for all centers v. In particular we also compute
d̂(u, v) for all pairs of centers u and v. To do this we follow the idea of partial distance
estimation [53]. As in Subsection 4.1.1, we do this by solving the source detection
problem on a graph with rounded weights.14 For every integer 0 ≤ j ≤ blog nW c,

14We note that the algorithm and analysis described in this subsection is essentially the same as
the proof of [53, Theorem 3.3]. We cannot use the result in [53] directly since we need a slightly
stronger guarantee, which can already be achieved by the same proof. (We thank Christoph Lenzen
for a communication regarding this.)
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let ϕj = ε̃2j

k and let G̃j be the weighted graph such that w(u, v, G̃j) = dw(u,v,G)
ϕj

e for
every edge (u, v) in G.

We solve the (S, γ, σ)-detection problem on G̃j for all 0 ≤ j ≤ blog nW c, with
parameters S = V ′, γ = k′ = (1 + 2/ε̂)k = O(

√
nλ2), and σ = |V ′|, where |V ′| =

O(
√
nλ log (nW )/ε) by Lemma 21. Using the algorithm of Theorem 5 for each graph G̃j

this takes O((γ + σ) log (nW )) = O(
√
nλ(λ + log (nW )) log (nW )/ε) rounds. At

termination, every node u knows the distances up to distance range k′ to all centers
in all G̃j ; i.e., it knows d(u, v, k′, G̃j) for all j and all centers v. For every node u ∈ V
and every center v ∈ V ′ we set d̂(u, v) = min0≤j≤blognWc{ϕj · d(u, v, k′, G̃j)}. Every
node u can compute d̂(u, v) without any additional communication as soon as the
source detection algorithm is finished. Now consider the index j∗ such that 2j

∗ ≤
dh(u, v,G) ≤ 2j

∗+1. It follows from Equation (3) of Lemma 3 that d(u, v, G̃j∗) ≤ k′

which implies that d(u, v, k′, G̃j∗) = d(u, v, G̃j∗). With Equations (2) and (4) we then
get

(11) d̂(u, v) ≤ ϕj∗ · d(u, v, k′, G̃j∗) = ϕj∗ · d(u, v, G̃j∗) ≤ (1 + ε̃)dk(u, v,G) .

Hence d̂(u, v) is the desired (1 + ε̃)-approximation of dk(u, v,G).

4.1.4. Completing the Proof of Theorem 19. We define our final overlay
network to be the graph G′ where the weight between any two centers u, v ∈ V ′ is
d̂(u, v) (as computed in Subsection 4.1.3). Additionally, for every node u ∈ V we
store the value of d̂(u, v) to all centers v ∈ V ′. We now show that all properties
stated in Theorem 19 hold for G′. Since we need O(

√
n log (nW )) rounds in Subsec-

tions 4.1.1 and 4.1.2 and (
√
nλ(λ+ log (nW )) log (nW )/ε) rounds in Subsection 4.1.3,

the running time to construct G′ is O(
√
nλ(λ + log (nW )) log (nW )/ε). Moreover,

|V ′| = O(
√
nλ log (nW )/ε) as shown in Lemma 21. This is as claimed in the first part

of Theorem 19. It is thus left to prove the following statement in Theorem 19: “for
every node u ∈ V , as soon as u receives a (1 + ε/3)-approximation d̃(s, v) of d(s, v,G′)
for all centers v ∈ V ′, it can infer a (1 + ε)-approximate value of d(s, u,G) without
any additional communication.” Recall that in Subsection 4.2 we show how compute,
and make known to all nodes, the values d̃(s, v) for all centers v ∈ V ′.

Consider any node u and let π be the shortest path between s and u in G.
If π contains less than

√
n edges, then dk(s, u,G) = d(s, u,G) and thus the value

d̂(s, u), which is a (1 + ε̃)-approximation of dk(s, u,G) known by u, is already a
(1 + ε̃)-approximation of d(s, u,G) (and thus, by the choice of ε̃ = ε/10, also a (1 + ε)-
approximation). If π contains at least

√
n edges, then partition π into subpaths

π0, π1, . . . , π` (for some ` ≥ 0) where π0 contains s, π` contains u, π0 contains at most√
n edges, and every subpath except π0 contains exactly

√
n edges. By Lemma 21,

for every 1 ≤ i ≤ `, there is a node xi and a center yi such that (i) xi is in πi and
(ii) dh

