

OWL Ontology Visualization: Graphical Representations of Properties on the
Instance Level

Simone Kriglstein

University of Vienna, Department of Knowledge and Business Engineering,
simone.kriglstein@univie.ac.at

Abstract
For several ontology applications, a combination of

classes with their instances, their properties on the class
level and on the instance level are from interest.
However, the focus of most visualization approaches is
on the hierarchical and non-hierarchical relationships
on the class level. This paper presents an approach to
visualizing datatype properties and object properties on
the instance level. For this purpose, three different
layouts were developed for the ontology visualization
tool Knoocks. Furthermore, the paper discusses results
of an evaluation that was motivated to identify which one
of these layout versions was preferred by the users. The
evaluation should also reveal if the concept of the
representation of the properties was understandable for
them.

Keywords---Information visualization, OWL Lite,
Knoocks, graphical representation of instances,
datatype properties, object properties

1. Introduction

An ontology is a conceptualization of a specific
domain and can be used as a skeletal foundation for the
knowledge base to provide a common understanding of a
specific domain [1, 2]. For example, in the context of
education (see e.g., [3, 4]) ontologies present curricular
structures to support students for planning their study or
to help lecturers to organize their courses.

 OWL is a popular language to describe ontologies
in a human-readable way and allows users to
communicate, to analyze, to exchange or to share
ontologies. The basic elements of OWL ontologies are
[5]:
• Classes: present the relevant concepts.
• Instances: stand for the individual objects of the class.
• Object properties: define the interconnections within

the ontology and relate instances to instances.
• Datatype properties: relate instances to datatypes

which allow to specify additional information about
the instances.

Based on the fact that ontologies can become very
large and complex, graphical representations can support
humans to work with them more easily. Therefore,

several visualization tools for ontologies were developed
in the past few years. A good overview of different
visualization tools and approaches is given in [6, 7].

Most visualization approaches concentrate mainly
on classes. Therefore, object properties are often
visualized – if at all – only on the class level and not
directly on the instance level. For several applications,
however, instances and the representation of their
properties play an important role [8]. For example, in
case of a curriculum ontology, courses can be defined as
instances, whereas ECTS points of courses may be stored
as datatype properties. Content dependencies between
the courses can be described as object properties. Or in
case of a travel ontology to find hotels, hotel names can
be defined as instances and the contact information of the
hotels can be defined as datatype properties.

These examples show that it is often not sufficient to
visualize only an overview about the structure of the
ontology on the class level. It is also necessary that the
graphical representations of ontologies allow users to
effectively see the instances with their datatype
properties and their interconnections to other instances.

In this paper, we present an approach which allows
users to directly see datatype properties of instances and
object properties on instance level. The object properties
representation includes hyperlinks between instances
which allow users to jump rapidly between instances.
Therefore, fast access to other instances is possible and
this allows to explore the interconnections between
instances without leaving the detail view. For this
purpose, we developed three different layout versions
which are integrated in the ontology visualization tool
Knoocks [9]. This tool allows users to explore and
analyze OWL Lite ontologies. In order to help users to
understand the structure of classes, instances and
properties, an overview of classes with their relationships
is combined with a detail view to represent instances in
connection with their classes and their properties.

This paper is structured as follows. Section 2 gives a
short overview how other visualization approaches
present properties on the instance level. A short
description of Knoocks is given in Section 3 and in
Section 4 the three layout versions for the representation
of properties are shown. The evaluation of the three

The final publication is available at ieeexplore.ieee.org published at: Kriglstein, S., "OWL Ontology
Visualization: Graphical Representations of Properties on the Instance Level," Information Visualisation
(IV), 2010 14th International Conference , vol., no., pp.92,97, 26-29 July 2010

layout versions is described in Section 5. Finally, results
and future work will be discussed.

