
Automatic Signature Generation for Anomaly
Detection in Business Process Instance Data
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Abstract. Implementing and automating business processes often means
to connect and integrate a diverse set of potentially flawed services and
applications. This makes them an attractive target for attackers. Here
anomaly detection is one of the last defense lines against unknown vul-
nerabilities. Whereas anomaly detection for process behavior has been
researched, anomalies in process instance data have been neglected so
far, even though the data is exchanged with external services and hence
might be a major sources for attacks. Deriving the required anomaly
detection signatures can be a complex, work intensive, and error-prone
task, specifically at the presence of a multitude of process versions and
instances. Hence, this paper proposes a novel automatic signature gener-
ation approach for textual business process instance data while respect-
ing its contextual attributes. Its efficiency is shown by an comprehensive
evaluation that applies the approach on thousands of realistic data en-
tries and 240, 000 anomalous data entries.
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1 Introduction

Business processes have risen to important and deeply integrated solutions which
spawn over various organizations and interconnect a multitude of different ser-
vices and applications [4]. Hence, ensuring business process security is a crucial
challenge [8]. To address this challenge, process models can be interpreted as
networks. They connect, for example, legacy applications [13] that were origi-
nally not intended to be globally linked or services that are not controlled by the
process owner and, therefore, should not be trusted. Although the vulnerability
of IT supported business process models is generally accepted [8], we found that
the business process security monitoring area is still underdeveloped compared
to “classic” IT network security [9].

This surprises because the importance and widespread automated execution
of processes makes them an attractive target for attackers [10]. Two different
scenarios can occur: In the first, a targeted attack is executed whereby the at-
tacker has in-depth knowledge of the attacked process model. Such attacks are
difficult to prevent. However, to prepare a targeted attack, the attacker must
probe the process to identify vulnerabilities—which is the second scenario.



Table 1. Generate signatures automatically from recorded data.

No. Data Type Analyzed Process Instance Data Matches Signature

1 Normal ‘a=mapred:8 set PCMA/8000 ’ — (Signature not yet generated)
2 Normal ‘a=mapred:3 startFAPCM GSM/8000 ’ — (Signature not yet generated)
3 Normal ‘a=mapred:0 test PCMU/8000 ’ — (Signature not yet generated)
4 Normal ‘a=mapred:3 hello GSM/8000 ’ — (Signature not yet generated)
5 Normal ‘a=mapred:5 stop GSM/8000 ’ — (Signature not yet generated)

6
Generated
Signature

‘^(a=mapred:)(\d\s\w\w\w)(.){0,7}
( PCMA\/8000| GSM\/8000| \/8000)$ ’

Generated by the
presented approach.

7 Normal ‘a=mapred:4 reject PCMA/8000 ’ Yes
8 Attacker ‘a=attack:0 8D 14 03 PCMU/8000 ’ No → Anomaly detected

We assume that probing and attacks deviate from normal use. For example,
under normal use data values that trigger potential buffer overflow vulnerabil-
ities, remain, likely, unobserved. Hence, such data values can be detected as
anomalies, which are, events with relatively small probabilities of occurrence [1].
If an anomaly, indicating probing or attacks, can be detected in advance, then
the affected process instances could, for example, be halted or migrated to a
honey pot and the attack, thereby, be prevented.

A common approach to detect anomalies is to define signatures which repre-
sent the expected typical behavior [16]. Hence, if the signatures do not match the
observed behavior then an anomaly was detected. Compare with Table 1—which
is also employed as a running example. Multiple normal (i.e., expected structure/
type/content) variable values1 (No. 1-5, i.e., Analyzed Process Instance Data)
are used to create a signature (No. 6). This signature identifies a probing message
from the attacker (No. 8) as an anomaly and, therefore, as a potential attack.

However, creating such signatures manually is time-consuming and error-
prone because an enormous amount of frequently changing complex business
processes [4] is currently in use in large scale systems [12]. Hence, an automatic
signature generation approach is proposed in the following.

Additionally, we found that existing process anomaly detection work, cf. [2, 1,
11, 3, 16], is not capable of analyzing arbitrary textual process instance data val-
ues (i.e., string variables holding, e.g, XML, JSON, or EDIFACT data formats
along with dates, booleans, or exchanged messages). This limitation is criti-
cal when considering that today’s business processes frequently utilize textual
variables to flexibly store and process various kinds of information. Moreover,
existing work, considers contextual attributes, such as time, only partly and the
generated signatures can hardly be read or manually adapted.

Hence, existing work isn’t suitable to answer the following research questions:

RQ1 How can anomalies in textual process instance data be detected?
RQ2 How can contextual attributes be used to improve anomaly detection?
RQ3 How can signatures be automatically generated and described in a human

readable and adaptable way?