∗
(xi, yi, G) ≤ ε̃w(πi, G). Additionally, for 1 ≤ i ≤ `− 1, since xi and xi+1 lie on

π, their shortest path is the subpath of π between them and, thus, it consists of at
most 2

√
n edges. It follows that d2

√
n(xi, xi+1, G) = d(xi, xi+1, G). By our choice of

k = 2h∗ + 2
√
n, the triangle inequality and symmetry (i.e., d(v, v′, G) = d(v′, v,G))

give, for every 1 ≤ i ≤ `− 1

dk(yi, yi+1, G) ≤ dh
∗
(yi, xi, G) + d2

√
n(xi, xi+1, G) + dh

∗
(xi+1, yi+1, G)

≤ ε̃w(πi, G) + d(xi, xi+1, G) + ε̃w(πi+1, G) .
(12)

By the same argument

(13) dk(s, y1, G) ≤ d2
√
n(s, x1, G) + dh

∗
(x1, y1, G) ≤ d(s, x1, G) + ε̃w(π1, G)
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and

(14) dk(y`, u,G) ≤ dh
∗
(y`, x`, G) + d

√
n(x`, u,G) ≤ d(x`, u,G) + ε̃w(π`, G) .

We now argue that d̃(s, y`) + d̂(u, y`) (the sum of two values known to node u) is
a (1 + ε)-approximation of d(s, u,G). First, since d̃(s, y`) is a (1 + ε/3)-approximation
of d(s, y`, G

′), we get

d̃(s, y`) + d̂(u, y`) ≤ (1 + ε/3)d(s, y`, G
′) + d̂(u, y`) ≤ (1 + ε/3)(d(s, y`, G

′) + d̂(u, y`)) .

We now apply the triangle inequality, exploit that every edge (x, y) in G′ has weight
d̂(x, y) (implying d(x, y,G′) ≤ d̂(x, y)), and use Equations (11)–(14) from above to get

d(s, y`, G
′) + d̂(u, y`) ≤

(
d(s, y1, G

′) +

`−1∑
i=1

d(yi, yi+1, G
′)

)
+ d̂(u, y`)

≤

(
d̂(s, y1) +

`−1∑
i=1

d̂(yi, yi+1)

)
+ d̂(u, y`)

(11)
≤ (1 + ε̃)

(
dk(s, y1, G) +

`−1∑
i=1

dk(yi, yi+1, G)

)
+ (1 + ε̃)dk(u, y`)

≤ (1 + ε̃)

(
dk(s, y1, G) +

`−1∑
i=1

dk(yi, yi+1, G) + dk(u, y`, G)

)
(12)–(14)
≤ (1 + ε̃)

(
d(s, u,G) + 2ε̃

∑̀
i=1

w(πi, G)

)
≤ (1 + ε̃) (d(s, u,G) + 2ε̃d(s, u,G))

= (1 + ε̃)(1 + 2ε̃)d(s, u,G)

≤ (1 + 5ε̃)d(s, u,G)

= (1 + ε/2)d(s, u,G) .

By combining the two derivations above, we get

d̃(s, y`) + d̂(u, y`) ≤ (1 + ε/3)(1 + ε/2)d(s, u,G) ≤ (1 + ε)d(s, u,G) .

Thus, when u receives d̃(s, v′) for all centers v ∈ V ′, it can compute the value
minv∈V ′(d̃(s, v) + d̂(u, v)) and, as y` ∈ V ′, the argument above show that this value is
a (1 + ε)-approximation of d(s, u,G).