2. Related work

In general, there exist two strategies to represent
properties on the instance level. One strategy shows the
properties in a separate window (e.g. Grokker [10],
GOSurfer [11] and TGVizTab [12]) and the other
strategy presents the properties directly at the class or
instance node (e.g. Jambalaya [13], OntoViz [14] and
Ozone [15]).

For the representation of datatype properties, tables
are often used. For example, OntoViz and Ozone allow
users to choose datatype properties for instances and
classes which are visualized as tables in the graph. In
case of OntoViz, sizes of tables are constant and
therefore if the values of datatype properties are too long,
texts are truncated with "..." without the possibility to see
the full values. In contrast to OntoViz and Ozone,
TGVizTab shows the datatype properties of instances in
a separate window after double clicking on the instance.
In case of Jambalaya, the datatype properties are
embedded as own window after users zoomed in the
instance level. The separate window for properties in
case of Jambalaya and TGVizTab, presents every
datatype property as own table.

Object properties are mainly visualized as node-link
representations. For example, OntoViz shows the object
properties as labeled edges between classes and
instances. However, OntoViz makes no difference
between different object properties. Therefore it is
difficult to distinguish between the different
relationships. Furthermore, if the connections are too
long, it is tedious to follow them [4]. Jambalaya provides
different views to visualize ontologies. The nested graph
view is one of these views and shows the instances
embedded in their classes and the object properties as
edges between the classes. The different object properties
have different colors and the labels of the connections
are also visible as a tooltip. The object properties are
only visualized as edges on the class level and therefore
users have to zoom in the instance level to see an
embedded window that represents for every object
property a list of instances in regard to their outgoing
direction. However, it is not possible to directly see the
instances from the incoming direction. For example, in
case of a curriculum ontology it is not possible to see
which courses are the prerequisites of the selected
course.

3. Knoocks

Knoocks (Knowledge Blocks) is a visualization tool
for OWL Lite ontologies and is implemented in C#. For
parsing OWL Lite ontologies, the publicly available
OwlDotNetApi [16] is applied and OpenGL is used for
displaying purposes (e.g., for alpha-blending or
texturing). For the development of Knoocks, ontology
visualization requirements (based on literature study,

e.g., [8, 17]), usability and interface design aspects
(based on [18, 19, 20]) were considered.

Knoocks divide the ontology in blocks. A block is
generated for each class which is directly connected to
OWL:Thing and the blocks also contains of the class’
descendents. Classes are represented as rectangles. The
subclassOf relationships are presented in such a way that
the right class is the subclass of the left class. The layout
of blocks is inspired by the Icicle Plot concept [21] to
make clustering of objects easily noticeable. Classes
contain their instances as a list, which is motivated by
space filling approaches, in particular of the treemap
[22]. The list representation allows user to quickly scan
the instances and automatically avoids overlapping of
instances.

Furthermore, Knoocks provides two views: a detail
view and an overview. The overview shows the blocks
and object properties are presented as edges between the
classes. Every object property has its own color to make
them better distinguishable from each other. The detail
view presents the instances in combination with their
object properties and datatype properties. Users can
switch between the views via a switch button. Figure 1
shows both views. The latest version of Knoocks - as of
this writing - is described in more detail in [9].

4. Layout Design for Properties

Whereas, object properties are presented as edges on the
class level to give a general overview about the
connections, the properties on instance level give more
precise information about the instances themselves.
Properties of the instances pop up if the user clicks on
the label of the instance in the detail view and properties
are closed after the user clicks the label of the instance
again. The properties have a slightly transparent
background to allow users to see the properties in
connection with the selected instance in the detail view
without losing the orientation.

Figure 1: Main window of Knoocks shows the

detail view (B) and the preview window presents
the overview (A).

Figure 2: Layout version A for properties on the

instance level which shows the object
properties in a single white box.

Figure 3: Layout version B for properties on the
instance level. For the object properties, every

class path is represented as own rectangle.

Figure 4: Layout version C for properties on the
instance level. A circular layout is used for the

representation of the object properties.