Therefore, we propose a novel automatic signature generation approach which
enables to exploit contextual attributes to improve anomaly detection. The sig-
natures are defined as human readable regular expressions (regex). The applica-

1 Note, those can be extracted from recorded process execution logs which are fre-
quently automatically generated by process execution engines.



bility of the proposed approach is shown based on a proof-of-concept implemen-
tation which analyzes 240, 000 anomalous data entries.

This paper is organized as follows. The process instance data signature syn-
tax and the integration of contextual attributes are discussed in Section 2. The
proposed signature generation approach is defined in Section 3. Evaluation, cor-
responding results and their discussion are presented in Section 4. Section 5
discusses related work. Conclusions and future work is given in Section 6.

2 Signatures on Textual Process Instance Data

To protect process instances from unknown attacks we propose an automatic
signature generation approach which enables anomaly detection during process
execution. The signatures are generated from recorded process execution logs
that are created automatically by process execution engines during runtime [14].
Such logs hold, for example, all variables—including their values—which are used
by a process model during its execution [14, 5]. Hence, a signature can be created
that matches the recorded variable data (e.g., variable values exchanged between
process activities or received from external partners, such as, other processes/
web services) and therefore allows to distinguish between the recorded—expected
and typical—behavior and anomalous behavior that would be observable, e.g.,
during attack preparations. Detecting such anomalies allows to apply various
counter measures, such as stopping the execution of affected process instances.

We assume that especially processes and process execution engines are a
worthwhile application area for anomaly detection, because, today’s processes
integrate and share the data of a wide range of services and applications. Hence,
integrating signature generation and anomaly detection directly into process
execution engines enables to secure a huge amount of potential attack areas at
once and provides a direct access to all the required data.

We propose that the signatures should be created automatically to meet the
complexity and flexibility of today’s business processes [4]. Process repositories
frequently contain hundreds of individual process models, which are executed in
a versatile service landscape [12]. Hence, a large amount of signatures must be
created and constantly updated. Additionally, we assume that the documenta-
tion of each service/application that is integrated in the processes is frequently
outdated or missing because changes are often implemented in a rapid pace
leaving less time to update a constantly increasing amount of documentation.
This leads to high signature generation costs or incorrect signatures. To address
this challenge we propose to extract signatures (i.e., expected behavior) from
real process executions described in recorded process execution logs. Doing so
ensures that the signatures match the real behavior and not, e.g., some incor-
rect behavior based on an outdated manual. Additionally, the log data contains
all the information that is required to create context specific signatures, which
simplifies the generated signatures and increases their anomaly detection.
Contextual Process Instance Data Behavior that is anomalous only in a
specific context, but not otherwise, is termed contextual anomaly [3]. Taking



contextual attributes into account enables the creation of more focused signatures
and hereby increases the anomaly detection rate. So far, contextual attributes
were neglected for anomaly detection in the business process domain.

Imagine that signatures should be created for data that is received by two
process activities. The first activity is always receiving characters while the sec-
ond one is always receiving digits. Without contextual attributes only a single
signature would be created to check if only characters or digits are received. How-
ever, when the second activity surprisingly starts to receive characters, then this
could not be detected because the signature only checks for characters or digits.
But when taking contextual attributes into account—here the context is defined
as the activity which receives the data, e.g., from an external service—two in-
dependent signatures are created for each activity and the behavioral change is
detected as an anomaly. Hence, taking the context into account increases the
performance (i.e., anomaly detection rate) of the generated signatures and also
simplifies the signatures itself. Moreover, two specialized separate signatures—
one to match digits and one to match characters—are shorter and easier to read
and to maintain than a single signature that has to fulfill multiple tasks at once.

Two kinds of contextual attributes are exploited in the following:

General attributes such as time (by creating unique signatures for specific
time periods, such as individual months), because, we assume that process
instance data values can be time dependent.

Process instance specific attributes for example, which process or activity
has created the analyzed instance data values because we assume that the
data can greatly differ between different activities/processes and even be-
tween multiple activity data fields/variables.

Further kinds of contextual attributes, for example, which user has defined the
observed variable values, are left for future work.

The signature generation starts with a pre-processing step that groups the
analyzed data based on the discussed contexts to create an unique signature for
each contextual attribute combination. In the following, an anomaly detection
system can select the appropriate signature based on the observed context.

Signature Definition The signatures are defined as regular expressions, for the
following reasons: Regular expressions are well-suited to analyze textual data, are
supported by many programming languages, human readable and adaptable, and
used by existing intrusion detection systems (such as Snort or I7-filter). Further
on, high speed matching algorithms are available [15]. We assume that these
advantages ease the integration of the presented anomaly detection approach
into existing process execution engines and anomaly detection systems.

