
Conditionally Optimal Algorithms for Generalized
Büchi Games
Krishnendu Chatterjee1, Wolfgang Dvořák2, Monika Henzinger2,
and Veronika Loitzenbauer2

1 IST Austria
2 University of Vienna, Faculty of Computer Science, Vienna, Austria

Abstract
Games on graphs provide the appropriate framework to study several central problems in com-
puter science, such as verification and synthesis of reactive systems. One of the most basic
objectives for games on graphs is the liveness (or Büchi) objective that given a target set of
vertices requires that some vertex in the target set is visited infinitely often. We study gener-
alized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two
generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications
in computer-aided verification. We present improved algorithms and conditional super-linear
lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial
Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m
edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with
running time O(k · n2), improving the previously known O(k · n ·m) and O(k2 · n2) worst-case
bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic
algorithm for the problem is optimal for sparse graphs when the target sets have constant size
under (A2). Finally, we consider GR(1) objectives, with k1 conjunctions in the antecedent and
k2 conjunctions in the consequent, and present an O(k1 · k2 ·n2.5)-time algorithm, improving the
previously known O(k1 · k2 · n ·m)-time algorithm for m > n1.5.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specify-
ing and Verifying and Reasoning about Programs

Keywords and phrases Generalized Büchi objective, GR(1) objective, Conditional lower bounds,
Graph games, Graph algorithms, Computer-aided verification

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Games on graphs. Two-player games on graphs, between player 1 and the adversary player 2,
are central in many problems in computer science, specially in formal analysis of reactive
systems, where vertices of the graph represent states of the system, edges represent transitions,
infinite paths of the graph represent behaviors (or non-terminating executions) of the system,
and the two players represent the system and the environment, respectively. Games on graphs
have been used in many applications related to verification and synthesis of systems, such as,
synthesis of systems from specifications and controller-synthesis [30, 54, 55], verification of
open systems [8], checking interface compatibility [31], well-formedness of specifications [32],
and many others. We will distinguish between results most relevant for sparse graphs, where
the number of edges m is roughly proportional to the number of vertices n, and dense graphs
with m = Θ(n2). Sparse graphs arise naturally in program verification, as control-flow graphs

© Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger and Veronika Loitzenbauer;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Conditionally Optimal Algorithms for Generalized Büchi Games

are sparse [57, 28]. Graphs obtained as synchronous product of several components (where
each component makes transitions at each step) [45, 23] can lead to dense graphs.
Objectives. Objectives specify the desired set of behaviors of the system. The most basic
objective for reactive systems is the reachability objective, and the next basic objective is
the Büchi (also called liveness or repeated reachability) objective that was introduced in
the seminal work of Büchi [17, 18, 19] for automata over infinite words. Büchi objectives
are specified with a target set T and the objective specifies the set of infinite paths in the
graph that visit some vertex in the target set infinitely often. Since for reactive systems
there are multiple requirements, a very central objective to study for games on graphs is
the conjunction of Büchi objectives, which is known as generalized Büchi objective. Finally,
currently a very popular class of objectives to specify behaviors for reactive systems is called
the GR(1) (generalized reactivity (1)) objectives [53]. A GR(1) objective is an implication
between two generalized Büchi objectives.

We present a brief discussion about the significance of the objectives we consider, for
a detailed discussion see [26]. The conjunction of liveness objectives is required to specify
progress conditions of mutual exclusion protocols, and deterministic Büchi automata can
express many important properties of linear-time temporal logic (LTL) (the de-facto logic
to specify properties of reactive systems) [47, 46, 9, 44]. The analysis of reactive systems
with such objectives naturally gives rise to graph games with generalized Büchi objectives.
Finally, graph games with GR(1) objectives have been used in many applications, such as
the industrial example of synthesis of AMBA AHB protocol [14, 36] as well as in robotics
applications [35, 21].
Basic problem and conditional lower bounds. In this work we consider games on graphs with
generalized Büchi and GR(1) objectives, and the basic algorithmic problem is to compute
the winning set, i.e., the set of starting vertices where player 1 can ensure the objective
irrespective of the way player 2 plays; the way player 1 achieves that is called her winning
strategy. These are core algorithmic problems in verification and synthesis. For the problems
we consider, while polynomial-time algorithms are known, there are no super-linear lower
bounds. Since for polynomial-time algorithms unconditional super-linear lower bounds are
extremely rare in the whole of computer science, we consider conditional lower bounds, which
assume that for some well-studied problem the known algorithms are optimal up to some
lower-order factors. In this work we consider two such well-studied assumptions: (A1) there
is no combinatorial1 algorithm with running time of O(n3−ε) for any ε > 0 to multiply two
n× n Boolean matrices; or (A2) for all ε > 0 there exists a k such that there is no algorithm
for the k-CNF-SAT problem that runs in O(2(1−ε)·n · poly(m)) time, where n is the number
of variables and m the number of clauses. These two assumptions have been used to establish
lower bounds for several well-studied problems, such as dynamic graph algorithms [3, 5],
measuring the similarity of strings [4, 15, 16, 10, 2], context-free grammar parsing [49, 1],
and verifying first-order graph properties [52, 61].
Our results. We consider games on graphs with n vertices, m edges, generalized Büchi
objectives with k conjunctions, and target sets of size b1, b2, . . . , bk, and GR(1) objectives
with k1 conjunctions in the assumptions and k2 conjunctions in the guarantee. Our results
are as follows.