The datatype properties are listed in an orange two-
column table. The first column contains the names of the
datatype properties and the second column presents the
corresponding value. For the representation of object
properties, three different layouts were developed.

The first version (version A) shows the object
properties as a list (see Figure 2). Names of classes are
presented as path and instances are grouped in regard to
their common class paths. This grouping allows users to
quickly see which instances are members of the same
subclass. The inspiration of this path representation was
the well-known breadcrumb navigation. Similar to
breadcrumb navigation, the class path specifies the
hierarchy separator as greater than (>) symbol. Instances
are presented directly under the name of their class.
Clicking on the name of an instance allows users to jump
directly to the selected instances in the detail view. The
arrow symbol beside the instance label shows the
direction of the connection and the color of the arrow

corresponds to the type of the object property. For space
saving, classes are abbreviated with "[...]", if they do not
contain any instances. The complete omitted path is
visible via tooltip. Furthermore, users can drag and drop
the table of datatype properties as well as the list of
object properties. This gives users more flexibility and
allows to compare properties of several instances.

Version B (see Figure 3) is similar to version A, but
in contrast to version A, every class path is represented
as own rectangle to make the differentiation of the
groups clearer. Furthermore, the representation of
separate groups allows users to move each rectangle
individually.

Layout C (see Figure 4) presents every instance with
the arrow symbol for direction and type of object
properties in a separate rectangle. The class path
information is only visible via tooltip. The instances are
arranged in a radial pattern, because the representation of
object properties as a list has the drawback to grow in the
height for a large number of entries. Furthermore, users
can also move the collection of instances as a whole.

5. Evaluation

The goal of the evaluation was to find out more
about the usability of the different layout versions.
Furthermore, we wanted to identify which one of these
layouts was preferred by the participants.

5.1. Test Case Ontology

As test case ontology, a bachelor curriculum of
computer science ontology is used for all three layout
versions. This ontology describes the modules of the
curriculum as classes and the courses are defined as
instances. Additional information about the courses (e.g.,
ECTS points, course type, course contents and course
goals) are defined as datatype properties. Object
properties show the formal dependencies and
dependencies in terms of the content between courses.
Summarized, the ontology consists of 86 classes, 122
instances, 2 object properties and 8 datatype properties.

5.2. Participants

The findings of the evaluation are based on 21
participants (14 students of computer science and 7
lecturers of computer science). The reason for this choice
of participants was that they were familiar with the
curriculum information and thereby the focus was on the
visualization itself and not on learning a new ontology.

Each of the three layout versions for the properties
representations of the instances was evaluated by seven
participants and the testing session for each participant
took about 90 minutes.

5.3. Methods

The evaluation is based on task scenarios in
combination with observations and thinking aloud

protocols. Before the users started with the tasks, they
had the possibility to get a first impression of the
visualization and to interact with Knoocks until they had
the feeling to have a good overview and understanding of
the tool and its functionalities.

The tasks concentrate primarily on the identification
of the datatype properties and the object properties
between instances (e.g., to find the content dependencies
of a specific courses to other courses). To identify
strengths and weaknesses of the different layouts, the
participants were additionally asked about their
impression of the visualization of the properties and how
well the design was understandable.

After they finished all tasks, all three design layout
versions are shown to each participant. The participants
were asked to rate arrangement and understandability of
each layout in regard to the representation of the datatype
properties and the object properties. For this purpose, a
7-point Likert scales were used from “not well-
arranged” to “very well-arranged” and from ”not
understandable” to ”very understandable”. Finally, we
asked them which one of these layout versions they
preferred and which one of the three versions they found
less attractive.

