Accepted version. version

doid=2933267.2933269

The published

is available here:

http://dl.acm.org/citation.cfm?

Benchmarking Integration Pattern Implementations

Daniel Ritter, Norman May, Kai Sachs
SAP SE
Dietmar-Hopp-Allee 16
Walldorf, Germany

{first-name.last-name}@sap.com

ABSTRACT

The integration of a growing number of distributed, hetero-
geneous applications is one of the main challenges of enter-
prise data management. Through the advent of cloud and
mobile application integration, higher volumes of messages
have to be processed, compared to common enterprise com-
puting scenarios, while guaranteeing high throughput. How-
ever, no previous study has analyzed the impact on message
throughput for Enterprise Integration Patterns (EIPs) (e. g.,
channel creation, routing and transformation).

Acknowledging this void, we propose EIPBench, a com-
prehensive micro-benchmark design for evaluating the mes-
sage throughput of frequently implemented EIPs and mes-
sage delivery semantics in productive cloud scenarios. For
that, these scenarios are collected and described in a process-
driven, TPC-C-like taxonomy, from which the most relevant
patterns, message formats, and scale factors are derived as
foundation for the benchmark. To prove its applicability, we
describe an EIPBench reference implementation and discuss
the results of its application to an open source integration
system that implements the selected patterns.

1. INTRODUCTION

Integration systems have become ubiquitous in enterprise
computing environments, since they address the need for
(business) application integration by acting as a messaging
hub [5]. The Enterprise Integration Patterns (EIPs) like
message channel creation, routing, and transformation [12],
as well as message delivery semantics (e.g., At-least Once,
Ezactly-Once) [26] constitute the building blocks of integra-
tion systems. Through a growing number of cloud applica-
tions, microservice architectures [8] and the rapidly growing
amount of data from the Internet of Things (IoT) domain,
integration systems gain even more importance.

These new cloud and mobile applications challenge clas-
sical integration systems because massive numbers of con-
current users, devices (i.e., message sources) and messages
— with message sizes up to several hundred megabytes [30]

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Stefanie Rinderle-Ma
University of Vienna
Wahringerstrasse 29

.. Vienna, Austria

stefanie.rinderle-ma@univie.ac.at

— have to be processed. The EIP operations like complex
routing patterns have to process the messages of diverse and
complex data formats (i.e., nested, multi-format), and con-
stitute a critical performance aspect of integration systems,
which we showed in previous work on “data-aware” mes-
sage processing [25]. The guarantee of reliable messaging,
expressed through configurable message delivery semantics,
adds a non-functional complexity to the message processing.

Given these new, challenging requirements, researchers
and practitioners in related areas have defined more “data-
aware” benchmarks that fostered novel solutions and allow
for comparing them. For instance, in the area of data inte-
gration TPC-DI [19] was recently standardized. For analyti-
cal and (business) application processing, e. g., BigBench [6,
21] targets end-to-end analytics processing, however, under-
represents the integration aspect. Complementary, complex
event- and stream processing benchmarks have been defined
(e.g., [2, 16]). They focus on small portions of frequent data
and analytical (stream) queries on actual and historic data.
Recently developed IoT and cyber-physical system bench-
marks [14] add new notions and can be seen as variants of
the existing benchmarks. They specifically target the an-
alytical processing of data within these applications (e.g.,
mostly event processing). On the application integration
side, some efforts were made as part of the SOA benchmark
[31], from which we take the ideas for the macroscale factors
concurrent client and flexible payload size.

Despite the importance of application integration, many
functional- and non-functional, performance-related ques-
tions cannot be answered today, due to the absence of a
benchmark (cf. [33]). To close this gap, this work focuses
on the following questions (Qz):

e What is the impact of complex routing conditions (Q1),
multiple route-branchings (Q2) and message delivery
semantics [26] (Q3) for “data-aware” scenarios?

e What is the impact of message sizes (Q4), e.g., large
messages, and concurrent users (Q5), e. g., for a grow-
ing amount of IoT devices?

e What is the potential of new message processing ap-
proaches (e. g., “micro-batching” [25]) and how can they
be compared (Q6)?

To answer these questions and to measure enhancements of
current pattern implementations, we define a micro-benchmark
for EIPs (without integration adapter processing) including
functional and non-functional aspects with a strong focus on
message throughput for “data-aware” integration scenarios.

rinderas8
Schreibmaschinentext

rinderas8
Schreibmaschinentext

rinderas8
Schreibmaschinentext
Accepted version. The published version is available here: http://dl.acm.org/citation.cfm?doid=2933267.2933269

Table 1;: EIPBench in the context of related work.
Benchmarks Category Transport | Message for- | EIPs Message de- | Scale factors | Concurrent
protocol mat / conv. (cf. Q1,Q2) livery seman- | (cf. Q4,Q6) users
tics (cf. Q3) (cf. Q5)
ESB Perf. [1] IS, (EIP) [E2E] | HTTP simple CBR, MT - msg sizes, concurrent | static
(SOAP-XML) (partially) users
SPECjms2007 | MS, JMS [E2E] | JMS, n/a - reliable, trans- | #dest, #msgs user ses-
[29], jms2009- AMQP actional sions
PS [28]
TPC-DI [19] DI, ETL [E2E] FILE, DB | simple (CSV, [- - data (incr. load) multiple
XML, TXT) sources
DIPBench [3, | DI, ETL, IS | configu- simple (XML) - - data size, time, distri- | parallel
4] [E2E] rable bution streams
FINCoS [16, | CEP, Stream | FILE, simple (CSV) #msgs
17] [E2E] JMS
EIPBench IS, EIP [Mi- n/a complex MF, | covered reliable mes- | concurrent users, | configurable
cro] NE (JSON) saging micro-batching, scale factor
message sizes

Category: Integration System (IS), Messaging System (MS), Java Message Service (JMS), Extract/Transform/Load (ETL), Data Integration (DI), Complex Event
Processing (CEP); Enterprise Integration Patterns (EIPs): Content-based Routing (CBR), Message Transform. (MT); Format: Multi-Format (MF), NEsted (NE).

Following some ideas from the SPEC SOA initiative [31],
we base the design of the benchmark on flexible, configurable
scale-factors on (i) a pattern or micro level and (ii) a general,
macro benchmark level. The contributions of the paper are:

(1) We analyze and classify common, “data-aware” inte-

gration scenarios to derive relevant patterns.

(2) We define an EIP micro-benchmark that covers testable
patterns, relevant for cloud applications, and specifies
microscale factors for each pattern (incl. message de-
livery semantics) to answer questions QI1-Q3.

(3) We specify macroscale factors that address the aspects
of large messages and concurrent users to answer ques-
tions Q4—Q6.

(4) We present a reference implementation of the bench-
mark to show its applicability and conduct experi-
ments by example of the questions (Q1-Q6).

Our contributions are set into context to related work in
Sect. 2. In Sect. 3 cloud integration scenarios of different
integration styles from the SAP HANA Cloud Integration
platform [30] are analyzed and classified. The general design
choices of the benchmark are discussed in Sect. 4 (incl. mes-
sage formats and macroscale factors). The scenario analysis
allows the derivation of relevant EIPs, for which we specify
microscale factors in Sect. 5. Furthermore, we discuss the
benchmark’s execution schedule and metrics in Sect. 6. In
Sect. 7 we present benchmark experiments that answer the
questions (Q1—Q6). Section 8 concludes our discussion and
gives a brief outlook on future work.

2. RELATED WORK

In this section we survey related benchmarking approaches
and analyze to what extent they satisfy core requirements
for integration systems and thus help answering the ques-
tions @Q1-6. Based on the comparison we derive gaps of
current benchmarks, which let us define design criteria for
EIPBench, see also Tab. 1.