Generalized Büchi objectives. The classical algorithm for generalized Büchi objectives
requires O(k ·min1≤i≤k bi ·m) time. Further there exists an O(k2 · n2)-time algorithm

1 Combinatorial here means avoiding fast matrix multiplication [48], see also the discussion in [38].

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:3

via a reduction to Büchi games [13, 26].
1. Dense graphs. Since min1≤i≤k bi = O(n) and m = O(n2), the classical algorithm has

a worst-case running time of O(k · n3). First, we present an algorithm with worst-case
running time O(k · n2), which is an improvement for instances with min1≤i≤k bi ·m =
ω(n2). Second, for dense graphs with m = Θ(n2) and k = Θ(nc) for any 0 < c ≤ 1 our
algorithm is optimal under (A1); i.e., improving our algorithm for dense graphs would
imply a faster (sub-cubic) combinatorial Boolean matrix multiplication algorithm.

2. Sparse graphs. We show that for k = Θ(nc) for any 0 < c ≤ 1, for target sets of
constant size, and sparse graphs with m = Θ(n1+o(1)) the basic algorithm is optimal
under (A2). In fact, our conditional lower bound under (A2) holds even when each
target set is a singleton. Quite strikingly, our result implies that improving the basic
algorithm for sparse graphs even with singleton sets would require a major breakthrough
in overcoming the exponential barrier for SAT.

In summary, for games on graphs, we present an improved algorithm for generalized
Büchi objectives for dense graphs that is optimal under (A1); and show that under (A2)
the basic algorithm is optimal for sparse graphs and constant size target sets.
The conditional lower bound for dense graphs means in particular that for unrestricted
inputs the dependence of the runtime on n cannot be improved, whereas the bound for
sparse graphs makes the same statement for the dependence on m. Moreover, as the
graphs in the reductions for our lower bounds can be made acyclic by deleting a single
vertex, our lower bounds also apply to a broad range of digraph parameters. For instance
let w be the DAG-width [12] of a graph, then there is no O(f(w) · n3−ε)-time algorithm
under (A1) and no O(f(w) ·m2−ε)-time algorithm under (A2).
GR(1) objectives. We present an algorithm for games on graphs with GR(1) objectives
that has O(k1 ·k2 ·n2.5) running time and improves the previously known O(k1 ·k2 ·n ·m)-
time algorithm [43], for m > n1.5. Note that since generalized Büchi objectives are special
cases of GR(1) objectives, our conditional lower bounds for generalized Büchi objectives
apply to GR(1) objectives as well but are not tight.

All our algorithms can easily be modified to also return the corresponding winning strategies
for both players within the same time bounds.
Implications. We discuss the implications of our results.

1. Comparison with related models. We compare our results for game graphs to the special
case of standard graphs (i.e., games on graphs with only player 1) and the related model of
Markov decision processes (MDPs) (with only player 1 and stochastic transitions). First
note that for reachability objectives, linear-time algorithms exist for game graphs [11, 39],
whereas for MDPs2 the best-known algorithm has running time O(min(n2,m1.5)) [29, 26].
For MDPs with reachability objectives, a linear or even O(m logn) time algorithm is a
major open problem, i.e., there exist problems that seem harder for MDPs than for game
graphs. Our conditional lower bound results show that under assumptions (A1) and
(A2) the algorithmic problem for generalized Büchi objectives is strictly harder for games
on graphs as compared to standard graphs and MDPs. More concretely, for k = Θ(n),
(a) for dense graphs (m = Θ(n2)) and min1≤i≤k bi = Ω(logn), our lower bound for games
on graphs under (A2) is Ω(n3−o(1)), whereas both the graph and the MDP problems
can be solved in O(n2) time [25, 26]; and (b) for sparse graphs (m = Θ(n1+o(1))) with

2 For MDPs the winning set refers to the almost-sure winning set that requires that the objective is
satisfied with probability 1.

XX:4 Conditionally Optimal Algorithms for Generalized Büchi Games

min1≤i≤k bi = O(1), our lower bound for games on graphs under (A1) is Ω(m2−o(1)),
whereas the graph problem can be solved in O(m) time and the MDP problem in O(m1.5)
time [7, 24]; respectively.

2. Relation to SAT. We present an algorithm for game graphs with generalized Büchi
objectives and show that improving the algorithm would imply a better algorithm for
SAT, and thereby establish an interesting algorithmic connection for classical objectives
in game graphs and the SAT problem.

Due to the lack of space, some technical details are omitted, but can be found in the attached
appendix.