The signatures (i.e., regular expressions), defined in the following, consist of
a choice operator, groups, and multiple metacharacters which are listed in Table
2. Note, that the ‘^ ’ and ‘$ ’ character get added to the start (‘^ ’)/end (‘$ ’) of
each signature to enforce that the whole observed content matches the signature.

The regular expression syntax presented in Table 2 enables the definition of
simple signatures which match the structural components of the observed data
(e.g., for XML data this would be the XML tags). Additionally, we propose a



Table 2. Simple regular expression signature syntax.

Character Description

‘^ ’ Matches the start of the compared data.
‘$’ Matches the end of the compared data.
‘. ’ Matches any possible character (including digits and control characters).
‘{n}’ Matches the preceding expression, exactly n times.
‘{a,b}’ Matches the preceding expression, between a and b times.
‘|’ Matches either the expression before or after the vertical bar.
‘() ’ Capturing group which concatenates expressions or groups of expressions.

Note, a capturing group can be defined in combination with ‘{n}’, ‘{a,b}’, or ‘|’.
For example, ‘(ab|cd)’ matches ‘ab ’ or ‘bc ’ while ‘(.){5}’ matches any possible
character exactly five times.

Table 3. Extensions for the simple regular expression signature syntax.

Character Description

‘\w ’ A character class that matches any word character.
‘\s ’ A character class that matches any formating character such as tabs or spaces.
‘\d ’ A character class that matches any digit.
‘[^\s\d\w] ’ A negated combination of multiple characters which matches any character

that is not matched by ‘\w ’,‘\s ’, or ‘\d ’, e.g., a minus sign (‘- ’).

novel approach to increase the anomaly detection performance by taking the
content of the observed data into account (e.g., for XML this would be the data
which is placed between the XML tags, i.e., a XML node value). Accordingly,
the presented syntax (cf. Table 2) is extended with character classes (cf. Table
3) to define complex signatures.

Character classes allow to differentiate if an observed character is, e.g., a
number or a letter. Hence, it becomes possible, for example, to define a signature
which checks if the observed bank account number always starts with two letters
and ends with at least four numbers. This enables the generated signatures to
ensure that structural and content-related properties comply with the expected
behavior. An example for a signature that was defined using the described syntax
can be found in the running example in Table 1.

3 Generating Signatures

This section presents a novel automatic process instance data signature gener-
ation approach. From a given set of training data (e.g., recorded process model
instance executions) it generates signatures that allow to detect if the currently
observed behavior (i.e., values of textual variables that are exchanged/used dur-
ing ongoing process instance executions) are anomalous (i.e., do not match the
expected common behavior specified at the signature) or not.

Each signature is generated by four main components (cf. Fig. 1). (1) the
pre-processing module extracts the relevant data from process execution logs.
Subsequently, the textual variables—strings—are grouped based on various con-
textual attributes and each group is individually forwarded to the tokenization
module. (2) the tokenization module identifies tokens (i.e., substrings) which
commonly occur in the recorded variables. Next, the position and order of the
tokens in the analyzed data is extracted and used to group and combine the
tokens. (3) is a module that analyzes the text that is placed between tokens. The
simple signatures only utilize the length of the text that is placed between the
tokens. Alternatively, complex signatures are constructed by converting the text



Fig. 1. Abstract signature generation approach overview.

between the tokens into character classes and injecting the result into module
(2) to check if the converted text reveals previously hidden structures. (4) the
post-processing module takes all the extracted and prepared information and con-
structs a valid regular expression which can be stored in a signature database and
used to detect anomalous behavior during process model instance executions.

Pre-Processing The purpose of the pre-processing step is twofold: First, recorded
process execution logs are prepared so that their content can be processed by
the following steps. For this, the logs are analyzed and all variables with tex-
tual information and their metadata (i.e., important contextual attributes, e.g.,
which activity a variable belongs to or when it was created) are extracted.

Secondly, the prepared data is grouped based on the identified contextual at-
tributes (e.g., time, activity, or process model, hence, the same variable value
can be contained in multiple groups). For example, all textual data that be-
longs to one specific variable in one activity/process model is added to the same
group and processed at once. Hereby, individual signatures for each contextual
attribute (e.g., time or activity) and their combinations are created. Hence, con-
textual differences are respected during signature generation to ensure that a
variable’s content behaves as expected in specific situations, for example, in a
specific month, process, or activity. For example, we found—while evaluating this
paper—that processes contain activities which always assign the same values to
their variables depending on the month when the activity is executed (e.g., each
January), while the same activity variables contain a diverse set of values when
comparing different months (e.g., January vs. June). Hence, creating an indepen-
dent signature for each contextual attribute (e.g., time of the year) increases the
signature anomaly detection performance, because more fine granular signatures
are generated which focus on specific situations and contexts. Additionally, the
signatures become simpler (e.g., because only a subset of the available data must
be covered by a single signature) and therefore easier to read and maintain.