For that, we categorize features of benchmarks in our
field by their target system (e.g., Extract/Transform/Load
(ETL), Messaging System (MS), Integration System (IS))
and scope (i. e., End-to-End (E2E) or Micro-benchmark (Mi-
cro); cf. [21]). We analyze the following benchmark dimen-
sions along important IS tasks (cf. [5, 12]): (a) we conducted
an evaluation about the message format definitions, lead-
ing to a differentiation between multi-format (MF), nested

(NE) and simple messages. Then we checked (b) how well
the related work supports EIP operations on these messages
(e.g., content-based routing (CBR), message transforma-
tion (MT)) and (c) message delivery semantics in general.
Hereby, format conversions on a message protocol level (i. e.,
usually done by integration adapters [26]) are distinguished
from those on the message content level. The scale factors
for (d) concurrent user measurements (Conc. Users) are
specified as either configurable or static (i.e., cannot be
changed), and (e) additional factors (SF) are shown sepa-
rately. Since the EIPBench micro-benchmark, considers the
operations in the integration process, integration adapter
and transport protocol related topics are out of scope. These
categories are discussed subsequently for each related field
or target system and compared in Tab. 1 for their major rep-
resentatives. To rate the maturity of a benchmark, the dis-
cussions contain hints on how recently the benchmarks were
published and whether they are still actively maintained.

2.1 Integration System

The only known, public integration system benchmark is
the ESB Performance benchmark [1], which was last exe-
cuted in the year 2013. The benchmark defines E2E inte-
gration scenario performance measurements. The number of
concurrent users is defined between 20 and 2, 560 users, with
a simple, flat XML-based payload embedded in a SOAP en-
velope. The test cases contain content-based routing on the
SOAP header and the body with one simple string-equal
routing condition using XPATH, and XSLT-based format
conversions (e.g., XML to CSV). Besides concurrent users,
the benchmark defines a static scale level for message sizes
(i.e., from 512 B to 100 KB). In contrast, EIPBench ex-
clusively focuses on the performance (i.e., throughput) of
EIP implementations, which requires more complex message
formats and more elaborate EIP operation definitions that
target only the message payload (currently defined by exam-
ple in JSON format). In addition EIPBench defines tests for
message sizes up to 500 MB and reliable messaging (message
retry, idempotency repository, resequencing). As transport
protocol, the ESB benchmark [1] uses HTTP only, while
EIPBench measures the performance of EIPs in an integra-
tion process without protocol adapters (cf. Tab. 1).

2.2 Messaging System
The complementary field of Messaging System (MS) bench-

marks targets point-to-point message queuing and topic-
based, publish-subscribe tests. The most prominent and still
active representative is the SPECjms2007 benchmark [29],
on which the jms2009-PS [28] publish-subscribe benchmark
is based. Although it addresses JMS implementations only,
it defines an E2E benchmark for concurrent users (i. e., con-
nections, sessions), scale-levels in the numbers of destina-
tions and messages, and reliable, durable and persistent mes-
sage queuing (cf. Tab. 1). The latter feature is similar to the
reliable messaging in integration systems, which uses mes-
saging systems for that purpose. However, SPECjms2007
does not define an EIP benchmark.

2.3 Data Integration / ETL

The work on data integration and ETL benchmarks can be
considered conceptually related from a message transforma-
tion point of view. For instance, the recently released TPC-
DI benchmark [19] defines an E2E data acquisition from
multiple source systems with simple CSV, XML and TXT
file data sets, and a data size scale factor for the import into
multiple target systems (e.g., data warehouse). Similar to
TPC-DI, the EIPBench uses the TPC-H data generator [23,
20], however, EIPBench constructs more complex message
formats (e. g., multi-format, nesting). The TPC-DI message
transformations are format conversions as conducted by in-
tegration adapters [26] (e.g., XML or CSV to DB), which
are different from the message transformations defined by
the EIPs. The quality of service patterns in EIP are not in
the focus of TPC-DI. On the other hand, the TPC-DI data
quality checks are not in the EIPs, thus out of scope of the
EIPBench (cf. Tab. 1).

The E2E Data-Intensive Integration Processes (DIPBench)
[3] benchmark is positioned as hybrid, conceptual framework
for ETL and integration system performance measurements.
This discontinued benchmark targets the physical data in-
tegration within the context of ETL processes. Compared
to EIPBench it does not specify EIP operations on the mes-
sages, works only with a simple XML-based message for-
mat, and neglects the message delivery semantics aspects of
integration systems. Similar to our benchmark, DIPBench
specifies several scale factors for data size, time and data dis-
tribution and allows to conduct concurrent user tests (i.e.,
parallel streams). The provided DIPBench tool suite [4]
focuses on the flexible configuration and pluggability of in-
tegration adapters (cf. Tab. 1).

2.4 Stream- / Event Processing

Benchmarks like FINCoS [17, 16] target the identification
of performance bottlenecks in event processing systems, by
measuring event throughput and the scalability of engines
when increasing the throughput of small event messages and
continuous streams. Similar to EIPBench different load con-
ditions can be configured, however, messages sizes and for-
mat complexities are static. Although the defined operators
(e.g., join, select, project) are similar to the operations in
integration systems, the definition does not target the EIPs.

2.5 EIPBench

Summarizing our analysis in Tab. 1, none of the bench-
marks covers all relevant aspects for the evaluation of inte-
gration processing in the context of “data-aware” scenarios.
EIPBench fills this void and addresses the following aspects:

e the analysis and classification of common and new in-
tegration scenarios and the required patterns.

e representative message models used in these integra-
tion scenarios (cf. message format and conversion).

e the definition of a message throughput, micro-benchmark
for EIPs (e.g., from [12]) that covers all requirements
and specifies microscale factors for each pattern (incl.
message delivery semantics; cf. Q1-3).

e the specification of macroscale factors that address the
aspects of large messages (cf. @4), concurrent user (cf.
@5) and micro-batching (cf. Q6).

3. INTEGRATION SCENARIOS

The EIPs from [12] are the building blocks for implement-
ing integration systems. In this section, we set their usage
in real-world cloud integration scenarios into context to gen-
erally known integration types and styles. The analysis is
based on several cloud solutions, productively running on
the SAP HANA Cloud Integration platform [30]. Therefore,
more than 148 distinct integration scenarios with 934 com-
mon EIP usages out of 1429 were analyzed (w/o adapters).

MachineaNiachn $T5:
acnin® T2 Machine2Cioud

1 $T6:
Devices, Machines, | i Machine2Cloud

ST3: Cloud2Cloud

Cloud Applications (ST3) Business Networks

Sensors, Actuators ¢
€ (Business Logic, Data)

(Device Logic, Data) l€---

—

A

Internet of Things Cloud Applications

Mach%peZOP . :
\ Cloud ST2: On-Premise2Cloud 1 B2B

On-Premise (OR,

User2User ST1: OP20P

oo] 3 -
' | ST4: User20p) B4B
e B : L Appiications hEE Partner
(Interaction Logic) (Business Logic, Data)

User-centric Applications Business Applications

Figure 1: Overview of integration scenario types
ST1—-ST6; dashed lines mark aspect is out of scope.

To derive the most relevant patterns of these scenarios,
they are categorized according to their location in current
enterprise architectures, their integration style and scenario
type. Figure 1 shows the scenario types (S7') which are rel-
evant for the message exchange between applications, users
and devices to chain business processes of current enterprise
integration architectures. Similar to [12], we define an inte-
gration style according to its purpose of message exchange
(e. g., invoking business functions, synchronizing data), and
we distinguish six scenario types, ST1-ST6; each of which
denotes the type of endpoints that participate in the ex-
change (e. g., cloud application, device). The scenario types
can follow different integration styles. An integration sce-
nario can be seen as specific description of one type and
style, composed of diverse integration patterns.

3.1 Integration Scenario Styles

According to [15] the classical Application-to-Application
(A2A) integration styles are: Process Invocation (e.g., com-
municate creation or status updates of a business object)
and Data Movement (i.e., synchronization and replication
of a business object record). In particular, scenario type ST1
uses the integration style Data Movement which is typically
realized using EIPs like Message Translator (MT). In Tab. 2

Table 2: Integration scenarios grouped by their integration styles and examples from SAP, Ariba and Success
Factors (SFSF) applications. Usual pattern occurrences are marked by /.