2 Preliminaries

2.1 Basic definitions for Games on Graphs
Game graphs. A game graph G = ((V,E), (V1, V2)) is a directed graph G = (V,E) with n
vertices V andm edges E and a partition of V into player 1 vertices V1 and player 2 vertices V2.
Given such a game graph G, we denote with G the game graph where the player 1 and player 2
vertices of G are interchanged, i.e, G = ((V,E), (V2, V1)). We use p to denote a player and
p̄ to denote its opponent. For a vertex u ∈ V , we write Out(u) = {v ∈ V | (u, v) ∈ E} for
the set of successor vertices of u and In(u) = {v ∈ V | (v, u) ∈ E} for the set of predecessor
vertices of u. If necessary, we refer to the successor vertices in a specific graph by using, e.g.,
Out(G, u). We denote by Outdeg(u) = |Out(u)| the number of outgoing edges from u, and
by Indeg(u) = |In(u)| the number of incoming edges. We assume for technical convenience
Outdeg(u) ≥ 1 for all u ∈ V .

Plays and strategies. A play on a game graph is an infinite sequence ω = 〈v0, v1, v2, . . .〉 of
vertices such that (v`, v`+1) ∈ E for all ` ≥ 0. The set of all plays is denoted by Ω. Given a
finite prefix ω ∈ V ∗ · Vp of a play that ends at a player p vertex v, a strategy σ : V ∗ · Vp → V

of player p is a function that chooses a successor vertex σ(ω) among the vertices of Out(v).
We denote by Σ and Π the set of all strategies for player 1 and player 2 respectively. The play
ω(v, σ, π) is uniquely defined by a start vertex v, a player 1 strategy σ ∈ Σ, and a player 2
strategy π ∈ Π as follows: v0 = v and for all j ≥ 0, if vj ∈ V1, then vj+1 = σ(〈v1, . . . , vj〉),
and if vj ∈ V2, then vj+1 = π(〈v1, . . . , vj〉).

Objectives. An objective ψ is a set of plays that is winning for a player. We consider zero-sum
games where for a player-1 objective ψ the complementary objective Ω \ ψ is winning for
player 2. In this work we consider only prefix independent objectives, for which the set of
desired plays is determined by the set of vertices Inf(ω) that occur infinitely often in a play ω.
Given a target set T ⊆ V , a play ω belongs to the Büchi objective Büchi (T) iff Inf(ω)∩T 6= ∅.
For the complementary co-Büchi objective we have ω ∈ coBüchi (T) iff Inf(ω) ∩ T = ∅. A
generalized (or conjunctive) Büchi objective is specified by a set of k target sets T` for
1 ≤ ` ≤ k and is satisfied for a play ω iff Inf(ω)∩T` 6= ∅ for all 1 ≤ ` ≤ k. Its complementary
objective is the disjunctive co-Büchi objective that is satisfied iff Inf(ω) ∩ T` = ∅ for one of
the k target sets. A generalized reactivity-1 (GR(1)) objective is specified by two generalized
Büchi objectives,

∧k1
t=1 Büchi (Lt) and

∧k2
`=1 Büchi (U`), and is satisfied if whenever the first

generalized Büchi objective holds, then also the second generalized Büchi objective holds; in
other words, either

∨k1
t=1 coBüchi (Lt) holds, or

∧k2
`=1 Büchi (U`) holds.

All the games in this paper will be given by a game graph G and an objective ψ for
player 1 (player 2 has the complementary objective Ω \ ψ).

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:5

Winning strategies and sets. A strategy σ is winning for player p at a start vertex v if the
resulting play is winning for player p irrespective of the strategy of his opponent, player p̄,
i.e., ω(v, σ, π) ∈ ψ for all π. A vertex v belongs to the winning set Wp of player p if player p
has a winning strategy from v. Every vertex is winning for exactly one of the two players [50].
When required for explicit reference of a specific game graph G and objective ψ, we use
Wp(G, ψ) to refer to the winning sets.
Closed sets and attractors. A set U ⊆ V is p-closed (in G) if for all p-vertices u in U we
have Out(u) ⊆ U and for all p̄-vertices v in U there exists a vertex w ∈ Out(v) ∩ U . Note
that player p̄ can ensure that a play that currently ends in a p-closed set never leaves the
p-closed set against any strategy of player p by choosing an edge (v, w) with w ∈ Out(v)∩U
whenever the current vertex v is in U ∩ Vp̄ [62]. Given a game graph G and a p-closed set U ,
we denote by G[U] the game graph induced by the set of vertices U . Note that given that in
G each vertex has at least one outgoing edge, the same property holds for G[U]. We further
use the shortcut G \X to denote G[V \X].

In a game graph G, a p-attractor Attrp(G, U) of a set U ⊆ V is the set of vertices from
which player p has a strategy to reach U against all strategies of player p̄ [62]. We have that
U ⊆ Attrp(G, U). A p-attractor can be constructed inductively as follows: Let R0 = U ; and
for all j ≥ 0 let Rj+1 = Rj ∪ {v ∈ Vp | Out(v) ∩Rj 6= ∅} ∪ {v ∈ Vp̄ | Out(v) ⊆ Rj}. Then
Attrp(G, U)=

⋃
j≥0Rj . The computation of attractors can be done in linear time [11, 39].