4.2. Computing a Hop Set on an Overlay Network. We now show how to
implement the algorithm to compute the hop set on the overlay network G′ presented
in Section 3 and how to compute approximate shortest paths from s in G′ using
the hop set presented in Section 3. We let G′ be the overlay network obtained from
Theorem 19 with ε = 1/ log n (to guarantee a (1 + o(1))-approximation in the end).
Throughout the algorithm we will work on overlay networks whose node set is the set
of centers V ′, but which might have different edge weights as, e.g., Procedure 4 calls
Procedure 3 on overlay networks with modified edge weights. Thus, we will use G′′ to
refer to an overlay network (with set of nodes V ′) on which Procedures 1, 2, 3, and 4
run to emphasize the fact that they might not equal G′. We let N be the number of
centers in G′ and G′′. Thus N = Õ(n1/2).
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4.2.1. Computing Bounded-Distance Single-Source Shortest Paths. We
will repeatedly use an algorithm for computing a shortest-path tree up to distance R
rooted at some center s on an overlay network G′′, where R = No(1). At the end of the
algorithm every center knows this tree. We do this in a breadth-first search manner, in
R+ 1 iterations. Like in Dijkstra’s algorithm, every center keeps a tentative distance
δ(s, u) from s and a tentative parent in the shortest-path tree, i.e., a center v such that
δ(s, u) = δ(s, v) + w(u, v,G′′). Initially, δ(s, s) = 0 and δ(s, v) =∞ for every center
v 6= s. In the Lth iteration, for L from 0 up to R, all centers in G′′ whose tentative
distance δ(s, u) is exactly L broadcast15 to all other centers a message (u, δ(s, u), v)
where v is the parent of u. Using this information, every center u will update (“relax”)
its tentative distance δ(s, u) and its tentative parent.

By a straightforward induction, after the Lth iteration, centers that have distance L
from s (i.e., that are at level L in the shortest-path tree) will already know their correct
distance. Thus, at the end of the last iteration every center knows the shortest-path
tree rooted at s up to distance R in G′′. To analyze the running time, note that over
R rounds we broadcast N messages in total, and if ML messages are broadcast in
the Lth iteration, then this iteration takes O(ML +D) rounds. (We emphasize that
the number of rounds depends on the diameter D of the original network, and not
of G′′.) The total number of communication rounds used over all iterations is thus
O(RD +

∑
LML) = O(N +RD).

4.2.2. Computing Priorities. We implement Procedure 1 on an overlay net-
work G′′. All necessary parameters can be computed beforehand and thus do not
require any communication. Initially every center knows that it is contained in A0 = V ′.
To compute Ai+1 given that Ai is known (i.e., every center knows whether it is in Ai
or not), we compute the proximity list L(v,Ai, R, q,G

′′) for every center v using a
source detection algorithm and distribute each list to every center, where, by our
choice of parameters, R = No(1) and q = No(1). Then every center runs the same
deterministic greedy hitting set approximation algorithm to compute Ai+1.16 We
will obtain A = (Ai)0≤i≤p by repeating this for p iterations. Thus, we have to solve
the (S, γ, σ)-source detection problem with S = Ai, γ = R, and σ = q on an overlay
network G′′. For this purpose we simulate the source detection algorithm of Lenzen
and Peleg [54] (see Theorem 5 and preceded description of the algorithm) as if run on
the overlay network.

The simulated source detection algorithm consists of at most γ+σ iterations. Since
in each iteration of the source detection algorithm, each center sends the same message
to all of its neighbors, we can simulate each iteration by broadcasting at most N
messages in the underlying network G. Thus, simulating the source detection algorithm
takes O((σ + γ)(N +D)) rounds. To compute the priorities, we repeat this process
for all p ≤ log n priorities. The overall running time for implementing Procedure 1
therefore is O((N + D)p(R + q)). With our choice of parameters (N = Õ(n1/2),
p ≤ log n, q = No(1), and R = No(1)), this becomes

(15) n1/2+o(1) +Dno(1) .

15More precisely, there is a designated node (e.g. the node with lowest ID) that aggregates and
distributes the messages (via upcasting and downcasting on the breadth-first search tree of the
underlying network G), and tells other center when the iteration starts and ends.

16Note that the number of internal computation steps of the greedy algorithm at each center is
linear in its input, which we can upper bound by the number of messages received in all rounds.
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4.2.3. Computing Clusters. We now describe how to compute clusters on
an overlay network G′′ such that at the end of this computation, every center will
know all clusters C (v,A, R,G′′) (i.e., its own cluster and the cluster of every other
center). We do this by implementing Procedure 2 on G′′. First, we need to compute
d(v,Ai+1, R,G

′′), for every 1 ≤ i ≤ p. This can be done in exactly the same way as
in the first phase of computing the hierarchy A = (Ai)0≤i≤p; i.e., we add a virtual
source s∗ and edges of weight zero between s∗ and centers in Ai, and compute the
shortest-path tree up to distance R rooted at s∗. Since such a tree can be computed
in O(N +RD) rounds and we have to compute p ≤ log n such trees, the total time we
need here is Õ(N +RD).