An example for creating contextual groups is depicted in Fig. 2. For the
sake of brevity the execution log data only contains a single process with two
activities. Two contextual groups are constructed—based on activity only and
the combination of activity and time.

The following steps, starting with identifying significant tokens, are then
applied on the textual variable data stored in each generated contextual group.

Identifying Significant Tokens Significant tokens are substrings which com-
monly occur in the recorded and analyzed process instance textual (string) vari-
able values. Those tokens are used to construct signatures that detect anomalies



Fig. 2. Exemplary contextual group construction.

(i.e., detect that a significant token that is present at all the analyzed data is
surprisingly missing). The problem of finding the significant tokens is defined as:

INPUT: A list of strings to analyze S, a minimum token length of tlmin ∈ N
characters, and a minimum occurrence of tomin ∈ (0, 1], e.g., the token must
occur in at least 10 percent of the analyzed strings in S to be significant.

OUTPUT: A list of distinct substrings D and therefore significant tokens
which fulfill the minimum length (tlmin) and occurrence requirement (tomin).

The k-common substring algorithm [6] is applied to this problem to identify
the longest substrings which occur in at least k (i.e., tomin) strings. For this,
a generalized suffix tree [6] is generated from S. We have extended the suffix
tree data structure so that each tree node contains the list of strings in S that
are represented by this node (cf. tomin) and the respective length of each sub
path (cf. tlmin). This enables to ensure the compliance with tomin and tlmin

when extracting significant tokens. The extraction itself starts from terminator
nodes (i.e., tree nodes that hold the last character/substring of a string in S).
For each terminator node that fulfills tlmin the algorithm traverses towards the
root of the tree until it finds a node that fulfills tomin. Then it starts recording
the data that is stored in each node until it reaches the root node and therefore
has identified a potentially significant token which is then stored in D. This is
repeated for each terminator node to extract all potentially significant tokens.

Finally, all the potentially significant tokens are cleaned up. First, duplicates
are removed so that each potentially significant token only appears once in D.
Secondly, each remaining potentially significant token in D is analyzed to iden-
tify if it can be completely replaced by one of the longer2 tokens in D. Why?
Because a longer token provides a more strict representation of the analyzed
data because it enforces more characters. Imagine that S, inter alia, contains
the words ‘performance ’ and ‘performed ’ and that, among others, ‘perform ’
and ‘for ’ are commonly occurring tokens hold by D. S and D are now evaluated
by checking, for each token and analyzed string, if a shorter token could be com-
pletely replaced by a longer token. Hence, for the analyzed words ‘performance ’
and ‘performed ’ it is checked if for all positions were the token ‘for ’ occurs also
the token ‘perform ’ occurs. This is the case and so ‘for ’ will be removed from
D to replace it with the longer token ‘perform ’.

Applying the described token identification approach to the running example
(cf. Table 1) results in following significant tokens (when defining tlmin as 5 and
tomin as 0.2): ‘a=mapred: ’,‘ PCMA/8000 ’,‘ GSM/8000 ’, and ‘/8000 ’

2 Measured based on the number of characters.



Extract Token Positions The position, order, and occurrence of each signif-
icant token is determined for each string in S. Hereby, tokens that are placed
on related positions are identified. Subsequently, these tokens are used to form
regex groups. The problem of finding token positions/order is defined as:

INPUT: A list of strings S and a list of cleaned up significant tokens D.
OUTPUT: A list P were each p ∈ P is a list of significant tokens which occur

in the respective s ∈ S ordered based on their position in s.
For each s ∈ S the left most positioned token3 d ∈ D is identified. If such a

token was found then it is stored in p, and s is trimmed to remove all characters
left from the position where d ends. Subsequently, the search for the left most
significant token restarts on the trimmed version of s. This repeats until no
more significant tokens can be found in the trimmed s. Note, for each s ∈ S an
respective p ∈ P is created and utilized/filled.