Integration Style | Scenario Type | Msg. Format CBR | ME | MC | sp | AzaGttT”nl/[ST | orF | o | oM | UDF | Example Applications
Process Invo- ST1: XML Vv v - - - - SAP ERP / CRM
cation, Data OP20P
Movement ST2: OP2C XML, JSON v v v - v - - v - SAP C4C, SAP S/4 HANA
ST3: C2C JSON;, v v v - v - v v v SFSF Employee Central,
XML, (bi- Ariba Quadrum Network,
nary) SAP S/4 HANA
User-centric ST4: XML, JSON N v v - N Hybris Social Marketing
consumption User20P,
User2C
Device Data ST5: M2C JSON, CSV v v - N v Vehicle Logistics, Connected
Movement Cars
Device Invo- ST6: M2C JSON, CSV v v v v v v v v Sports Management, SAP
cation, Data Convergent Invoicing
Processing

Content-based Router (CBR) and Message Filter (MF) (— 11.35% of 934), Multicast (MC ~— 0.75%), Splitter (SP — 8.14%), Aggregator (AGG — 0.32%), Message
Translator (MT — 32.86%), Content Filter (CF — 2.99%), Content Enricher (CE) and Content Modifier (CM) (— 42.93%), user defined functions (UDF — 0.64%).

we summarize our analysis, and we also mention predomi-
nant message formats as well as example applications for
each integration style. As scenarios types may use the same
EIPs and message formats for different applications, we dis-
cuss the EIPs and message formats below.

We continue the analysis of integration scenario types with
ST2, another application-to-application type. Unlike ST
this integration scenario type focuses on the integration ap-
plications hosted in the cloud with on-premise applications.
This type has become more prominent as applications are
moving into the cloud, but they still need to be integrated
with legacy on-premise applications. Furthermore, we iden-
tify ST3 which deals with the integration of different cloud
applications. As indicated in Tab. 2 all three scenario types
share the same integration styles: Process Invocation and
Data Movement.

In addition, integration systems are often used in the area
of User-centric Application Integration [10] (e.g., display
customer financial status) for the consumption of business
data by users. We call this integration style User-Centric
Consumption, and it maps to scenario type ST4.

Furthermore, integrating physical devices with (business)
applications becomes more important (e. g., medical [32] or
connected car device integration). Since the term “Device
Integration” is still not consistently defined, we apply the
classical styles process invocation and data movement to the
devices and call them Device Data Movement for ST5 and
Device Invocation for ST6. Additonally, for scenario type
ST6 we include a new scenario style, Data Processing, which
is a combination of message processing and exchange as it
is motivated by the related field of data analytics.

Again, Fig. 1 shows these six integration scenario types
(ST1-ST6) considered in this work. Although technically
covered by other scenario types, the cases of cross-partner
(B2B), User-to-User and Machine-to-OP message exchange
are out of scope of this work, and thus they are depicted by
“dashed-lines”.

3.2 Analysis of Real-World Applications

For every scenario type discussed above, we now analyze
real-world applications on how they realize integration sce-
narios using certain integration patterns and message for-
mats, also see Tab. 2.

On-Premise Integration (OP20P): The application-
to-application message exchange between business applica-

tions (ST'1) within one corporate network, referred to as On-
Premise (OP), denotes the classical integration case (e.g.,
between SAP ERP and CRM solutions) with moderate mes-
sage throughput requirements per integration scenario up
to several 10,000 msgs/sec. The message formats are still
mostly XML-based. In Tab. 2 we summarize the study of
real-world scenarios from different integration styles in SAP
HCI [30], setting them into context to the used integra-
tion patterns. Accordingly, the classical OP20P scenar-
ios mostly use Content-based Router (CBR) and Message
Translator (MT) patterns.

On-Premise-to-Cloud Integration (OP2C): Through
the trend of building cloud applications or moving existing
applications to cloud environments, there is a growing need
for communication with on-premise applications (ST2). For
instance, SAP ERP / CRM on Demand and SAP S/4 HANA
applications require status changes of on-premise applica-
tions as well as data replication, while existing on-premise
applications tend to delegate integration with governmen-
tal organizations and institutions, e. g., for legal aspects, to
cloud environments. In addition to XML, JSON gains im-
portance for those scenarios that reach peak throughput of
up to several 100,000 msgs/sec, depending on the integra-
tion style. The patterns used in these scenarios (cf. Tab. 2)
are again mostly MT, CBR, but also Message Filter (MF),
Splitter (SP) and User-defined Functions (UDFs).

Cloud-to-Cloud Integration (C2C): The fast-growing
field of Cloud-to-Cloud (Cloud2Cloud) integration (ST3; incl.
micro-services [18]), connects all kinds of business (e. g., Suc-
cess Factors, Salesforce), social media (e. g., Twitter, Face-
book), and business network applications (e.g., Ariba). De-
pending on the application domain, the message formats are
mostly JSON-based, and the scenarios reach an even higher
throughput, e.g., LinkedIn generates 100’s of GB of new
data in the form of one billion messages per day, Facebook
generates 6 TB of user activity data per day'. Besides the
previously discussed patterns, the most important integra-
tion patterns are Content Modifier (CM), Multicast (MC),
e.g., for parallel message processing, and Content Enricher
(CE), e.g., adding additional data to the message from a
data store. Especially in cloud scenarios there are several
auxiliary patterns like encoders or decoders, signer, verifier,

'Log processing metrics, relevant for message-based inte-
gration, visited 02/2016; last update 2012: http://www.
solacesystems.com/techblog/deconstructing-kafka

decrypt or encrypt, which are mainly handled by integration
adapters, e. g., WS-Security, thus out of scope for this work.

User-to-On-Premise (User20P) and Cloud (User2C)

Integration: The user-centric scenarios (ST4) are mostly
about scheduled or ad-hoc, message-based queries that gather
data from different data sources according to a user con-
text and report back to the user. Thereby, the queries are
latency- and message throughput bound (e.g., usually less
than two seconds). To reach these requirements, a com-
bination of MC and CE patterns are used to gather data
in parallel and enrich the response message. The message
transformation pattern is required in case of different source
and target formats.

Machine-to-On-Premise and Cloud (M2C) Inte-
gration: Recently, the case of device invocation, data pro-
cessing (S7T6), and data movement (ST5) gained more im-
portance. Scenarios like the convergent invoicing and vehicle
logistics produce large amounts of messages, while requiring
the Aggregator (AGG) pattern in addition to the previously
discussed patterns to form common, map-reduce-like pat-
terns, such as Scatter-Gather (i.e., MC, AGG) and Com-
posite Message Processor (i.e., SP, AGG) [13].

General: The scenarios of all discussed integration styles
potentially require reliable messaging with service quality
guarantees [26], called message delivery semantics. The most
common message delivery semantics are At-least-Once (i.e.,
ALO; Message Redelivery pattern [26]), Ezactly-Once (i.e.,
EO; ALO with Idempotent Receiver pattern [12]), and EO-
In-Order (i.e., EOIO; EO with Resequencer pattern [12]).

3.3 Summary

The study shows the relevance of integration patterns
along classical and new application integration styles and
scenario types. From the currently known routing and trans-
formation patterns, the studied cloud integration scenar-
ios mainly use the content-based router, message transla-
tor, splitter, content modifier, and content enricher. Conse-
quently, these patterns are considered as relevant for EIP-
Bench. In addition to these patterns, new integration sce-
narios require even more “data-aware” operations (e. g., CM,
CE) and patterns for parallel, map-reduce-style processing
(e.g., MC, SP, AGG). Furthermore, we include other branch-
ing patterns (i.e., multicast and recipient list) for variety
and scratch the content modifier, due to its similarity to the
message translator. Finally, we include all patterns from the
message delivery semantics discussion. In addition, many
scenarios use user-defined functions (UDF) which indicates
that current patterns do not satisfy all requirements.

Especially new domain-operations (e. g., arithmetic oper-
ations) and the flexibility required for more diverse message
formats and new scenarios introduce new challenges. No-
tably, less verbose message formats like JSON are used, thus
influencing the selection of the EIPBench message format.

4. BENCHMARK DESIGN

In this section we discuss general EIPBench design choices,
for the message format and macroscale factor criteria (incl.
concurrent users) from Tab. 1. We use configurable scale fac-
tors for the EIP benchmark definitions to allow the specifica-
tion of a “data-aware” message processing benchmark. Sub-
sequently, the message generation and general, macroscale
factors are discussed. The EIP microscale factors are dis-
cussed in the next section.