Next, we use the information gained above to compute the cluster up to distance R
from every center u in G′′, as described in Procedure 2. That is, in iteration L (starting
with L = 0 and ending with L = R), every center v having (i) δ(u, v) (the tentative
distance from u to v) equal to L and (ii) additionally δ(u, v) < d(v,Ai+1, R,G

′′) will
broadcast17 its distance to u to all other centers so that every other center, say w,
can (i) update its tentative distance δ(u,w) and (ii) add v and δ(u, v) to its locally
stored copy of C(u). Thus, there are

∑
v∈V ′ |C (v,A, R,G′′)| messages broadcast in

total, which is bounded from above by Õ(pN1/p) = n1/2+o(1) due to Theorem 12.
Note that this procedure computes C (v,A, R,G′′), for all centers v, in parallel.

Each iteration L requires O(
∑
v∈V ′Mv,L +D) rounds, where Mv,L is the number of

messages broadcast by node v in iteration L in the above computation. The total
number of rounds over all R iterations is thus

(16) O

 ∑
0≤L≤R

∑
v∈V ′

Mv,L +RD

 =

O

(∑
v∈V ′

|C (v,A, R,G′′)|+RD

)
= n1/2+o(1) +Dno(1) .

Note that since the computation is done by broadcasting messages, every center knows
the cluster C (v,A, R,G′′) for all v at the end of this computation. Together with the
running time bound of Equation (15) for computing the priorities, we arrive at the
following guarantees.

Lemma 22. For any overlay network G′′ = (V ′, E′′) with N = Õ(n1/2) centers,
the above algorithm, in n1/2+o(1) + Dno(1) rounds, deterministically computes a hi-
erarchy of centers A = (Ai)0≤i≤p and clusters C (v,A, R,G′′) for each center v as
specified in Theorem 12 with p ≤ log n priorities up to distance R = No(1) such
that

∑
v∈V ′ |C (v,A, R,G′′)| = n1+o(1) (and every center knows C (v,A, R,G′′) for

all centers v as well as the value of d(v, w,G′′) for every center v and every center
w ∈ C (v,A, R,G′′)).

4.2.4. Computing the Hop Reduction with Additive Error. We imple-
ment Procedure 3 on an overlay network G′′. All necessary parameters can be com-
puted beforehand and thus do not require any communication. We can then execute
Clusters(G′′, p, R) using the above algorithm to get (C (v,A, R,G′′), δ(v, ·))v∈V .
With this information, the set F , as specified in Procedure 3, can be computed without
any additional communication. Thus, executing Clusters(G′′, p, R) is the only part

17We note again that to do this, there is a designated center that aggregates and distributes the
messages (via upcasting and downcasting), and tells other centers when the iteration starts and ends.
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of computing F that requires communication. By Lemma 22 the total time needed to
execute Procedure 3 is therefore

(17) n1/2+o(1) +Dno(1) .

4.2.5. Computing the Hop Reduction without Additive Error. We im-
plement Procedure 4 on an overlay network G′′. All necessary parameters can be
computed beforehand and thus do not require any communication. Moreover, every
center knows about the edges incident to it and we can thus implicitly compute Ĝj , as
specified in Procedure 4, by scaling down edge weights without any communication.
We then execute Procedure 3 to compute F̂j . Knowing F̂j , we can compute F with-
out any additional communication. Thus, executing Procedure 3 is the only part of
computing F that requires communication and it is executed O(log (nW )) times. As
our implementation of Procedure 3 takes time n1/2+o(1) +Dno(1), as argued above (cf.
Equation (17)), the total time needed to execute Procedure 4 is

(18) n1/2+o(1) logW +Dno(1) logW .

4.2.6. Computing the Hop Set. We implement Procedure 5 on the overlay
network G′ All necessary parameters can be computed beforehand. Computing Fi+1

is done by calling Procedure 4 on the graph Hi, as specified in Procedure 5, which,
as argued above (cf. Equation (18)), takes time n1/2+o(1) logW +Dno(1) logW . As
every center knows its incident edges, the graph Hi+1 can be computed from Fi+1

without any additional communication. As we execute Procedure 4 p ≤ log n times,
the total time needed to implement Procedure 5 is pn1/2+o(1) logW +pDno(1) logW =
n1/2+o(1) logW +Dno(1) logW . By running this algorithm on G′ (which, as pointed
out, involves performing hop reductions and computing clusters on some other overlay
networks), we obtain the following theorem.