Dominions. A set of vertices D ⊆ V is a player-p dominion if D 6= ∅ and player p has a
winning strategy from every vertex in D that also ensures only vertices in D are visited. The
notion of dominions was introduced by [42]. Note that a player-p dominion is also a p̄-closed
set and the p-attractor of a player-p dominion is again a player-p dominion.

I Lemma 1. The following assertions hold for game graphs G where each vertex has at least
one outgoing edge. The assertions referring to winning sets hold for graph games with prefix
independent objectives. Let X ⊆ V .
1. The set V \Attrp(G, X) is p-closed on G [62, Lemma 4].
2. Let X be p-closed on G. Then Wp̄(G[X]) ⊆Wp̄(G) [42, Lemma 4.4].
3. Let X be a subset of the winning set Wp(G) of player p and let A be its p-attractor

Attrp(G, X). Then the winning set Wp(G) of the player p is the union of A and the
winning set Wp(G[V \ A]), and the winning set Wp̄(G) of the opponent p̄ is equal to
Wp̄(G[V \A]) [42, Lemma 4.5].

2.2 Conjectured Lower Bounds
While classical complexity results are based on complexity-theoretical assumptions about
relationships between complexity classes, e.g., P 6= NP, polynomial lower bounds are often
based on widely believed, conjectured lower bounds about well studied algorithmic problems.
We next discuss the popular conjectures that will be the basis for our lower bounds.

First, we consider conjectures on Boolean matrix multiplication [58, 3] and triangle
detection [3] in graphs, which build the basis for our lower bounds on dense graphs. A
triangle in a graph is a triple x, y, z of vertices such that (x, y), (y, z), (z, x) ∈ E.

I Conjecture 2 (Combinatorial Boolean Matrix Multiplication Conjecture (BMM)). There is
no O(n3−ε) time combinatorial algorithm for computing the Boolean product of two n× n
matrices for any ε > 0.

I Conjecture 3 (Strong Triangle Conjecture (STC)). There is no O(n3−ε) time combinatorial
algorithm that can detect whether a graph contains a triangle for any ε > 0.

XX:6 Conditionally Optimal Algorithms for Generalized Büchi Games

BMM is equivalent to STC [58]. A weaker assumption, without the restriction to combinatorial
algorithms, is that detecting a triangle in a graph takes super-linear time.

Second, we consider the Strong Exponential Time Hypothesis [40, 20] and the Orthogonal
Vectors Conjecture [6], the former dealing with satisfiability in propositional logic and the
latter with the Orthogonal Vectors Problem.

The Orthogonal Vectors Problem (OV). Given two sets S1, S2 of d-bit vectors with
|Si| ≤ N and d ∈ Θ(logN), are there u ∈ S1 and v ∈ S2 such that

∑d
i=1 ui · vi = 0?

I Conjecture 4 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a k such
that k-CNF-SAT on n variables and m clauses cannot be solved in time O(2(1−ε)n poly(m)).

I Conjecture 5 (Orthogonal Vectors Conjecture (OVC)). There is no O(N2−ε) time algorithm
for the Orthogonal Vectors Problem for any ε > 0.

SETH implies OVC [59], i.e., whenever a problem is hard assuming OVC, it is also hard
when assuming SETH. Hence, it is preferable to use OVC for proving lower bounds. Finally,
to the best of our knowledge, no such relations between the former two conjectures and the
latter two conjectures are known.
I Remark. The conjectures that no polynomial improvements over the best known running
times are possible do not exclude improvements by sub-polynomial factors such as poly-
logarithmic factors or factors of, e.g., 2

√
logn as in [60].

3 Algorithms for Generalized Büchi Games

For generalized Büchi games we first present the basic algorithm that follows from the
results of [33, 51, 62]. The basic algorithm runs in time O(knm). We then improve it to an
O(k · n2)-time algorithm by exploiting ideas from the O(n2)-time algorithm for Büchi games
in [25]. The basic algorithm is fast for instances where one Büchi set, say T1, is small, i.e.,
the algorithm runs in time O(k · b1 ·m) time, where b1 = |T1|. Generalized Büchi games can
also be solved via a reduction to Büchi games [13], which yields an O(k2n2) time algorithm
when combined with the O(n2)-time Büchi algorithm [25].

Our algorithms iteratively identify sets of vertices that are winning for player 2, i.e.,
player-2 dominions, and remove them from the graph. We denote the sets in the jth-iteration
with superscript j, in particular G1 = G, where G is the input game graph, Gj is the graph
of Gj , V j is the vertex set of Gj , and T j` = V j ∩ T`. We also use {T j` } to denote the list of
Büchi sets (T j1 , T

j
2 , . . . , T

j
k), in particular when updating all the sets in a uniform way.