The following P is generated for the running example’s tokens and strings
(cf. Table 1) (the list entries are separated using semicolons for P and commas
for p). This allows to deduce, for example, that ‘a=mapred: ’ is present in all
s ∈ S (i.e., all analyzed strings) and that it is always the left most significant
token: ‘a=mapred:, PCMA/8000 ’; ‘a=mapred:, GSM/8000 ’; ‘a=mapred:,/8000 ’;
‘a=mapred:, GSM/8000 ’; ‘a=mapred:, GSM/8000 ’

The ordered tokens and their positions are used during the next step to start
with the creation of regular expressions (i.e., signatures).
Grouping Tokens based on their Order We propose that the generated
signatures should represent the structural components (represented by significant
tokens) of the analyzed data (e.g., for XML data this would, likely, be the XML
tags). However, we assume that most likely not each analyzed string will contain
the exact same significant tokens. Hence, regex groups are created to enable the
signature to choose from multiple token alternatives, for example to specify that
token A or B should occur. Additionally, we expect that the analyzed textual
data is of variable length so that the structural components are most likely not
overlapping (i.e., use the same absolute positions) for each string in S. Hence,
it is not possible to decide which tokens should be grouped solely based on the
absolute position of the tokens. Accordingly, we propose to group the identified
significant tokens based on the order of their occurrences rather than on their
absolute positions. The problem of grouping the tokens is therefore defined as:

INPUT: P , as defined in the previous step.
OUTPUT: A list G were each g ∈ G—for each p ∈ P an associated g ∈ G is

generated—holds a list of significant tokens that are combined into regex groups.
To combine the tokens the algorithm identifies the shortest entry p ∈ P (i.e.,

it is containing the least amount of significant tokens) and extracts its length
as y ∈ N. y is then used as the amount of tokens which should be grouped. To
group the tokens a list of indexes ranging from—if y is even—0 to (by/2c− 1) is
created. Subsequently, from each token list p ∈ P the tokens with the respective
indexes are taken and stored in a new list g ∈ G (first to last, an independent list

3 If two tokens start on the same position then the longer one is chosen because it
enforces more characters during signature checking than a shorter one.



g is generated for each p). A similar approach is applied on the second half of the
indexes (i.e., (|p|−by/2c) · · · (|p|−1)). However, this time the algorithm iterates
from the last token in each p ∈ P towards the first token (last to first) and adds
the tokens (in reversed order) to the already existing g ∈ G that belongs to the
respective p. If y is uneven then an additional iteration is executed to cover the
token index which would else be ignored (i.e., 0 · · · by/2c is used at first to last).

The approach described above ensures that the generated signatures cover a
wide area of the analyzed data. Imagine, that the approach would only incor-
porate a single direction (e.g., first to last) then an attacker could attach the
vulnerable information to the end of the data—especially if the amount of tokens
in each p fluctuates. Secondly, we found a positive impact of this two direction
approach during the preliminary evaluation, especially, when analyzing XML
data because the two direction approach more frequently preserved matching
XML start/end tags and therefore more likely recognized missing XML nodes.

Finally from each g ∈ G the tokens with equal indexes (e.g., all first tokens,
all second tokens, and so on) are combined into distinct regex groups using the or
operator (‘|’). For the running example (cf. Table 1) the following regex groups
are generated: ‘(a=mapred:) ’; ‘( PCMA/8000| GSM/8000|/8000) ’

The significant tokens likely do not represent all the analyzed data, for exam-
ple, data which is not occurring frequently enough to become a significant token
(e.g., varying content that is placed between XML tags). Hence, a novel approach
to integrate the remaining data into the generated signatures is presented.

Analyze Textual Data between Tokens Until now the textual data which is
placed between the identified significant tokens was not yet addressed. This data
mainly consists of application data, such as addresses or names, which frequently
do not contain stable structural components. However, this data is processed by
the process activities and should, therefore, also be checked for anomalies to pre-
vent attackers from injecting vulnerable—anomalous—data. Hence we propose
two novel approaches called simple and complex.

INPUT: A list S and a list G, as defined in the previous step.

OUTPUT: Regex artifacts that represent the textual data between the to-
kens. Hence, the simple approach utilizes the length of the respective strings
between the tokens to represent them. For the complex approach the represen-
tations are generated from a mixture of length information and character classes.

Both, the complex and the simple approach, analyze the textual data that
is positioned between the identified significant tokens (e.g., this is, for XML
data, likely, the data between XML tags). So, this data must first be extracted.
Therefore, for each string s ∈ S the respective list of significant grouped tokens
g ∈ G that occur in s is exploited. Hence, g is used to identify the position of each
significant grouped token in s. Further on, the text between each identified token
position and its predecessor token is extracted and stored for future analysis. A
similar approach is used to extract the text between the first/last token and the
start/end of s. Hence, all text that is placed, for example, between the second
and the third token (for each g ∈ G) is, in the following, processed at once.