Theorem 23. In the broadcast CONGEST model, there is a deterministic algorithm
that, for any overlay network G′ with N = Õ(n1/2) centers and positive integer weights
in the range {1, . . . ,W} on edges between centers, computes an (no(1), o(1))-hop set
of G′ in n1/2+o(1) logW +Dno(1) logW rounds. When the algorithm has finished, every
center knows every edge in the hop set.

4.2.7. Routing via the Hop Set. Remember that the overlay network is
computed using the source detection algorithm of Lenzen and Peleg [54]. If a node x
of the overlay network wants to send a message to one of its neighbors y in the overlay
network it can do so by routing the message along a path in the original network whose
length is upper-bounded by the weight of the overlay edge (x, y). This routing can be
obtained by modifying the source detection algorithm to additionally construct BFS
trees rooted at the sources (see [54]), which in our case are the nodes of the overlay
network.

When we compute the hop set on the overlay network we broadcast all computed
clusters to all nodes in the network. In this way the clusters, the corresponding
partial shortest path trees of the clusters, as well as the hop set edges become global
knowledge. Therefore every node in the overlay network learns for every hop set edge
(x, y) to which path from x to y in the overlay network it corresponds. Thus, also for
every hop set edge (x, y) of the overlay network, x can send a message to y by routing
the message along a path in the original network whose length is upper-bounded by
the weight of the overlay edge (x, y). This means that the hop set computed by our
algorithm has the following awareness property, as introduced in the full version of



32 M. HENZINGER, S. KRINNINGER, AND D. NANONGKAI

[26]: A hop set F for a graph G is called aware if for every hop-set edge (x, y) ∈ F
of weight b there exists a corresponding path π in G between x and y of length b.
Furthermore, every node v on π knows dπ(v, x) and dπ(v, y), and its neighbors on π.

4.3. Final Steps. Let H = G′ ∪ F be the graph obtained by adding to G′

the edges of the (no(1), o(1))-hop set F computed above. To (1 + o(1))-approximate
d(s, v,G′) for every center v in G′, it is sufficient to (1 + o(1))-approximate the
h-hop distance dh(s, v,H), for some h = no(1). The latter task can be done in
O(hD + |V ′|) = no(1)D + n1/2+o(1) rounds by the same method as in Lemma 4.6 in
the full version of [58]. We give a sketch here for completeness. Let ε = 1/ log n. For
any 0 ≤ j ≤ blog(nW )c, let Ĥj be the graph obtained by rounding edge weights in H
as in Subsection 4.1.1; i.e., for every edge (u, v) we set w(u, v, Ĥj) = dw(u,v,H)

ρj
e, where

ρj = ε2j

h . For each Ĥj , we compute the shortest-path tree rooted at s up to distance
R = O(h/ε), which can be done in RD+ n1/2+o(1) = no(1)D+ n1/2+o(1) rounds, using
the algorithm described in Subsection 4.2.1. This gives d(s, v, R, Ĥj) for every center v.
We then use the following value as (1 + o(1))-approximation of dh(s, v,H) (and thus of
d(s, v,G′)): d̃(s, v) = minj ρj · d(s, v,R, Ĥj). The correctness of this algorithm follows
from Lemma 3.

Once we have (1 + o(1))-approximate values of d(s, v,G′) for every center v ∈ V ′,
we can broadcast these values to the whole network in Õ(n1/2 +D) rounds. Theorem 19
then implies that we have a (1+o(1))-approximate solution to the single-source shortest
paths problem on the original network. The total time spent is n1/2+o(1) + Dno(1).
By observing that the term no(1)D will show up in the running time only when
D = ω(no(1)), we can write the running time as n1/2+o(1) +D1+o(1), as claimed in the
beginning.

We thus have obtained the following result.

Theorem 24. In the broadcast CONGEST model, there is a deterministic algorithm
that, on any weighted undirected network with polynomially bounded positive integer
edge weights, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in n1/2+o(1) +D1+o(1) rounds.

5. Algorithms in Other Settings.

5.1. Congested Clique. In the congested clique model, the underlying commu-
nication network is a complete graph. Thus, in each round every node can send a
message to every other node. Apart from this topological constraint, the congested
clique model is similar to the CONGEST model.