Basic Algorithm. For each set U that is closed for player 1 we have that from each vertex
u ∈ U player 2 has a strategy to ensure that the play never leaves U [62]. Thus, if there is
a Büchi set T` with T` ∩ U = ∅, then the set U is a player-2 dominion. Moreover, if U is
a player-2 dominion, also the attractor Attr2(G, U) of U is a player-2 dominion. The basic
algorithm proceeds as follows. It iteratively computes vertex sets Sj closed for player 1 that
do not intersect with one of the Büchi sets. If such a player-2 dominion Sj is found, then
all vertices of Attr2(Gj , Sj) are marked as winning for player 2 and removed from the game
graph; the remaining game graph is denoted by Gj+1. To find a player-2 dominion Sj , for
each 1 ≤ ` ≤ k the attractor Y j` = Attr1(Gj , T j`) of the Büchi set T j` is determined. If for
some ` the complement of Y j` is not empty, then we assign Sj = V j \ Y j` for the smallest
such `. The algorithm terminates if in some iteration j for each 1 ≤ ` ≤ k the attractor Y j`
contains all vertices of V j . In this case the set V j is returned as the winning set of player 1.
The winning strategy of player 1 from these vertices is then a combination of the attractor
strategies to the sets T j` .

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:7

Algorithm GenBuchiGame: Algorithm for Generalized Büchi Games
Input : Game graph G = ((V,E), (V1, V2)) and objective

∧
1≤`≤k

Büchi (T`)
Output : Winning set of player 1

1 G1 ← G; {T 1
` } ← {T`}; j ← 0

2 repeat
3 j ← j + 1
4 for i← 1 to dlog2 ne do
5 construct Gj

i

6 Zj
i ← {v ∈ V2 | Outdeg(Gj

i , v) = 0} ∪ {v ∈ V1 | Outdeg(Gj
i , v) > 2i}

7 for 1 ≤ ` ≤ k do
8 Y j

`,i ← Attr1(Gj
i , T

j
` ∪ Z

j
i)

9 Sj ← V j \ Y j
`,i

10 if Sj 6= ∅ then player 2 dominion found, continue with line 11

11 Dj ← Attr2(Gj , Sj)
12 Gj+1 ← Gj \Dj ; {T j+1

` } ← {T j
` \D

j}
13 until Dj = ∅
14 return V j

I Theorem 6. The basic algorithm for generalized Büchi games computes the winning set
for player 1 in O(k ·min1≤`≤k b` ·m) time, where b` = |T`|, and thus also in O(knm) time.

Our Improved Algorithm. The O(k · n2)-time Algorithm GenBuchiGame for generalized
Büchi games combines the basic algorithm described above with the method used for the
O(n2)-time Büchi game algorithm [26], called hierarchical graph decomposition [37]. The
hierarchical graph decomposition defines for a directed graph G = (V,E) and integers
1 ≤ i ≤ dlog2 ne the graphs Gi = (V,Ei). Assume the incoming edges of each vertex in G
are given in some fixed order in which first the edges from vertices of V2 and then the edges
from vertices of V1 are listed. The set of edges Ei contains all the outgoing edges of each
v ∈ V with Outdeg(G, v) ≤ 2i and the first 2i incoming edges of each vertex. Note that
G = Gdlog2 ne and |Ei| ∈ O(n · 2i). The runtime analysis uses that we can identify small
player-2 dominions (i.e., player-1 closed sets that do not intersect one of the target sets) that
contain O(2i) vertices by only looking at Gi. The algorithm first searches for such a set Sj in
Gi for i = 1 and each target set and then increases i until the search is successful. In this way
the time spent for the search is proportional to k ·n times the number of vertices in the found
dominion, which yields a total runtime bound of O(k · n2). To obtain the O(k · n2) running
time bound, it is crucial to put the loop over the different Büchi sets as the innermost part of
the algorithm. Given a game graph G = (G, (V1, V2)), we denote by Gi the game graph where
G was replaced by Gi from the hierarchical graph decomposition, i.e., Gi = (Gi, (V1, V2)).
Properties of hierarchical graph decomposition. The following lemma identifies two essential
properties of the hierarchical graph decomposition. The first is crucial for correctness: When
searching in Gi for a player-1 closed set that does not contain one of the target sets, we
can ensure that such a set is also closed for player 1 in G by excluding certain vertices that
are missing outgoing edges in Gi from the search. The second is crucial for the runtime:
Whenever the basic algorithm would remove (i.e., identify as winning for player 2) a set with
at most 2i vertices, then we can identify this set also by searching in Gi instead of G.

I Lemma 7. Let G = (G = (V,E), (V1, V2)) be a game graph and {Gi} its hierarchical graph
decomposition. For 1 ≤ i ≤ dlog2 ne let Zi be the set consisting of the player 2 vertices that
have no outgoing edge in Gi and the player 1 vertices with > 2i outgoing edges in G.
1. If a set S ⊆ V \ Zi is closed for player 1 in Gi, then S is closed for player 1 in G.

XX:8 Conditionally Optimal Algorithms for Generalized Büchi Games

s

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

(a) Reduction 10 applied to G = ({a, b, c, d},
{(a, b), (b, a), (b, c), (c, a), (c, d), (d, a)}).

s

(1,0,0)

(1,1,1)

(0,1,1)

c1

c2

c3

(1,1,0)

(1,1,1)

(0,1,0)

(0,0,1)

(b) Reduction 12 applied to S1 = {(1, 0, 0),
(1, 1, 1), (0, 1, 1)} and S2 = {(1, 1, 0), (1, 1, 1),
(0, 1, 0), (0, 0, 1)}.