4.1 Data Set and Message Creation

An important aspect from Tab. 1 is the message format.
The analysis of scenario types in Tab. 2 indicates that mostly
textual message formats are used (e. g., XML, JSON, CSV),
while binary data (e.g., images, videos) is currently limited
to few social media applications (cf. Cloud2Cloud). For the
textual formats, there seems to be a move from XML to
JSON, YAML? (and CSV) formats. Hence, we define the
message body format as textual, JSON and specify the in-
tegration pattern content accordingly.

4.1.1 Data Set

The messages can have an arbitrary format, however, cur-
rent business application data and even social media data
look similar to existing TPC data sets. Hence, we decided to
start with a standard, PDGF-generated [20] TPC-H data set
that provides different scale levels and — similar to BigBench
[22, 24] — extended the generation for our purpose. The
TPC-H data describes business object formats, which can
be found within exchanged messages (i. e., less conversions).
Although the generated data sets cannot be directly used
as messages for the benchmark, they provide basic business
objects such as ORDERS, CUSTOMER and do not require fur-
ther explanation in the benchmark community. The TPC-H
scale-level one generates 1.5 million ORDERS, 150k CUSTOMER,
25 NATION and 5 REGION records as CSV files.

4.1.2 Message Models

The message models are generated from the data sets us-
ing the following operations: join, union, append (), and
scale. Following the edges, Figure 2 shows from left to right
how the generated TPC-H source relations are combined to
message formats. Subsequently a message MSG is defined

PPC-H
Meta
Data [----+ .~
CSV-JDBC Message
Data > 0% csv :
Model o8 q Creation
ORDERS | ------snnnmemmmmmmmmcmmeaa

CUSTOMER |-

NATION, [-=--- SN j
s ‘: cale- =
REGION \—:QIE 'fmse Bulkc

Figure 2: Extended PDGF-based message creation.

as MSG := (B,H, A), with an arbitrary message content
or body B, an optional list of name-value pairs denoting
the message header H, describing the content, and a list of
name-binary value pairs for the attachments A (optional).
Usually the format of B is typed to one message model (e. g.,
TPC-H ORDERS). For our (source) message model MM we
focus on the TPC-H order to customer processing. We se-
lected the foreign key related relations ORDERS, CUSTOMER,
NATION and REGION in the CSV message protocol, transform
the single records to JSON and add two additional columns:

YAML, visited 02/2016: http://yaml.org/

a unique message identifier and type information that speci-
fies the name of the source relation. The single JSON objects
are combined to one JSON array and stored as source model
for the benchmark execution. To sufficiently support “data-
aware” scenarios, the focus of EIPBench lies on the message
body and not the header. The source order messages are
defined as M SGorq.B := {msgld,type} ® OBJora.fields,
while MSGorq.[H|A] := 0, where OBJorq.fields are the
fields of the order object. Analogously, customer M SGcust,
nation M SGna¢, and region M .SGRey are defined.

While the first tranche of messages results in a message
body B with a single message model, some scenarios re-
quire Multi-format (MF) messages (e. g., convergent invoic-
ing requires additional information added to the message in
a different format). A MF message (M SGur) is defined
as a list of potentially different message models M M. For
EIPBench MSG$/¥ messages with one CUSTOMER record
and all NATION and REGION records are created. Hence, the

source messages are defined as M SG$/Y := {msgld, type}

@® OBJcust.fields & OBJnaz. fields @ OBJreg. fields. Multi-

format messages transport additional, joinable information
as message content, while cyclic dependencies are allowed.

In addition, tree-like messages play a role, e. g., for OP2Cloud

scenarios. Hereby the foreign key relations between CUS-
TOMER and NATION relation are replaced within the customer
record beforehand, leading to nested message structures N.
For instance, SAP Intermediate Document (IDoc) Types al-
low the definition of segments, which are a parent-child-like
structure®. The nested source messages N of customer and
nation objects are defined as MSGSY,, (n) := {msgld, type}
D} (OBJcust. fields\C_NATIONKEY) ® (OBJa;. fields
\ N.NATIONKEY), where n defines the number of nested
customer entries as message content.

To support a message scaling over orders with a list of

nested customer records M SGS..;(n), we define MSGSS,, =

MSGSE,,(m), with m > 1. Messages of several hundred
MB, e.g., as required for Financial Service Network Cloud-
OP messaging, not only help to test the message throughput
but also the capability of an integration system to bigger
data volumes (i. e., not only “fast”, but “big” data).

Each single message model can be stashed into a mes-
sage collection Coly(MSG), where MSG := {MSGord,
MSGurp, MSGN, MSGcare} and collection size A, which
specifies the number of messages within the collection.

4.2 Macroscale Factors

The integration patterns need to scale along different di-
mensions. Consequently, we define the following macroscale
factors: (i) messages with different user contexts (i.e., con-
current users), (ii) micro-batching, and (iii) message size
(implicit and explicit).

The scale factor concurrent users (i) tests the ability of
pattern implementations to handle concurrent requests. The
generic, concurrent user load pattern for a particular scale
level can be freely configured and is defined as:

scalecy (w) = 2% (1)

For example, when transferring the settings of the ESB Per-
formance benchmark [1], w varies between 0 and 11. In our

3GAP IDoc structure, visited 02/2016: http:
//help.sap.de/saphelp_46¢/helpdata/en/dc/
6b824843d711d1893e0000e8323c4f/content.htm

experiments, we use 0 < w < 6, which already sufficiently
shows the impact of this scale factor to answer question Q5.

Furthermore, we define the micro-batching (ii). With this
parameter we intend to show the benefit of batched process-
ing for the message throughput in integrations systems (cf.
Q06). In this context, the “data-aware” processing approach
is a newly developed mechanism that allows to send collec-
tions of messages (Colx(MSG)) instead of single messages
[25], called micro-batching. Currently only the patterns dis-
cussed in [25] are micro-batch enabled, e. g., message trans-
formation. The batch scale levels 8, with 0 < 3, denote
the number of distinct messages in one message collection
Colx(MSG) as defined:

A = scalepaten(B) = 2° (2)

The ESB Performance benchmark [1] does not specify such
a test. In EIPBench § is configurable, and we choose (§ as
0 < 8 < 10 to show the general impact of micro-batching.
Especially in cloud-to-cloud integration scenarios and also
business network solutions we observe that message sizes
(iii) of various sizes are used. EIPBench addresses this chal-
lenge by constructing larger message sizes (cf. Q5) of multi-
format M SGarr and nested M SG nest(n) messages, as they
are used by various applications. For a given message of type
0 we define a function size([msg|objle), which determines
the message size in kB. For instance, the size of M SGorq is
approximately 0, 354 kB and for the nested customer object
size(OBJeust) =~ 0,293 kB. For the size of nested messages,
the type of the nested business object obj. can be specified.
The extended function size(msg, 0, 7) calculates the size in-
clusive the nested object. Since the nesting is calculated,
by a foreign key fk relation between the business objects, a
function size([msg|objle, fk) returns the size of a message
or object without the foreign key field. The generic size
calculation of objects and messages is defined as:

size(MSGy) = size(M SGy, fk)

= size(MSGy) — size(fk)
size(OBJ,) = size(OBJ-, fk)

= size(OBJ;) — size(fk)

3)

Now, the size of these messages is scaled through parameter
7, with 1 < n < 20. For example, for n = 20 we generate
messages of approximately 512 MB in size. In comparison,
the ESB Performance benchmark [1] specifies messages up
to 100 kB. In addition to the generic scale factor 7, there is
another message size factor v, which helps to increase the
number of business objects of a scale level: Equation (4)
brings all previous pieces together and shows the generic
calculation of the message size of a scaled message M SGscale
for a particular scale level 7.

MSG? ., = size(MSGy) +n-v-size(OBJ.) (4)

scale

For instance, the concrete scale factor constant in EIPBench
is v = 6. For the nested messages M SGnest(n), n is defined
as n := 7 -1n. Concrete values, e.g., for simple customer
messages in EIPBench with 0, 7 := Cust range between ap-
proximately 256 B for n = 0 up to 256 MB and 512 MB.