For the running example (cf. Table 1) the following strings are identified as
text that is placed between the two generated groups of significant tokens: ‘8
set ’; ‘3 startFAPCM ’; ‘0 test PCMU ’; ‘3 hello ’; ‘5 stop ’. Subsequently these
strings are processed by a complex or a simple approach.

Complex : The complex approach converts the textual data into a format
that makes it more likely to identify structural information. Imagine, that some
bank account numbers should be analyzed (e.g., ‘AB12345 ’, ‘GH56521 ’, and
‘UJ56122 ’). Initially the token based analysis is not able to detect significant
tokens and therefore structure, because, each bank account number is unique
and substrings which occur at multiple account numbers can, therefore, not be
identified. However, a close analysis reveals that each account number starts with
two letters, continued by five digits. To enable the presented complex approach
to recognize this pattern the data is converted in an abstract representation.

Therefore, each letter is converted into a ‘w ’, each formating character (e.g., a
space) into a ‘s ’, each digit into a ‘d ’, and any other character is converted into an
‘r ’. Hence, each account number is then represented as ‘wwddddd ’. Subsequently,
the presented signature generation approach is applied on the prepared data
(three times ‘wwddddd ’, one for each abstracted account number), starting from
the “Identifying Significant Tokens” step. Hereby the regex group ‘(wwddddd) ’
is generated to represent the fact that each analyzed string contains two letters
and five digits. Finally, the characters (‘w ’,‘s ’,‘d ’, and ‘r ’) are replaced with
regular expression character classes (‘w ’ → ‘\w ’, ‘d ’ → ‘\d ’, ‘s ’ → ‘\s ’, ‘r ’ →
‘[^\s\d\w] ’), cf. Table 3, which enforce, during signature checking, the specified
order and occurrence of digits, letters, formating characters, and so on. Hence,
‘(wwddddd) ’ becomes ‘(\w\w\d\d\d\d\d) ’. Note, that the complex approach
falls back to the simple approach for parts of data where no structure (even
when applying the discussed abstraction approach) could be identified.

Simple: The simple approach deals with the textual data in a more abstract
way than the complex one. Hence, it analyzes the respective data and identi-
fies the shortest and the longest string. Subsequently, the length of these two
strings is used to add minimum/maximum length limits to the signatures. Hence,
when applying it on the running example (cf. Table 1) the following signature
artifacts are generated: The shortest identified textual information is ‘8 set ’
and the longest is ‘3 startFAPCM ’. So the content is described as ‘(.){4,13}’
which indicates that any possible text is valid, but, it must be between 4 to 13
characters long. A shorter definition is used if each string is of equal length, for
example, ‘(.){4}’ if each analyzed string is exactly 4 characters long.

For the running example (cf. Table 1) the complex approach generates the
following regex artifact: First, the substrings which are placed between the two
identified token groups are abstracted: ‘8 set ’ → ‘dswww ’, ‘3 startFAPCM ’ →
‘dswwwwwwwwww ’, ‘0 test PCMU ’ → ‘dswwwwswwww ’, ‘3 hello ’ → ‘dswwwww ’, ‘5
stop ’→ ‘dswwww ’. Then, the complex approach identifies ‘dswww ’ as a structural
component (i.e., significant token). Why not use ‘dswwwwwww ’? Because ‘dswww ’
is the only substring that fulfills the minimum length requirement and occurs fre-
quently enough in S (when using tlmin = 5 and tomin = 0.2). However, ‘dswww ’



is not able to represent all the strings (e.g., ‘dswwwwwww ’ contains more char-
acters than ‘dswww ’). Hence, also the simple approach is applied as a fall back.
Altogether, the following result is generated to represent the data which is placed
between the two identified significant token groups: ‘(\d\s\w\w\w)(.){0,7}’
Post-Processing All the components (e.g., token groups) are now combined to
create a signature that is a valid regular expression. Subsequently, the signature
can be stored in a signature database and used by process execution engines to
detect anomalies and, therefore, potential attacks or attack preparations.

During post-processing three objectives are fulfilled. First, all generated com-
ponents (e.g., the token groups) are combined to generate a raw signature. It is
called raw signature because it is not yet ready to be stored in a signature
database. Secondly, the characters which have a special meaning in regular ex-
pressions are, if necessary, escaped. For example, the plus sign (‘+ ’) typically
indicates that some character should be matched at least once. However, if a
plus sign should be treated as a normal character (e.g., because it is a part of
a significant token) it must be escaped by placing a backslash (‘\’) in front of
it. Thirdly, a circumflex (‘^ ’) is placed at the start of the signature and a dollar
sign (‘$ ’) is placed at the end. Why? Because this enforces that the signature
must match the whole observed data from the start to the end and not only a
part of it. Hence, it increases the anomaly detection performance of the gener-
ated signatures because an attacker can no longer send some valid data and then
attach the vulnerable data to the end of it, which would otherwise be possible.