Figure 1 Illustration of Reductions 10 and 12.

2. If a set S ⊆ V is closed for player 1 in G and |Attr2(G, S)| ≤ 2i, then (i) Gi[S] = G[S],
(ii) the set S is in V \ Zi, and (iii) S is closed for player 1 in Gi.

With the above lemma we can show that whenever a player-2 dominion is found in Gi but not
in Gi−1, then at least Ω(2i) vertices are removed from the maintained game graph. Together
with a runtime bound of O(k · 2i · n) for the search, this yields a total runtime of O(k · n)
per vertex, i.e., time O(k · n2) in total.

I Theorem 8. Algorithm GenBuchiGame computes the winning set of player 1 in a
generalized Büchi game in O(k · n2) time.

4 Conditional Lower bounds for Generalized Büchi Games

In this section we present two conditional lower bounds, one for dense graphs (m = Θ(n2))
based on STC & BMM, and one for sparse graphs (m = Θ(n1+o(1))) based on OVC & SETH.

I Theorem 9. There is no combinatorial O(n3−ε) or O((k · n2)1−ε)-time algorithm (for any
ε > 0) for generalized Büchi games under Conjecture 3 (i.e., unless STC & BMM fail).

The result can be obtained from a reduction from triangle detection to disjunctive co-
Büchi objectives on graphs in [22], and we present the reduction in terms of game graphs
below and illustrate it on an example in Figure 1a.

I Reduction 10. Given a graph G = (V,E) (for triangle detection), we build a game graph
G′ = (G = (V ′, E′), (V1, V2)) (for generalized Büchi objectives) as follows. As vertices V ′
we have four copies V 1, V 2, V 3, V 4 of V and a vertex s. A vertex vi ∈ V i, i ∈ {1, 2, 3} has
an edge to a vertex ui+1 ∈ V i+1 iff (v, u) ∈ E. Moreover, s has an edge to all vertices of
V 1 and all vertices of V 4 have an edge to s. All the vertices are owned by player 2, i.e.,
V1 = ∅ and V2 = V . Finally, we consider the generalized Büchi objective

∧
v∈V Büchi (Tv),

with Tv = (V 1 \ {v1}) ∪ (V 4 \ {v4}).

We have that there is a triangle in the graph G if and only if the vertex s is winning for
player 2 in the generalized Büchi game on G′. Notice that the sets Tv in the above reduction
are of linear size but can be reduced to logarithmic size using a construction from [22]. Next
we present an Ω(m2−o(1)) lower bound for generalized Büchi objectives.

I Theorem 11. There is no O(m2−ε) or O(min1≤ i≤k bi · (k ·m)1−ε)-time algorithm (for any
ε>0) for generalized Büchi games under Conjecture 5 (i.e., unless OVC & SETH fail).

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:9

The above theorem is by a linear time reduction from OV provided below (cf. Figure 1b).

I Reduction 12. Given two sets S1, S2 of d-dimensional vectors, we build the following
game graph. The vertices V of the graph G are given by a start vertex s, vertices S1 and S2
representing the sets of vectors, and vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates.
The edges E of G are defined as follows: the start vertex s has an edge to every vertex of S1
and every vertex of S2 has an edge to s; further for each x ∈ S1 there is an edge to ci ∈ C iff
xi = 1 and for each y ∈ S2 there is an edge from ci ∈ C iff yi = 1. The set of vertices V is
partitioned into player 1 vertices V1 = S1 ∪ S2 ∪ C and player 2 vertices V2 = {s}. Finally,
the generalized Büchi objective is given by

∧
v∈S2

Büchi (Tv) with Tv = {v}.

I Lemma 13. Given two sets S1, S2 of d-dimensional vectors and the corresponding graph
game G given by Reduction 12 with Tv = {v} for v ∈ S2, (1) there exist orthogonal vectors
x ∈ S1 and y ∈ S2 if and only if (2) s 6∈W1(G,

∧
v∈S2

Büchi (Tv)).

Proof. W.l.o.g. we assume that the 1-vector, i.e., the vector with all coordinates being 1, is
contained in S2 (adding the 1-vector does not change the result of the OV instance), which
guarantees that each vertex c ∈ C in the construction below has at least 1 outgoing edge.
Then a play in the game graph G proceeds as follows. Starting from s, player 2 chooses a
vertex x ∈ S1; then player 1 first picks a vertex c ∈ C and then a vertex y ∈ S2; then the play
goes back to s (at each y ∈ S2 player 1 has only this choice), starting another cycle of the
play. (1)⇒(2): Assume there are orthogonal vectors x ∈ S1 and y ∈ S2. Now player 2 can
satisfy coBüchi (Ty) by simply going to x whenever the play is in s. Then player 1 can choose
some adjacent c ∈ C and then some adjacent vertex in S2, but as x and y are orthogonal,
this c is not connected to y. Thus the play will never visit y. (2)⇒(1): By the fact that
W1 = V \W2 [50] we have that (2) is equivalent to s ∈ W2(G,