4.3 Summary

Based on the integration scenario analysis and classifica-

tion, we identified appropriate message formats and macroscale

factors for EIPBench. Considering the focus on “data-aware”

pattern processing the definitions allow for the specification
of a comprehensive benchmark. Subsequently the tested
patterns are introduced and defined by their microscale fac-
tors.

5. PATTERN DESIGN CHOICES

In this section, we define microscale factors for the pat-
terns to be tested based on the categories of message rout-
ing, transformation patterns, and message delivery seman-
tics from the integration scenario analysis. Each pattern
represents an operation on one or multiple of the defined
message models and defines its own microscale factors. The
microscale factors describe and test the complete charac-
teristics of the patterns. Subsequently, the scale levels and
variations for the different benchmarks are enumerated al-
phabetically, while A usually denotes the normal or simple
case and the cases {B, C, ...} represent (scale) variants.

5.1 Message Routing Patterns

The message routing patterns decouple the message sender
from its receiver(s). We focus on content-based routing ca-
pabilities (i. e., no header), which are mainly used in practice
and especially relevant for the evaluation of “data-aware”
processing. Table 3 lists the relevant routing patterns (RT)
from [12], which are subsequently discussed.

Table 3: Message Routing (RT) patterns with mi-
croscale factors.

Label | Patterns | Description | Scale
RT-1 CBR, MF Channel cardinality | A: normal, B:
1:[1|n], n € N outgoing | n > 1, C: m >
channels, m € N (dis-) | 2
conjunctive conditions w/
increasing complexity
RT-2 CBR, MF same as RT-1 on multi- | D: k> 1
format message with k € N
entries
RT-3 Multicast Channel cardinality 1:n, A:n = 1, B:
(MC) n € N outgoing channels, | n > 1, and
parallel processing, stop on | variations
exception
RT-4 Recipient same as RT-3 with n re- | A: n = 1, B:
List (RL) ceiver determinations n > 1, and
variations
RT-5 Splitter message cardinality 1:4, i € i > 1, split car-
(SP) N outgoing messages, par- | dinality, varia-
allel processing, stop on ex- | tions
ception
RT-6 Aggregator | message cardinality i:1, 7 € | completion
(AGG) N incoming messages sizes, aggr.
strategies

Content-based Router, Message Filter (RT-1, RT-2).

The content-based router (CBR) routes one incoming mes-
sage to exactly one of the n outgoing channels according to
the ordered evaluation of n-1 channel conditions that read
the message’s content. The first condition that evaluates to
true decides on the outgoing channel, else the message is
routed to the mth channel (default channel). The message
filter (MF) is a special case of the CBR with a channel car-
dinality of 1:1, resulting in a “pass or no-pass” decision.
Example: Use different processing for an order with higher
ORDERPRIORITY and higher prize TOTALPRICE with the CBR
or filter out messages with ORDERSTATUS of “F”.

Scale/Variations: number of complex conditions and branches

Implementation: EIPBench evaluates the different micro-
and macroscale factors, conditions on MSGo.q for (A-C)
and MSGKY,, for (D).

Multicast, Recipient List (RT-3, RT-4).

The multicast (MC) describes the statically configured se-
rial or parallel sending of n copies of the same message to n
receivers, while the recipient list (RL) dynamically computes
the receivers from the original message through a receiver
determination function. Technically, both patterns create
message channels (i. e., threads) for each outgoing message.
Example: Copy one order message to several (parallel)
channels statically for further processing with a MC, or se-
lect or calculate the message channel from the body of the
message with the RL (e. g., orders with different priorities).

Scale/Variations: through branches (tests threading, branch-

ing), parallel branching vs. sequential processing; on excep-
tion.

Implementation: EIPBench scales multiple outbound mes-
sage channels for the MC and configures RL to use one out-
bound route per order priority on M SGor4, which tests the
channel branching behavior (i.e., channel creation).

Splitter (RT-5).

The splitter (SP) splits an incoming message (with repeat-
ing elements) into 7 outgoing messages to the same receiver
using a split condition.

Example: The creation of new messages for each part of a
multi-format message M SGunr (incl. foreign key creation)
or the separation of a message collection C'ol; (M SGorq) into
single messages.

Scale/Variations: increasing split cardinalities ¢
Implementation: EIPBench configures the splitter to (A)
split collection of messages M SGorq into single messages
(reverse of aggregator for micro-batching), (B) each entry
or section of a message into a single message, (C) take first
four fields of message (message id, type, orderkey, custkey)
as fixed parts, then split next j elements into j messages and
add last one element (comment) to the message as footer.

Aggregator (RT-6).

The aggregator (AGG) combines j incoming message into
one outgoing message, sent to the same receiver using cor-
relation, completion conditions (e. g., size, time) and an ag-
gregation strategy.

Example: The union of two relations to one multi-format
message M SGrr or the stashing of messages a message col-
lection.

Scale/Variations: increasing completion size or time.
Implementation: EIPBench configures the aggregator to
merge different numbers j of M SGo,q messages.

5.2 Message Transformation Patterns

The message transformation covers an important aspect of
integration systems that contain the translation of one for-
mat into another one (Message Translator (MT) [12]), the
enrichment of additional information to a message (Content
Enricher (CE) [12]) and the filtering of content (Content Fil-
ter (CF) [12]). In more practical realizations, the Message
Mapper [12] is used to convert from the message’s format
to a Canonical Data Model [12]. In addition, new patterns
can be found for executing arbitrary scripts on the message
(Script pattern) [30, 13] and for the more guided modifica-
tion of the content using expression editors in form of the
Content Modifier (CM) pattern [30].

In this work, we focus on the standard MT, (transient, in-
ternal) CE and CF patterns (MT-1-8) as shown in Tab. 4.

Table 4: Message Transformation (MT) patterns
with microscale factors.

Table 5: Message Delivery Semantics (MDS) with
microscale factors.

Label Patterns Description | Scale Label | Patterns | Description | Scale

MT-1 MT program with n:m | (A) n,m < 10 MDS-1 MRoE redeliver message on failure | A: o = 1, B-
distinct field map- | and i =1 o € N times, (non-) origi- | F: 32 > o > 1;
pings, each with nal message variants
a directed operator MDS-2 RS sequence of n € N mes- [n > 1; At n =
tree of size 1 sages, sequence identifier 10

MT-2 CF filter o fields o> 1 MDS-3 IP filter duplicate messages | A: m = 0,

MT-3 CE enrich message | j > 0; nesting m € N “in-memory” B: 100,000 =
with j new fields | and multi- m >0
or complete struc- | format vari-
tures ants.

For all of these patterns the channel- and message cardinal-
ities are 1:1, i.e., they are non-message generating, and we
only consider the stateless cases here due to lack of space.

Message Translator (MT-1).

Massage translators (MT) transform the structure and
values of an incoming message. The mapping program has
n:m distinct field mappings, where the incoming message
has n and the outgoing message m fields. Each field mapping
can be expressed with a directed operator tree of size i. For
instance, ¢ = 1 means one operation is used to transform one
field into another one. The single operations intersect with
some of the information integration queries defined in [11]
(e.g., Query-2 “Mathematical operations”, Query-3 “String
contains”). According to the study of [30], MT for integra-
tion programs is more complex and can be summarized to
arbitrary combinations of the following n-ary operations:

e value assignments/mappings: e. g., default values, con-
stants, copy.

e type-specific operations: e.g., String concat, numeric
subtract, addition.

e conditions: e.g., equals, greater than, contains.

e external scripts/functions: e. g., value mapping lookups,
user-defined functions, external service calls.

Example: Transform the mandatory ORDERKEY field to one
or many fields of the target structure. For instance, the dis-
tinct mapping from source field A to target field B checks
that the ORDERKEY is not null, has a certain length and only
then assigns its value: checkNotNull(A) — checkLength(A)
— assign(A4, B).

Scale/Variations: variations of increasing numbers of n,
m and the size of i, as well as the complexity of the opera-
tions (e.g., iterative calculations).