We compute an (no(1), o(1))-hop set on a congested clique by implementing the
hop set construction algorithm in the same way as on the overlay network, as presented
in Subsection 4.2. (However, we do not compute an overlay network here.) The only
difference is the number of rounds needed for nodes to broadcast messages to all
other nodes. Consider the situation that M ′ messages are to be broadcast by some
nodes. On a network of arbitrary topology, we will need O(D + M ′) rounds. On a
congested clique, however, we only need O(M ′/n) rounds using the routing scheme of
Dolev et al. [19, Lemma 1] (also see [51]): If each node is source and destination of up
to n messages of size O(log n) (initially only the sources know destinations and contents
of their messages), we will need O(1) rounds to route the messages to their destinations.
In particular, we can broadcast n messages in O(1) rounds, and thus M ′ messages in
O(M ′/n) rounds. Using this fact, the number of rounds needed for the algorithm in
Subsection 4.2 reduces from O(

∑
v∈V ′ |C (v,A, R,G′)|+RD) on the overlay network G′
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(cf. Equation (16)) to O(
∑
v∈V |C (v,A, R,G)|/n+R) = Õ(pn1/p +R) = no(1) on a

congested clique G.18
Once we have an (no(1), o(1))-hop set, we proceed as in Subsection 4.3. Let

H = G ∪ F be the graph obtained by adding to the input graph G the edges of the
(no(1), o(1))-hop set F . We can treat H as a congested clique network with edge weights
different from G. (H can be computed without any additional communication since
every node already knows the hop set.) To (1 + o(1))-approximate d(s, v,G) for every
node v in G, it is sufficient to compute the h-hop distance dh(s, v,H), where h = no(1).
To do this, we follow the same approach for this problem as in [58, Section 5.1], where
we execute the distributed version of the Bellman-Ford algorithm for h rounds. That
is, every node u maintains a tentative distance from the source s, denoted by δ(s, u)
and in each round every node u broadcasts δ(s, u) to all other nodes. It can be shown
that after k rounds every node v knows the k-hop distance (i.e., δ(s, u) = dk(s, v,H))
correctly, and thus after h rounds we will get the h-hop distances as desired.19

Theorem 25. In the congested clique model, there is a deterministic algorithm
that, on any weighted undirected clique network with polynomially bounded positive
integer edge weights, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in no(1) rounds.

5.2. Streaming Algorithm. In the graph streaming model, the edges of the
input graph are presented to the algorithm in an arbitrary order. The goal is to design
algorithms that process this “stream” of edges using as little space as possible. In the
multipass streaming model we are allowed to read the stream several times and want
to keep both the number of passes and the amount of space used as small as possible.

Our streaming algorithm for constructing an (no(1), o(1))-hop set proceeds in
almost the same way as the distributed algorithm in Subsection 4.2. First, observe
that a shortest-path tree up to distance R can be computed in O(R) passes and with
Õ(n) space: We use the space to remember the tentative distances of the nodes to s,
and the shortest-path tree computed so far. At the end of the Lth pass we add nodes
having distances exactly L to the shortest-path tree, and update the distance of their
neighbors in the (L+ 1)th pass.

We compute the priorities, as described in Subsection 4.2.2, by solving p ≤ log n
instances of a (S, γ, σ)-detection problem with γ = R = No(1) and σ = q = No(1).
Observe that the guarantees of the source detection algorithm by Lenzen and Peleg
for the broadcast CONGEST model directly carry over to the Streaming model by
simulating the algorithm as follows:

• The tentative list of each node is stored using O(min (γ,WD) + min (σ, |S|))
space as, at any time, each node only needs to know at most min (γ,WD) +
min (σ, |S|) entries in its list (upper bounded by the total number of messages
each node will send).

18Instead of relying on the result of Dolev et al., we can use the following algorithm to broadcast
M ′ messages in O(M ′/n) rounds as follows. We assign an order to the messages, where messages
sent by a node with smaller ID appears first in the order and messages sent by the same node appear
in any order (a node can learn the order of its messages after it knows how many messages other
nodes have). We then broadcast the first n messages according to this order, say M1, . . . ,Mn, where
message Mi is sent to a node with the ith smallest ID, and such a node sends Mi to all other nodes.
This takes only two rounds. The next messages are handled similarly. This algorithm broadcasts
each n messages using 2 rounds, and thus the total number of rounds is O(M ′/n).