∧
v∈S2

Büchi (Tv)). Assume
s ∈W2(G,

∧
v∈S2

Büchi (Tv)) and consider a corresponding strategy for player 2 that satisfies∨
v∈S2

coBüchi (Tv). Notice that the graph is such that player 2 has to visit at least one of
the vertices v in S1 infinitely often. Moreover, for such a vertex v then player 1 can visit
all vertices v′ ∈ S2 that correspond to non-orthogonal vectors infinitely often. That is, if v
has no orthogonal vector, player 1 can satisfy all the Büchi constraints, a contradiction to
our assumption that s ∈W2(G,

∧
v∈S2

Büchi (Tv)). Thus there must be a vector x ∈ S1 such
that there exists a vector y ∈ S2 that is orthogonal to x. J

Let N = max(|S1|, |S2|). The number of vertices in the game graph, constructed by
Reduction 12, is O(N), the number of edges m is O(N logN) (recall that d ∈ O(logN)),
we have k ∈ Θ(N) target sets, each of size 1, and the construction can be performed in
O(N logN) time. Thus, if we would have an O(m2−ε) or O(min1≤i≤k bi · (k ·m)1−ε) time
algorithm for any ε > 0, we would immediately get an O(N2−ε) algorithm for OV, which
contradicts OVC (and thus SETH).
I Remark. Notice that the lower bounds apply to instances with k ∈ Θ(nc) for arbitrary
0 < c ≤ 1, although the reductions produce graphs with k ∈ Θ(n). This is because of the
specific type of the constructed instances, for which each O((k · f(n,m))1−ε)-time algorithm
for k ∈ Θ(nc) also implies an O((k · f(n,m))1−ε)-time algorithm for k ∈ Θ(n).

5 Generalized Reactivity-1 Games

GR(1) games deal with an objective of the form
∧k1
t=1 Büchi (Lt)→

∧k2
`=1 Büchi (U`) and can

be solved in O(k1k2 ·m · n) time [43] with an extension of the progress measure algorithm
of [41] and in O((k1k2 · n)2.5) time by combining the reduction to one-pair Streett objectives

XX:10 Conditionally Optimal Algorithms for Generalized Büchi Games

by [13] with the algorithm of [27]. In this section we develop an O(k1k2 ·n2.5)-time algorithm
by modifying the algorithm of [43] to compute dominions. We further use our O(k · n2)-time
algorithm for generalized Büchi games with k = k1 as a subroutine.

We first describe a basic, direct algorithm for GR(1) games that is based on repeatedly
identifying player-2 dominions in generalized Büchi games. We then show how the progress
measure algorithm of [43] can be modified to identify player-2 dominions in generalized Büchi
games with k1 Büchi objectives in time proportional to k1 ·m times the size of the dominion.
In the O(k1k2 · n2.5)-time algorithm we use the modified progress measure algorithm in
combination with the hierarchical graph decomposition of [26, 27] to identify dominions that
contain up to

√
n vertices and our O(k1 · n2)-time algorithm for generalized Büchi games

to identify dominions with more than
√
n vertices. Each time we search for a dominion we

might have to consider k2 different subgraphs.
We denote the sets in the jth-iteration of our algorithms with superscript j, in particular

G1 = G, where G is the input game graph, Gj is the graph of Gj , V j is the vertex set of Gj ,
V j1 = V1 ∩ V j , V j2 = V2 ∩ V j , Ljt = Lt ∩ V j , and U j` = U` ∩ V j .

Basic Algorithm. Similar to generalized Büchi games, the basic algorithm for GR(1)
games identifies a player-2 dominion Sj , removes the dominion and its player-2 attractor Dj

from the graph, and recurses on the remaining game graph Gj+1 = Gj \Dj . If no player-2
dominion is found, the remaining set of vertices V j is returned as the winning set of player 1.
Given the set Sj is indeed a player-2 dominion, the correctness of this approach follows from
Lemma 1(3). A player-2 dominion in Gj is identified as follows: For each 1 ≤ ` ≤ k2 first
the player-1 attractor Y j` of U j` is temporarily removed from the graph. Then a generalized
Büchi game with target sets Lj1, . . . , L

j
k1

is solved on Gj \ Y j` . The generalized Büchi player
in this game corresponds to player 2 in the GR(1) game and his winning set to a player-2
dominion in the GR(1) game. Note that V j \ Y j` is player-1 closed and does not contain U j` .
Thus if in the game induced by the vertices of V j \Y j` player 2 can win w.r.t. the generalized
Büchi objective

∧k1
t=1 Büchi(L

j
t), then these vertices form a player-2 dominion in the GR(1)

game. Further, we can show that when a player-2 dominion in the GR(1) games on Gj

exists, then for one of the sets U j` the winning set of the generalized Büchi game on Gj \ Y j`
is non-empty; otherwise we can construct a winning strategy of player 1 for the GR(1) game
on Gj . Note that this algorithm computes a player-2 dominion O(k2 · n) often using our
O(k1 · n2)-time generalized Büchi Algorithm GenBuchiGame.

I Theorem 14. The basic algorithm for GR(1) games computes the winning set for player 1
in O(k1 · k2 · n3) time.