Implementation: Since the operator-tree processing of the
MT is similar to complex conditions that are already checked
in the benchmark, only a simple mapping program (A) is
benchmarked in EIPBench.

Content Filter (MT-2).

Content filters (CF) remove o fields and values from a
message.
Example: the message receiver only requires ORDERKEY,
CUSTKEY and ORDERPRICE, and all other fields and values are
removed.
Scale/Variations: increase number of filtered fields o; more
complex filter conditions.
Implementation: EIPBEnch filters fields of ORDER mes-
sages.

Content Enricher (MT-3).

Content enrichers (CE) add j new fields and values to a
simple message, or build a nested or multi-format message
structure.

Example: the message requires additional master data for
the credit check of a customer, which is added to the current
message.

Scale/Variations: increase number of added fields j; build
more complex structures.

Implementation: EIPBEnch focuses on the “in-memory”
enrichment of message content (i. e., leaves out external calls).

5.3 Message Delivery Semantics

For reliable messaging, integration scenarios require differ-
ent levels of message delivery semantics: best effort (BE),
at least once (ALO), exactly once (EO), and exactly once
in order (EOIO) [26], which can be composed through the
standard idempotency repository (IR) and resequencer (RS)
patterns from [12], and the message redelivery on exception
(MRoE) pattern from [27].

The previously discussed benchmarks assume no reliabil-
ity, which either means message redelivery on exception by
the applications or devices in case of synchronous messag-
ing, or message-loss after an unforeseen event during asyn-
chronous BE delivery. If the message shall be delivered
ALO, a MRoE pattern is required, which might lead to du-
plicate messages exchange. To avoid that EO combines ALO
with an IR pattern, which filters out duplicate messages.
When a special sequence of messages shall be preserved
(e. g., create before update operation), then EO is combined
with a RS pattern. The microscale value domains are con-
figurable. However, for the our experiments with EIPBench
they are set to values, which show the general impact on
message processing. Table 5 lists the relevant message de-
livery semantics, which are subsequently discussed.

Message Redelivery on Exception (MDS-1).

Redeliver messages on exception (transient) to receiver o
times.
Example: The creation of an order fails due to a tempo-
rary network outage and will be immediately re-delivered to
make sure that the order will reach its destination as soon
as the issue is solved.
Scale/Variations: increase number of redeliveries o; send
original or modified message
Implementation: EIPBench configures the MRoE pat-
tern with (A) no redelivery, (B-F) with o := {1,2,4,8,16,
32} on M SGorq messages.

Resequencer (MDS-2).
Receive sequence of messages (transitively), correlate us-

Phase pre H Phase work Phase post

3 3 Cleanup i

Configure, : : :
N Select, Load | | Warmup " H U
Stir\t”\r}lew H Messages H lterations H Iterations H Verification

to Thork+ Totart Tioad o Tvamup Titerations

[next

[ne‘xl fork of benchmark]

Select Pre- ! Configure,
Compiled +» Create New

Benchmark | Fork

t, Teerfy* Toean 'ty

Figure 3: EIPBench execution phases

ing a sequence identifier [12] and re-order, when the sequence
is complete.

Example: The creation of a customer has to happen be-
fore the update of the same customer (i. e., sequence of op-
erations) or before the creation of a referenced order (i.e.,
sequence of business object creation).

Scale/Variations: number of entries per sequence
Implementation: EIPBench varies the number of sequence
entries n, with n := {10,100, 1000, 10000, 100000}; imple-
mented for (A) n = 10 and resequencing messages according
to their TOTALPRICE on M SGorq messages.

Idempotent Receiver (MDS-3).

Filter duplicate messages using (transient) memory.
Example: The message source sends the same order twice
for creation in another application (same ORDERKEY).
Scale/Variations: increasing # duplicates leads to more
main memory consumption due to transient and more fre-
quent lookups or scans
Implementation: EIPBench configures the IR for (A) no
duplicates, (B) duplicates after 100,000 checked for msgld
on M SGorq messages.

6. BENCHMARK IMPLEMENTATION

The EIPBench is executed close to the pattern implemen-
tations, potentially even within the same process. Our refer-
ence implementation uses JMH?*, a Java harness for running
benchmarks on the JVM, which factors out JVM side-effects
(e.g., on stack replacement) through code generation and
allows to configure warmups, iterations and the number of
isolated JVM instances. Based on JMH, a tool suite is pro-
vided that contains:

Initializer: for generating the data and creating the mes-
sages in the preparation (pre) phase.

Client: that selects the benchmarks in the preparation
(pre) phase and uses JMH to schedule the execution
of message producers for the different integration sce-
narios in the work phase.

Monitor: collects the statistics, calculates performance met-
rics and plots the results in the post-processing (post)
phase (not shown).

As illustrated in Fig. 3, the benchmark realization is di-
vided into three main phases: initialization (pre), execution
(work), and verification (post). The time of the pre phase
Tpre consists of the creation of a fork T'tori, the loading of
all messages required by the current benchmark 7joqq4, and

4JMH, visited 04/2015: http://openjdk.java.net/projects/
code-tools/jmh/.

the preparation of the start of the benchmark Tstar: (cf.
Eq. (5)).
Tpre =11 — tO
_ (5)
= Tfork + Tsta'rt + 71loa,cl

During the work phase, the client executes the defined pat-
tern benchmarks on a specified number of isolated and freshly
initialized JVM instances, called forks ¢, for a configurable
amount of warmup and main iterations. The execution time
of this phase t,0rx mainly adds up the warmup Twarmup and
the actual evaluation time Teyqr (cf. Eq. (6)).

Twork =t2—11
= Twarmup(q)) + Teval(q)) (6)
m - eval(p) + n - eval(p)

During the evaluation, the selected benchmark is executed,
and the discrete throughput values ¢ are collected. Each
fork accesses the created message files (T}oqq) and sends (col-
lections of) messages to the message channel with the tested
patterns. Hence the overall runtime of the whole benchmark
is TBench = C (Tpre +Twork +Tpast)- To measure Tyork, the
message scenarios are synchronous and have a VOID receiver
adapter, which immediately returns to the sender. Then,
cleanup and verification are performed (cf. Eq. (7)).

Tpost =t3 — 12 (7)
= Tciean + Tverify
When a complete scale factor run is finished, the results are
serialized to disk in a raw format, containing all captured
measurements. The monitor parses the data and creates
plots for all tested patterns and scale factors.

The relevant metrics for EIPBench is the discrete through-
put measures ¢ of a tested pattern (i.e., Teyqr). More pre-
cisely, Teyar is the calculated mean of the individual evalu-
ations eval(y;), with ¢ € I, for the number of iterations [
within one fork (cf. Eq. (8)).

Tevat =
S, eval(pi) (8)

T, k=
mean/ fork n

For reproducible results the whole test instance will be cleared
after one fork and initialized. The benchmark will be exe-
cuted for the number of forks . Equation (9) shows the
calculation of the mean for multiple forks. While higher
number of forks (i.e., >> 10) leads to increasing overall ex-
ecution times, the results become more reproducible.

Z]C'=1 Tmean/foTk (])
¢

\/Zg (i1 — Tinean)? ©)
To' — i=1 evaé mean

Tmean =

In addition to the mean, EIPBench measures a confidence
value for the result with a confidence level o of 99% (i.e.,
confidence interval ci). The confidence interval is calculated
once for all forks based on the observed mean throughput
values and the standard deviation. Equation (10) shows the
upper and lower bound calculation of T¢;.

T, — {Tmean — - 5—:3, lower. (10)

Tmean +a- TTy upper.

Subsequently, the T¢; values will be shown as error bars for
macroscale plots.

7. EXPERIMENTS

In this section we briefly describe the setup of the bench-
mark and share results running the benchmark to answer
our guiding questions and discuss lessons learned, e.g., in-
cluding “deficits” found in the pattern implementations.

7.1 Benchmark Setup

All measurements are conducted on a HP Z600 work sta-
tion, equipped with two Intel X5650 processors clocked at
2.67GHz with a 12 cores, 24GB of main memory, running a
64-bit Windows 7 SP1 and a JDK version 1.7.0 with 2GB
heap space.