5.4. Results

The findings of our observations and thinking aloud
protocols showed us that in general the participants had
no problems to identify datatype properties of an instance
independent from the layout version they used. They said
they were “helpful” and “fast to understand”. In
contrast to datatype properties, participants found the
representation of the object properties more difficult at
the beginning. Based on the fact that they got no
introduction of Knoocks, they noted that the direction of
the arrows and the meanings of the arrow color were not
instantly clear without additional hints (9 statements). To
make the directions of the arrows clearer, several
participants suggested to group the arrows in regard to
their outgoing and incoming directions (6 statements).
However, we observed that they learned the meaning of
the direction and color very fast. Participants, who tested
layout C, saw the orange button in the middle of the
circular arrangement as point of reference for the arrow
directions.

Participants pointed out that they missed a header
with the name of the instance and a close button (5
statements), because if many properties of instances were
open it was not clear which representation of properties
was for which instance. Especially participants, who
tested the version C, found it more difficult to close the
properties of an instance than in version A and B.
Several participants disliked that the texts were truncated
(12 statements). Although one participant liked the
solution with tooltips to see more information, most of
the participants would have found it more helpful to have
multiple rows for the datatype properties.

 A (%) B (%) C (%)
preferred layout
version 33.33 52.38 14.29

less attractive layout
version 23.81 9.52 66.67

Table 1. Percent distribution of the rating for the
layout versions A, B and C.

Only for three participants was the representation of
drag and drop functionality for the properties of the
instances not clear enough at the beginning. Four
participants explicitly stated that they liked to move the
properties of an instance, because it allowed them to
arrange the properties how they liked. Furthermore,
jumping to another instance directly from the
representations of properties, was for the participants
also clear. One participant stated explicitly that it is a
good solution.

After we showed the participants all three layout
versions, most participants found version B very well-
arranged (see Figure 5) and understandable (see Figure
6). Especially, the representation of the object properties
was very understandable for 50% of the participants.
Furthermore, eleven participants preferred layout B (see
Table 1). Reasons for their decision were that version B
gave them a clear overview (4 statements) and they liked
that the object properties from the instance to other
instances were organized in regard to their classes (6
statements). Four participants stated as advantage that the
layout B allowed them to move every single box with
their object properties how they liked. However, one
participant found it unnecessary to move every single
box and one participant noted that version B looked more
overloaded than version A.

The rating of the three layout versions showed that
most of the participants found the version C least
attractive (see Table 1). Especially the participants rated
version C lower in regard to well-arranged representation
of the object properties (see Figure 5) and only 14.29%
of the participants found the object properties in version
C very well-arranged. They disliked that object
properties were partially overlapped (3 statements) and
they said it was confusing if one instance had many
relationships to other instances (6 statements).
Furthermore, they noted that they missed an arrangement
of the object properties (5 statements) and one participant
pointed out that, s/he missed the breadcrumbs.
Furthermore, another participant stated that if the object
properties were represented in a list, such as in version A
or B, it was for him/her clearer than the radial layout. In
contrast, three participants preferred version C, because
they liked the radial layout and found the layout easier to
understand.
Seven participants preferred layout version A. Similar to
version B, they found that version A gave a clear
overview (4 statements).

arrangement

0

1

2

3

4

5

6

7

8

9

10

--- -- - -/+ + ++ +++

N
um

be
r

of
 p

ar
ti

ci
pa

nt
s

A

B

C

Figure 5. The rating result of layout versions A,

B and C in regard to their arrangement of
properties.

understandable

0

1

2

3

4

5

6

7

8

9

10

11

12

--- -- - -/+ + ++ +++

N
um

be
r

of
 p

ar
ti

ci
pa

nt
s

A

B

C

Figure 6. The rating result of layout versions A,

B and C in regard to their understandable
representation of properties.

They noted as advantage of version A that it needed
lesser screen space than version B and therefore it was
possible to represent more object properties (4
statement). However, five participants found version A
less attractive, because two of them disliked the list
representation of the object properties. Only 28.57% of
the participants rated the representation of the object
properties as very understandable and only 14.29% found
the object properties very well-arranged. Named reason
was that they missed separations between the groups of
object properties and therefore they found the overview
less clear than in version B. Furthermore, one participant
noted that s/he missed the possibilities to arrange the
object properties individually such as in version B.