19Note that instead of the Bellman-Ford algorithm, one can also follow the steps in Subsection 4.3
instead. This gives a (1+o(1))-approximate value for dh(s, v,H) for every node v, which is sufficient for
computing a (1 + o(1))-approximate value for d(s, v,G). This algorithm is however more complicated.
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• The broadcast of one message per node in each round is simulated by writing
the O(n) messages to space

• The reception of messages in each round is simulated by making a pass over
the graph: every time an edge (u, v) and its corresponding weight are read
from the stream the reception of u’s message by v is simulated by reading u’s
message from space and then manipulating v’s tentative list accordingly.

We can summarize the guarantees of the source detection algorithm in the Streaming
model as follows.

Theorem 26 (Implicit in [54]). In the multipass streaming model, there is a
deterministic algorithm for solving the (S, γ, σ)-detection problem in min (γ,WD) +
min (σ, |S|) passes with O(n · (min (γ,WD) + min (σ, |S|))) space.

The algorithm for computing the priorities therefore needs O(p(R+ q)) = no(1) passes
and O(n(R+ q)) = n1+o(1) space.

To compute clusters, we compute n shortest-path trees up to distance R rooted at
different nodes in parallel. The number of passes is clearly O(R). The space is bounded
by the sum of the sizes of the shortest-path trees. This is O(

∑
v∈V |C (v,A, R,G)|)

which, by Theorem 12, is Õ(pn1+1/p) = n1+o(1). To compute the hop set we only have
to compute clusters Õ(logW ) times. So, we need no(1) logW passes and n1+o(1) logW
space in total. By considering the edges of the hop set in addition the edges read
from the stream it suffices to compute approximate single-source shortest paths up to
no(1) hops. Using the streaming version of the Bellman-Ford algorithm (one pass per
iteration), this can be done in no(1) logW additional passes.

Theorem 27. In the multipass streaming model, there is a deterministic algorithm
algorithm that, given any weighted undirected graph with polynomially bounded positive
integer edge weights, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in no(1) passes with n1+o(1) space.

6. Conclusion and Open Problems. We present deterministic distributed
(1 + o(1))-approximation algorithms for solving the single-source shortest paths prob-
lem on distributed weighted networks and other settings. The efficiencies of our
algorithms match the known lower bounds up to an no(1) factor. Important tools are
a deterministic hop set construction and a deterministic process that replaces the
well-known (randomized) hitting set argument.

In the conference version of this paper, we left as an open problem whether the
factor of no(1) in our bounds could be eliminated, and we in particular asked whether
this can be done by constructing a (polylog n, o(1))-hop set of size Õ(n). Such a hop
set construction however can be ruled out by a recent lower bound of Abboud, Bodwin,
and Pettie [2]. Our open problem was solved nonetheless by Becker et al. [7] who, using
tools from continuous optimization, showed that, in all the models that we considered
above, a (1 + ε)-approximation can be obtained with an overhead of ε−O(1) polylog n
compared to known lower bounds.

Our deterministic replacement of the hitting set argument works only when the
input graph is undirected. Our second open problem is thus how to derandomize
algorithms on directed graphs (where edge directions do not affect the communication;
see [58, 59] for more details). In particular, it is known that single-source shortest
paths can be (1 + ε)-approximated on directed weighted graphs in Õ(n1/2D1/2 +D)
time [58], and single-source reachability can be computed in Õ(n1/2D1/4 +D) time
[35]. However, these results are obtained by randomized algorithms, and whether there
are sublinear-time deterministic algorithms for these problems is still open.
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Finally, while our paper essentially settles the running time for computing single-
source shortest paths approximately, the best running time for solving this problem
exactly is O((n log n)2/3D1/3 + (n log n)5/6) [23], a recent result obtained after the
conference version of our paper appeared. This leaves a gap to the Ω̃(

√
n+D) lower

bound [21] and it is therefore natural to ask for an improved upper or lower bound.
In fact, in the past few years we have much better understood how to approximately
solve basic graph problems, such as minimum cut, single-source shortest paths, all-
pairs shortest paths, and maximum flows, on distributed networks (e.g. [60, 34, 33]).
However, when it comes to solving these problems exactly, almost nothing is known.
Understanding the complexity of exact algorithms is an important open problem.

We refer to [58, 59] for further open problems.