For our experiments we used the test harness described
in Section 6. As first system under test, we decided to use
the open-source integration system Apache Camel [13] im-
plemented in Java, referred to as Java/AC, since it provides
implementations for all discussed patterns and is used in
SAP HCI [30]. For comparison we have chosen a Java-based,
“data-aware” integration pattern implementation [25], which
simulates table operations on the message content, unmar-

shalled to ONC-iterators instead of JSON objects during T7,0q4-

Since the data-aware implementations use Datalog and are
embedded into Apache Camel, we subsequently use the term
TIP/AC synonymous to Datalog.

7.2 Benchmark Results

For the discussion of the benchmark results, we follow
the research questions Q1-Q6, for which we show represen-
tative results, instead of discussing each particular result.
Subsequently all diagrams show message throughput for dif-
ferent scale levels. Discrete points are calculated mean val-
ues Tmean (cf. Eq. (9)) according to the metrics, and the
error bars denote the precision of the values according to
the 99.9% confidence interval T.; (cf. Eq. (10); i.e., small
intervals indicate low variance, thus a higher confidence).

Before benchmarking the different patterns, we conducted
a “baseline” benchmark using Java/AC without any pattern
configurations, which measures the pipeline processing with-
out operations on the message (cf. BL in Tab. 6).

7.2.1 Microscaling

To answer the “microscale” questions Q1 and Q2 about the
impact of complex routing conditions and multiple branch-
ings, we benchmarked the routing test description RT-1

(i. e., content-based routing) together with streams of M SGord

messages for the Java/AC and TIP/AC implementations.
Conceptually the routing conditions are similar to the ex-
amples for the patterns in Sect. 5.

On the impact of complex routing conditions (Q1)
and multiple route branchings (Q2): Table 6 shows the
results of RT-1 starting with the simple routing condition
case RT-1 (A), followed by increased route branchings RT-1
(B), condition complexity RT-1 (C), and complex conditions
on multi-format messages. Not surprisingly, the materializa-
tion of messages for processing by a pattern implementation
results in a significant decrease in the throughput compared
to the baseline measurement (cf. BL). The number of route
branchings in RT-1 (B) correlates with the number of eval-
uated conditions (worst case). In our experiments, all con-
ditions are executed. The impact of an increasing branch-

Table 6: Message throughput of Content-based
Routing (RT) and Message Transformation (MT)
pattern benchmarks compared to the baseline (BL).

Bench- | Scale | Java/AC Java/AC | TIP/AC
marks (early-out)
BL n/a 300,837 +/- | n/a
8,252
RT-1 A (simple) | 174,795 +/- 176,319 +/- | 179,528 +/-
8,100 4,704 5, 485
B (branch- | 158,838 +/- | 100,070 +/- | 163,672 +/-
ing) 3,002 2,635 4,186
¢ (com- | 115,599 +/- | 98,237 +/- | 115,859 +/-
plex) 3,901 2,261 3,417
D (join) 165,644 +/- | - 176, 926 +/-
3,132 6,513
MT-1 | A n/a 172,545 +/- | 193,378 +/-
(medium) 7,612 4,407

Throughput denoted by Tmean (cf. Ea. (9)) and Ty; (cf. Eq. (10)).

ing factor on the throughput can be considerable. An even
stronger impact on the throughput comes from more com-
plex routing conditions in RT-1 (C). Hence, as answer to
questions @1 and @2, the results show a significant impact
of multiple branchings and complex routing conditions and
let us assume that selectivity estimations on the conditions
and re-orderings similar to DB queries should be further
investigated (cf. [7]). Particularly, for the TIP/AC imple-
mentations, parallel routing condition evaluation could bring
performance improvements, however, that would probably
require a change of the pattern semantics (cf. [25]).

Further message routing impact factors: During the
implementation of the benchmark, the “early-out” capabil-
ity of implementations (i.e., filter can return halfway during
the scanning (for row filter) [9]) turned to another important
factor of routing throughput. The Java/AC “early-out” im-
plementations are comparable to the corresponding TIP/AC
implementations. However, the non-“early-out” Java/AC
implementation performs even worse apart from RT-1 (A),
which is conceptually equal to the “early-out” variant.

The microscale factor (D) for cross-relation operations re-
quires a multi-format message M SGSAE. Therefore a cross-
relation operation is used for TIP/AC, which is represented
by a join over the CUSTOMER and NATION relations with sev-
eral conditions. For the TIP/AC implementation these op-
erations seem more natural than for the AC/Java implemen-
tations, thus show slightly better results.

On the impact of complex message transforma-
tions: The results for the benchmark of MT-1 message
transformation of simple (A) mapping programs are shown
in Tab. 6. In this case the TIP/AC implementation outper-
forms the Java/AC approach, which is designed for “data-
aware” operations on messages. Again, message transforma-
tion operations seem more natural for a “data-aware” imple-
mentation. Hence, further investigations on an extension or
refinement of the EIP semantics for data-aware processing
could be preferable.

On the impact of message delivery semantics (Q3):
The study of the impact of the message delivery seman-
tics (cf. @3) touches the inner workings of the integration
pipeline system, thus are only executed for Java/AC. Ta-
ble 7 shows the microscaling of MDS-1 (A-F) for an in-
creasing number of retries o starting with 1 < o < 32. The
variant “use-original message” (not shown) does not show a
significantly different throughput behaviour. Since MDS-1
MRoE is a “loop” pattern, this test allows insight in the loop-

Table 7: Throughput Benchmarks for message de-

livery semantics.
Benchmarks | Scale

| Java/AC

MDS-1 A (1 redelivery) 70,585 +/-2,323
B (2 redeliveries) 31,649 +/-1,131
C (4 redeliveries) 14,774 4+ / — 513
D (8 redeliveries) 9,456 + / — 268
E (16 redeliveries) 4,906 + / — 139
F (32 redeliveries) 1,995 +/-85

MDS-2 A (sequence of 10 messages) | 161,918 + /-4, 883

MDsS-3 A (duplicate after 100, 000) 172,544 + /-6, 156

Throughput denoted by Tmean (cf. Ea. (9)) and Ty; (cf. Eq. (10)).

processing capabilities of the runtime system. The rede-
livery delay penalty (without exponential backoff) becomes
notable in the results for an increasing amount of redeliv-
eries. This raises questions for future work like “Could a
more scalable implementation keep up the general message
throughput of the system and deliver messages in redelivery
separately?”.

For the resequencer pattern, Tab. 7 shows case MDS-2
(A), which measures the throughput of a resequencer with
a sequence size of n = 10. That means, after the recep-
tion of 10 unordered messages, the messages are ordered
and resumed. The relatively low impact on the throughput
is a result of not persisting the sequences in an operational
datastore.

Conceptually, the (transient) idempotent receiver and the
message filter patterns are comparable. This is supported by
the similar message throughput as shown in Tab. 7 MDS-3
(A) with a duplication factor of m = 100,000 messages.

7.2.2 Macroscaling

To answer the “macroscale” questions Q4-Q6 about the
impact of message sizes, concurrent users and micro-batching,
we benchmarked the routing test description RT-1 (i.e.,
content-based routing) together with streams of MSGorq
messages for the Java/AC and TIP/AC implementations.
Conceptually the routing conditions are similar to the ex-
amples for the patterns in Sect. 5.

On the impact of increasing message sizes (Q4):
The “data-aware” messaging question Q4 about increasing
message sizes for content-based routing leverages RT-1 to-
gether with messages of type MSGYS,.. Figure 4 shows
the immense impact of big messages for RT-1 (A) and RT-
1 (B). Notably, the data-aware implementation performs
slightly better for messages bigger than 64 MB. Especially
for the TIP/AC approach, handling bigger amounts of “data-
aware” data similar to “in-memory” database table process-
ing should be further studied.