6. Discussion

The results of the evaluation showed that the
concept of the properties representation in the detail view
mapped the concept of the participants and therefore they
had no problems to find the properties of instances. They
found it very intuitive and simple to click on the label of
the instance to open the properties. However, closing the

properties was more difficult for them, because they
searched for a close button. Furthermore, they noted that
it would be helpful if the representation of properties
would have an additional header with the name of the
instance. Because if many properties of various instances
were open, they pointed out that the affiliation between
instances and their properties was not readily
identifiable.

Furthermore, the observations show that the
participants preferred the representation of properties in
the detail view instead of the node-link representation in
the overview. They noted that the connections were
clearer than in the overview. Whereas they found that the
node-link representation was more suitable for tasks, like
getting a fast overview about the distribution of the
connections. Based on the fact that the table
representation was only for instances, participants noted
that it would be beneficial to have this representation
also for general information about a class in the detail
view (e.g., which datatype properties and object
properties the class contains).

Layout version C was more often named as the least
attractive layout version of all three, because of the
number of overlaps of the object properties’ entries.
Furthermore, several participants stated that the list
representation of the object properties was clearer
arranged for them than the radial layout.

Although version B and A were similar, version B
was more often named as preferred layout version.
Reasons were the additional separations to group the
object properties and the possibility to move the
collection of properties as a whole or every group
individually. The possibility to drag and drop the
properties of an instance in all three layout versions
allowed the participants to compare different properties
of different instances.

The arrow symbols to represent the direction of the
connections were for several participants not clear
enough at the beginning. They learned the meaning of
the direction quickly without additional help, but they
were unsure in regard to their decision. Therefore they
would have liked additional hints for the meaning of the
color via tooltip or to have a help document to control if
their assumptions of the direction were correct or not. A
possible reason for their uncertainness was that they had
lesser experience with properties, because user tests to
evaluate Knoocks functionalities with ontology
developers (see [9]) showed that they had no problems to
understand the color and direction of object properties
immediately.

Conclusions

In contrast to other approaches, which show the
object properties primarily as node-link representation on
the class level, this paper described an approach to
represent properties directly on the instance level. For
this purpose, three different layout versions were
developed which were integrated in the visualization tool
Knoocks. The properties representation pops up if the

user clicks on the instance in the detail view of Knoocks.
The basic elements of the property representation are
tables for the datatype properties and lists for object
properties. Furthermore, it allows users to jump to the
instances which are presented in the list of object
properties without losing the focus on the detail view.

Whereas the visualization of datatype properties is
identical for all three versions, the representation of
object properties varies in all three versions. To find out
if the basic concept of the representation of properties is
clear for the users and which one of these layout versions
is preferred, we conducted user tests with 21 participants.
The result of the evaluation showed that the participants
had no problems to find and understand the presentation
of properties. However one layout version emerged as
preferred layout, because of its list representation of the
object properties and its clear separation of the different
groups.

One of our next steps is to rework the preferred
layout version in regard to the usability issues which
were found during the user tests. Further extensive
usability evaluation of Knoocks and comparing study
with other visualization approaches with focus on the
properties on the class level and on the instance level are
planned to confirm the underlying concepts of our
approach.

Acknowledgements

I gratefully acknowledge the critical feedback and
support of Günter Wallner from the University of
Applied Arts Vienna.

References

[1] B. Swartout, R. Patil, K. Knight and T. Russ. Toward

Distributed Use of Large-Scale Ontologies. In
Proceeding of AAAI97 Spring Symposium Series,
Workshop on Ontological Engineering. AAAI Press.
1997.

[2] D. Fensel. Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce, Berlin,
Springer. 2001.

[3] R. Vas. Educational Ontology and Knowledge Testing.
In Electronic Journal of Knowledge Management. Vol.
5, 123 -130. 2007.