Appendix A. Proof of Lemma 3.
To prove (2), let πi be a shortest path between u and v in Gi. Observe that if we

consider this path in G (with the corresponding edge weights), then its total weight
is at least the distance between u and v in G, i.e. w(πi, G) ≥ d(u, v,G), because no
path in G can have weight less than the shortest path in G. We therefore get

ρi · d(u, v,Gi) = ρi ·
∑

(x,y)∈πi

w(x, y,Gi) =
∑

(x,y)∈πi

ρi ·
⌈
w(x, y,G)

ρi

⌉
≥

∑
(x,y)∈πi

w(x, y,G) = w(πi, G) ≥ d(u, v,G) .

To prove (4), let π be a shortest h-hop path from u to v in G. Observe that
w(π,Gi) ≥ d(u, v,Gi), as again no path has smaller weight then the shortest path in
Gi. By additionally exploiting the assumption dh(u, v,G) ≥ 2i, we get

d(u, v,Gi) · ρi ≤ w(π,Gi) · ρi =
∑

(x,y)∈π

w(x, y,Gi) · ρi =
∑

(x,y)∈π

⌈
w(x, y,G)

ρi

⌉
· ρi

≤
∑

(x,y)∈π

(w(x, y,G) + ρi) = w(π,G) + |π| · ρi = dh(u, v,G) + |π| · ρi

≤ dh(u, v,G) + h · ρi = dh(u, v,G) + ε2i ≤ dh(u, v,G) + εdh(u, v,G)

= (1 + ε)dh(u, v,G) .

To prove (3), we combine (4) with the assumption dh(u, v,G) ≤ 2i+1:

d(u, v,Gi) ≤
(1 + ε)dh(u, v,G)

ρi
=

(1 + ε)hdh(u, v,G)

ε2i
≤ (1 + ε)h2i+1

ε2i
= (1 + 2/ε)h .

Appendix B. Proof of Lemma 10.
We prove the claim by the probabilistic method. Consider a sampling process

that determines a set T ⊆ U by adding each element of U to T independently with
probability 1/(2x). Let E0 denote the event that |T | > |U |/x and for every 1 ≤ i ≤ k
let Ei denote the event that T ∩Si = ∅. First, observe that the size of T is |U |/(2x) in
expectation. By Markov’s inequality, we can bound the probability that the size of T is
at most twice the expectation by at least 1/2 and thus Pr[E0] = Pr[|T | > |U |/x] ≤ 1/2.
Furthermore, for every 1 ≤ i ≤ k, the probability that Si contains no node of T is

Pr[Ei] =

(
1− 1

2x

)|Si|
≤ 1−

(
1− 1

2x

)2x ln 3k

≤ 1

eln 3k
=

1

3k
.
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The set T fails to have the desired properties of a small hitting set if at least one of
the events Ei occurs. By the union bound we have

Pr

 ⋃
0≤i≤k

Ei

 ≤ ∑
0≤i≤k

Pr[Ei] ≤
1

2
+ k · 1

3k
=

1

2
+

1

3
< 1 .

It follows that the sampling process constructed a hitting set T for C = {S1, . . . , Sk}
of size at most |T | ≤ |U |/x with non-zero probability. Therefore a set T with these
properties must really exist. This finishes the proof of Lemma 10.

Appendix C. Ruling Set Algorithm.
For each node v, we represent its ID by a binary number v1v2 . . . vλ. Initially, we

set T0 = U . The algorithm proceeds for b iterations.
In the ith iteration, we consider ui for every node u ∈ Ti−1. If ui = 0, v remains

in Ti and sends a “beep” message to every node within distance c − 1. This takes
c − 1 rounds as beep messages from different nodes can be combined. If ui = 1, it
remains in Ti if there is no node v ∈ Ti−1 such that d(u, v,G) ≤ c and vi = 0; in other
words, it remains in Ti if it does not hear any beep after c− 1 rounds. The output is
T = Tλ. The running time of the above algorithm is clearly O(cλ) = O(c log n). Also,
the distance between every pair of nodes in T is at least c since for every pair of nodes
u and v of distance less than c, there is a i such that ui 6= vi, and in the ith iteration
if both u and v are in Ti−1, then one of them will send a beep and the other one will
not be in Ti. Finally, it can be shown by induction that after the ith round every node
in U is at distance at most i from some node in Ti; thus it follows that every node
in U is at distance at most cλ from some node in T .
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