On the impact of concurrent users (Q5): Especially
for Machine2Cloud (cf. ST6) integration scenarios, “concur-
rent user” cases are common, which we formulated in ques-
tion Q5. Figure 5 shows the “multi-threading” scaling capa-
bilities of AC for the routing cases RT-1 (A) and RT-1 (B)
showing an early saturation after scalec,(w) with w = 3.
The results indicate a non-optimal usage of hardware re-
sources through the Camel threading model [13], used by
the EIP implementations. For instance, a thread pool can
be configured for the Multicast [13], but not for the router
pattern. However, even with a sufficiently configured thread-
ing, the multicast implementation does not reach a message
throughput comparable to the router (cf. Sect. 7.2.3). This
observation and further measurements indicate an impact on

Datalog 4 165 = Datalog
Java (Early Out)
= Java

Java (Early out) [
== Java H

1E4 |

E 163 |
msgls | msgls |

1E2 |

1E0 1E1 1E2 1E3 1E4 1E5 1E0 1E1 1E2 1E3 1E4 1E5
Message Size kb Message Size kb

(a) RT-1 (A): Simple Conds. (b) RT-1 Complex

Conds.

Figure 4: Q4: Content-based Router (size scaling).

166 7 — T T —— 166

o
u
"
ar
b
»

=]

Java (Early Out) Java (Early Out)
Java Java
1E5 £ = 165 F, 4
1E1 1E1

(a) RT-1 (A): Simple Conds. (b) RT-1 (B
Conds.

Complex

Figure 5: Q5: Content-based Router (conc. users).

composed patterns like scatter-gather implementation [12]
(i. e., multicast and aggregator).

On the impact of micro-batching (Q6): For integra-
tion scenarios that trade the single message processing la-
tency for message throughput and the overall latency (e. g.,
especially data movement and data processing ST5, ST6 as
well as process invocation scenarios ST1-3), the processing
of collection of messages 6, called “micro-batching”, seems
to be beneficial. Figure 6 shows a good scaling behavior
of the “data-aware” TIP/AC implementation, which is able
to process several messages in ONC-format with one oper-
ation. The scalability outperforms event “multi-threading”
by factors. To fully leverage “micro-batching” within inte-
gration systems, the EIP semantics [12] have to be re-visited
in future work.

7.2.3 General Aspects and Deficits

The benchmark results show general integration system
aspects, which are important for the message throughput.
Besides the routing and transformation, the system is re-

Datalog Datalog
Java (Early Out) g Java (Early Out)
. ” 1 F—= e

1E1 1E2 1E3 1E1 1E2 1€3
Batch Size msg/batch

(a) RT-1 (A): Simple Conds.

(b) RT-1 Bal(ﬁ)em Sg/m&]omplex
Conds.

Figure 6: Q6: Content-based Router (batch scaling).

sponsible for the message and channel creation [12]. For
instance, the creation of messages is part of the RT-5 and
RT-6 benchmarks, while channel creation is covered by RT-
3 and RT-4 (not shown).

The results indicate that the message creation involves
time consuming operations (e.g., message ID generation,
message model creation, format transformations), thus lower
the throughput of those patterns. The creation of channels
requires thread management (e.g., thread creation, pool-
ing), which has an even bigger effect on the message through-
put, thus making patterns like the “machine-local” load bal-
ancer [13], practically unusable in “data-aware” scenarios.

8. SUMMARY AND OUTLOOK

With EIPBench we specify the first benchmark for inte-
gration patterns, which play a crucial role for the message
throughput of integration systems. The benchmark defini-
tions put emphasis on the identified micro- and macroscale
factors, for which we provided a reference implementation.
Based on that, we experimentally evaluated the benchmark
definitions along the discussed research questions (Q1-Q6).

Besides the benchmark results, the analysis brought up
several areas for future research in the area of the benchmark
(e.g., extend the benchmark for pattern composition and
integration adapter processing) and more efficient message
processing (e. g., routing selectivity and re-ordering, more ef-
ficient “in-memory” TIP/AC processing). To fully leverage
“micro-batching” within integration systems, the EIP defi-
nitions [12] might be extended. In this context, the system
aspects message and channel creation have to be re-visited.

9. REFERENCES

[1] AdroitLogic. ESB performance.
http://esbperformance.org/, 2013.

[2] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier,

A. Maskey, E. Ryvkina, M. Stonebraker, and
R. Tibbetts. Linear road: A stream data management
benchmark. In Proc. VLDB, 2004.

[3] M. Bshm, D. Habich, W. Lehner, and U. Wloka.
DIPBench: An independent benchmark for
data-intensive integration processes. In Proc. ICDE
Workshops, 2008.

[4] M. Boshm, D. Habich, W. Lehner, and U. Wloka.
DIPBench toolsuite: A framework for benchmarking
integration systems. In Proc. ICDE, 2008.

[5] D. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[6] U. Dayal, C. Gupta, R. Vennelakanti, M. Vieira, and
S. Wang. An approach to benchmarking industrial big
data applications. In Big Data Benchmarking. 2015.

[7] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM Trans.
Database Syst., 28(4):467-516, Dec. 2003.

[8] M. Fowler and J. Lewis. Microservices. 2014.

[9] L. George. HBase: The Definitive Guide. O’Reilly,
2011.

[10] O. Gmelch. User-Centric Application Integration in
Enterprise Portal Systems. EUL-Verlag, 2012.

[11] J. Hammer, M. Stonebraker, and O. Topsakal.
THALIA: test harness for the assessment of legacy
information integration approaches. In Proc. ICDE,
2005.

(12]

(13]
(14]
(15]

(16]

(17]

18]
(19]

(20]

(21]

(22]

(23]

(24]
(25]
[26]
27]

(28]

29]

30]

(31]

(32]

(33]

G. Hohpe and B. Woolf. Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, 2003.

C. Ibsen and J. Anstey. Camel in Action. Manning,
2010.

A. Joshi, R. Nambiar, and M. Brey. Benchmarking
internet of things solutions. In Proc. WBDB, 2014.
D. S. Linthicum. Enterprise Application Integration.
Addison-Wesley, 2000.

M. R. N. Mendes, P. Bizarro, and P. Marques. A
framework for performance evaluation of complex
event processing systems. In Proc. DEBS, 2008.

M. R. N. Mendes, P. Bizarro, and P. Marques.
Towards a standard event processing benchmark. In
Proc. ACM/SPEC WOSP, 2013.

S. Newman. Building Microservices. O’Reilly, 2015.
M. Poess, T. Rabl, and B. Caufield. TPC-DI: the first
industry benchmark for data integration. PVLDB,
7(13), 2014.

M. Poess, T. Rabl, M. Frank, and M. Danisch. A
PDGF implementation for TPC-H. In Proc. TPCTC,
2011.

T. Rabl and C. Baru. Big Data Benchmarking. IEEE
International Big Data Conference, 2014.

T. Rabl, M. Danisch, M. Frank, S. Schindler, and
H.-A. Jacobsen. Just can’t get enough - Synthesizing
Big Data. In Proc. SIGMOD, 2015.

T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A
data generator for cloud-scale benchmarking. In Proc.
TPCTC, 2010.

T. Rabl and H.-A. Jacobsen. Big Data Generation. In
Proc. WBDB, 2013.

D. Ritter. Towards more data-aware application
integration. In Proc. BICOD, 2015.

D. Ritter and M. Holzleitner. Integration adapter
modeling. In Proc. CAiSE, 2015.

D. Ritter and J. Sosulski. Modeling exception flows in
integration systems. In Proc. EDOC, 2014.

K. Sachs, S. Appel, S. Kounev, and A. Buchmann.
Benchmarking publish/subscribe-based messaging
systems. In Proc. DASFAA 2010 Workshops:
BenchmarX, 2010.

K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented
middleware using the SPECjms2007 benchmark.
Performance Evaluation, 66(8):410-434, Aug 2009.
SAP SE. SAP HANA Cloud Integration content.
https://cloudintegration.hana.ondemand.com, 2015.
SPEC. SPEC SOA benchmark.
https://www.spec.org/soa/, 2010.

J. Zaleski. Integrating Device Data Into the Electronic
Medical Record: A Developer’s Guide to Design and a
Practitioner’s Guide to Application. John Wiley &
Sons, 2009.

O. Zimmermann, C. Pautasso, G. Hohpe, and

B. Woolf. A decade of enterprise integration patterns:
A conversation with the authors. IEEE Software,
33(1):13-19, 2016.