For the running example (cf. Table 1) the finalized signature is defined as:
‘^(a=mapred:)(\d\s\w\w\w)(.){0,7}( PCMA\/8000| GSM\/8000|\/8000)$ ’

4 Evaluation

The evaluation combines realistic artificial data and real life process instance
execution data to assess the impact of contextual attributes on signature gener-
ation and the anomaly detection performance of the presented approach.
Test problems The test data which was used for the evaluation consists of
a) artificially generated test data4 (using three different formats, namely, XML,
JSON, and EDIFACT) and b) real life process execution logs from the Business
Processing Intelligence Challenge 20155 (provided by five Dutch municipalities).

For a) the artificially generated data consists of three different data formats
(XML, JSON, and EDIFACT—wide spread data exchange formats, used in var-
ious disciples, such as banking or manufacturing) that we found are frequently
used in business processes. For each of the three formats a thousand test data en-
tries were generated and randomly separated into signature generation data and
test data. Three hundred (100 for each data format) randomly selected entries
from the test data were also used to construct anomalous data to evaluate the
anomaly detection performance of the presented approach. Moreover, the gener-
ated XML, JSON, and EDIFACT data entries contain realistic data as payload

4 http://cs.univie.ac.at/wst/research/projects/project/infproj/1057/
5 http://www.win.tue.nl/bpi/2015/challenge



(e.g., realistic e-mail addresses, phone numbers, or company names) along with
the required structural components (e.g., XML tags). Each generated XML and
JSON data entry holds 4 payload values (e.g., names), while each generated ED-
IFACT data entry represents a purchase order message with 14 payload values.

For b) the realistic log data consists of 262, 628 independent events from 27
process models and 356 activities—recorded over a period of six years.

Real life and artificial data were combined because the identified real life
data only contains simple textual variable values (i.e., textual variables typed as
strings [5] that hold dates, booleans, or numbers) which can easily be addressed
by the presented approach. Hence, we opted to include complex artificially gener-
ated data to assess the performance of the presented anomaly detection approach
in situations where the data is complex and, therefore, more challenging. Note,
despite the prototypical implementation, the signature generation could be con-
ducted quickly (5 min to generate signatures for all test data items, fractions of
a section to decide if a value is anomalous or not – on a 2.6Ghz Intel Q6700).

Metrics and Evaluation Quantitative and qualitative metrics were combined.

Quantitative: Realistic artificially generated data (i.e., signature generation
data) was used to generate signatures, one for each data format. Subsequently,
each signature had to match the respective test data to ensure that the signature
was not over-fitted [7]. An over-fitted signature can lead to many false positives
which would reduce the applicability of the presented approach. Note, each gen-
erated signature successfully evaluated the test data as non-anomalous. So, no
over-fitting occurred. Finally, each signature was applied to anomalies that were
generated from the test data to assess its anomaly detection performance.

Qualitative: Real life process execution logs were analyzed to check if contex-
tual attributes, such as time, have an effect on the variables and data fields, used
by the process, that would allow to improve anomaly detection. For example, it
was evaluated if the variable values of an activity show similarities for specific
times of the year (e.g., each April, for multiple years). If this is the case, then re-
specting contextual attributes (e.g., time) and therefore creating an independent
signature for each month is beneficial because less data must be represented by
each single signature which improves the anomaly detection performance.

Results The results were generated by applying the signatures on randomly
selected test data entries which were altered to represent 8 anomaly classes.

The following anomaly classes were evaluated: a) The length of the data entry
was extended by 4-10 random characters, b) The data entry was completely
replaced by random characters, c) Content (e.g., for XML data this is the value
of a XML node) was replaced by random characters, d) Content was duplicated
and attached to the original value, e) Between 4-10 characters of the content were
randomly selected and flipped (e.g., a letter was replaced with a random digit),
f) An element (e.g., a complete XML node) of the data entry was completely
removed, g) An element (e.g., a complete XML node) of the data entry was
duplicated, h) A structural element (e.g., a XML tag) was replaced with random
data. Note, that the anomaly classes b), c), and h) replaced data with a randomly
generated equivalent that has the exact same length as the replaced data.



Fig. 3. Anomaly detection performance of simple and complex signatures.