[4] S. Kriglstein. Analysis of Ontology Visualization
Techniques for Modular Curricula. In 4th Symposium of
the Workgroup Human-Computer Interaction and
Usability Engineering of the Austrian Computer Society
on HCI and Usability for Education and Work, A.
Holzinger, Ed. Springer, Lecture Notes in Computer
Science. 2008.

[5] W3C. OWL Web Ontology Language Guide
url:http://www.w3.org/TR/owl-guide/

[6] A. Katifori, G. Halatsis, G. Lepouras, C. Vassilakis and
E. Giannopoulou. Ontology visualization methods—a
survey. In ACM Computing Surveys. Vol. 39. 2007.

[7] M. Lanzenberger, J. Sampson and M. Rester.
Visualization in Ontology Tools. In Proceeding of
International Conference on Complex, Intelligent and
Software Intensive Systems. 2nd International
Workshop on Ontology Alignment and Visualization.
IEEE Computer Society. 2009.

[8] S. Kriglstein. User Requirements Analysis on Ontology
Visualization. In Proceeding of International
Conference on Complex, Intelligent and Software
Intensive Systems. 2nd International Workshop on
Ontology Alignment and Visualization. IEEE Computer
Society. 2009.

[9] S. Kriglstein and G. Wallner. Knoocks - A
Visualization Approach for OWL Lite Ontologies. In
Proceeding of International Conference on Complex,
Intelligent and Software Intensive Systems. 3rd
International Workshop on Ontology Alignment and
Visualization. IEEE Computer Society. 2010.

[10] W. Rivadeneira and B. B. Bederson. A Study of Search
Result Clustering Interfaces: Comparing. Textual and
Zoomable User Interfaces. University of Maryland
HCIL. 2003.

[11] S. Zhong, K. F. Storch, O. Lipan, M. C. Kao, C. J.
Weitz and W. H. Wong. GoSurfer: a graphical
interactive tool for comparative analysis of large gene
sets in Gene Ontology space. In Appl Bioinformatics.
Vol. 3. 2004.

[12] H. Alani. TGVizTab: An Ontology Visualisation
Extension for Protégé. In Proceeding of Knowledge
Capture (K-Cap'03). Workshop on Visualization
Information in Knowledge Engineering. 2003.

[13] M.-A. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R.
Fergerson and N. Noy. Jambalaya: Interactive
visualization to enhance ontology authoring and
knowledge acquisition in Protege. In Proceeding of Intl.
Workshop on Interactive Tools for Knowledge Capture.
2001.

[14] P. Mutton and J. Golbeck. Visualization of Semantic
Metadata and Ontologies. In Proceeding of Information
Visualization (IV '03). IEEE Computer Society. 2003.

[15] S. Bongwon and B. B. Benjamin. OZONE: a zoomable
interface for navigating ontology information. In
Proceedings of the Working Conference on Advanced
Visual Interfaces. ACM. 2002.

[16] B. Pellens. OwlDotNetApi url:http://users.skynet.be/
bpellens/OwlDotNetApi/index.html

[17] N. F. Noy and D. L. McGuinness. Ontology
Development 101: A Guide to Creating Your First
Ontology. In Stanford Knowledge Systems Laboratory
Technical Report and Stanford Medical Informatics
Technical Report. 2001.

[18] International Organization for Standardization. ISO
9241-110:2006 Ergonomics of human-system
interaction - Part 110: Dialogue principles. 2006.

[19] J. Nielsen. Usability Engineering, San Francisco,
Morgan Kaufmann. 1994.

[20] B. Shneiderman. Designing the User Interface. 3rd ed.,
Addison Wesley. 1998.

[21] J. B. Kruskal and J. M. Landwehr. Icicle Plots: Better
Displays for Hierarchical Clustering. In The American
Statistician. Vol. 37, 162 - 168. 1983.

[22] B. Shneiderman. Tree visualization with tree-maps: 2-d
space-filling approach. In ACM Transactions on
Graphics. Vol. 11, 92-99. 1992.