We assume that the generated anomalous data entries realistically represent
data that can be observed during attacks. For example, the anomaly class d) can
be used to check for potential buffer overflows or the anomaly c) represents the
attempt to inject machine code into a process model instance. Overall 240,000
anomalous data entries were generated and evaluated. The evaluation was ex-
ecuted a hundred times to even out the random behavior of the anomaly class
adaptation approach. During each execution a hundred test data entries were
individually adapted by 8 anomaly classes, for three different data formats.

Primary tests were executed to identify appropriate configuration values for
the discussed signature generation approach, resulting in tlmin = 4 and tomin =
0.75. The average results of the evaluation are shown in Fig. 3.

The results show that the presented approach is capable of detecting a wide
range of anomalies. Already the simple approach generates reasonable results
for most anomaly classes. However, the simple approach is not able to detect
anomalies that only affect the content (e.g., XML node values) of the analyzed
data without changing its length (e.g., only specific characters are replaced, cf.
anomaly c) and e)). This is not surprising because the simple approach only en-
forces length restrictions on the content. Here, the complex approach comes into
play. By analyzing the content and its internal structure it can, for example de-
tect flipped characters (e.g., anomaly e)). Hence, we conclude that the presented
novel complex signature generation approach is capable of providing remarkable
strict signatures while the simple signatures are easier to read. They are shorter,
and are already able to detect important length based vulnerabilities (e.g., buffer
overflows). Why are anomalies d) and e) not always detected? This can occur,
for d), if the duplicated value is still shorter then other representations of this
value in the signature generation data or, for e), if the flipped character value is
also present at the same place at data entries in the signature generation data.

Table 4. Influence assessment of respecting contextual attributes.

No. Context. Attribute Beneficial No. Context. Attribute Beneficial

1 Process activity Yes 3 Time Yes
2 Process model Yes 4 Combination Yes

The importance of contextual attributes for process signature generation was
evaluated using process execution logs provided by the Business Processing Intel-



ligence Challenge 2015. It was checked, for three different contextual attributes
(activity, process, time, along with their combinations), if the generated signa-
tures benefit from respecting these contextual attributes during signature gener-
ation (e.g., by generating an independent signature for each activity and month).
We found clear indications that the recorded data is influenced by the described
attributes, cf. Table 4. For example, some activities always used the same variable
values during specific times of the year or when integrated into specific process
models. Moreover, we found that activities, despite equal variable names, store
vastly different data formats. We conclude that respecting contextual attributes
during the signature generation allows to generate simpler signatures and in-
creases the signature anomaly detection performance (because less diverse data
must be covered by a single signature, so the signature becomes easier to read/
maintain and it can be more strictly represent the analyzed data).

5 Related Work

Related work, in the business process anomaly detection domain, can be clas-
sified into two categories: process instance data and process model control flow
anomaly detection. The existing data anomaly detection approaches concentrate
on integer variables and apply statistical regression analysis to identify outliers
and, therefore, anomalies [11]. Control flow anomaly detection approaches mine
process logs to extract control flows which are then, for example, compared with
a reference process model. Alternative approaches check how frequently each
control flow is found, infrequent flows are then marked as anomalies, cf. [2, 1].

We conclude that textual business process instance data is currently not
addressed by existing process anomaly detection approaches. Moreover, we found
that contextual attributes are currently not exploited in the business process
domain. In general, in the security domain, anomaly detection in textual data
is currently mainly applied to detect novel topics in a collection of documents
[3] or on highly standardized network protocols [16], such as SIP, neglecting the
security critical aspects of arbitrary textual data. This circumstances reduce the
protection gained from today’s, process, anomaly detection solutions.

6 Conclusion

This paper provides process instance anomaly detection and signature generation
approaches (7→ RQ1 to RQ3) which will be integrated in our “ProTest” project
which focuses on creating automatic process behavior verification. Future work
will exploit the generated signatures as a foundation to construct realistic test
data to improve process model testing. In addition, we are confident that the
described approach can also be applied to related domains (e.g., web services)
that process textual data and, even, other data types (e.g., binary data).

The evaluation results show the flexibility and applicability of the presented
approach for complex data formats ( 7→ RQ1). Additionally, we found that con-
textual attributes affect the analyzed business process instance data and con-



clude that contextual attributes can be exploited to improve the signature quality
(i.e., anomaly detection performance; 7→ RQ2). Overall, this work provides the
first process instance anomaly detection approach that addresses textual data
and enables to replace error prone manual signature generation ( 7→ RQ3).

Future work will strive to enhance the performance of the generated signa-
tures, and to identify ways which enable to measure how much the observed
behavior deviates from the expected one. Hereby multiple anomalies and their
effects can be aggregated to decrease the risk of improperly assessing small, prob-
ably harmless, anomalies, as large, probably harmful, anomalies (i.e., attacks).
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