Improved Algorithm. The overall structure of our O(k1k2 · n2.5)-time algorithm for GR(1)
games (see Algorithm GR(1)Game) is the same as for the basic algorithm: We search for a
player-2 dominion Sj and if one is found, then its player-2 attractor Dj is determined and
removed from the current game graph Gj (with G1 = G) to create the game graph for the
next iteration, Gj+1. If no player-2 dominion exists, then the remaining vertices are returned
as the winning set of player 1. The difference to the basic algorithm lies in the way player-2
dominions are searched. Two different procedures are used for this purpose: First we search
for “small” dominions with the subroutine kGenBüchiDominion. If no small dominions exist,
then we search for player-2 dominions as in the basic algorithm. The guarantee that we find
a “large” dominion allows us to bound the number of times the second case can happen.
Progress Measure Algorithm. In the Procedure kGenBüchiDominion we use a subroutine that
finds in a generalized Büchi game all dominions of the generalized Büchi player that have size
at most h (where h is an input parameter). This subroutine is based on a so-called progress

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:11

Algorithm GR(1)Game: Algorithm for GR(1) Games

Input : Game graph G = ((V,E), (V1, V2)), Obj.
∧k1

t=1 Büchi (Lt)→
∧k2

`=1 Büchi (U`)
Output : Winning set of player 1

1 G1 ← G; {U1
` } ← {U`}; {L1

t} ← {Lt}
2 j ← 0
3 repeat
4 j ← j + 1
5 Sj ← kGenBüchiDominion(Gj , {U j

` }, {L
j
t},
√
n)

6 if Sj = ∅ then
7 for 1 ≤ ` ≤ k2 do
8 Y j

` ← Attr1(Gj , U j
`)

9 Sj ← GenBüchiGame(Gj \ Y j
` ,
∧k1

`=1 Büchi
(
Lj

t \ Y
j

`

)
)

10 if Sj 6= ∅ then break

11 Dj ← Attr2(Gj , Sj)
12 Gj+1 ← Gj \Dj ; {U j+1

` } ← {U j
` \D

j}; {Lj+1
t } ← {Lj

t \D
j}

13 until Dj = ∅
14 return V j

15 Procedure kGenBüchiDominion(Gj , {U j
` }, {L

j
t}, hmax)

16 for i← 1 to dlog2(hmax)e do
17 construct Gj

i

18 Zj
i ← {v ∈ V2 | Outdeg(Gj

i , v) = 0} ∪ {v ∈ V1 | Outdeg(Gj
i , v) > 2i}

19 for 1 ≤ ` ≤ k2 do
20 Y j

i,` ← Attr1(Gj
i , U

j
` ∪ Z

j
i)

21 Xj
i,` ← GenBüchiProgressMeasure(Gj

i \ Y
j

i,`,
∧k1

`=1 Büchi
(
Lj

t \ Y
j

i,`

)
, 2i)

22 if Xj
i,` 6= ∅ then return Xj

i,`

23 return ∅

measure for generalized Büchi objectives which is a special instance of the progress measure
for GR(1) objectives presented in [43, Section 3.1], which itself is based on [41]. We modify
the progress measure to efficiently identify dominions of size at most h (instead of computing
the whole winning set) by restricting the range of allowed values for the progress measure
functions similar to [56]. Finally, we give an O(k · h ·m)-time algorithm for computing the
progress measure functions based on [34, 43] (details are provided in the appendix).

I Theorem 15. For a game graph G and objective ψ =
∧

1≤`≤k Büchi (T`), there is an
O(k ·h ·m) time procedure GenBüchiProgressMeasure(G, ψ, h) that either returns a player-1
dominion or the empty set, and, if there is at least one player-1 dominion of size ≤ h then
returns a player-1 dominion containing all player-1 dominions of size ≤ h.

Procedure kGenBüchiDominion. The procedure kGenBüchiDominion searches for player-2
dominions in the GR(1) game, and returns some dominion if there exists a dominion D with
|Attr2(G, D)| ≤ hmax. To this end we again consider generalized Büchi games with target
sets Lj1, . . . , L

j
k1
, where the generalized Büchi player corresponds to player 2 in the GR(1)

game. We use the same hierarchical graph decomposition as for Algorithm GenBuchiGame:
Let the incoming edges of each vertex be ordered such that the edges from vertices of V2
come first; for a given game graph Gj the graph Gji contains all vertices of Gj , for each vertex
its first 2i incoming edges, and for each vertex with outdegree at most 2i all its outgoing
edges. The set Zji contains all vertices of V1 with outdegree larger than 2i and all vertices
of V2 that have no outgoing edge in Gji . We start with i = 1 and increase i by one as

XX:12 Conditionally Optimal Algorithms for Generalized Büchi Games

long as no dominion was found. For a given i we perform the following operations for each
1 ≤ ` ≤ k2: First the player 1 attractor Y ji,` of U j` ∪ Z

j
i is determined. Then we search

for player-1 dominions on Gji \ Y
j
i,` w.r.t. the objective

∧k1
t=1 Büchi (Lt) with the generalized

Büchi progress measure algorithm and parameter h = 2i, i.e., by Theorem 15 the progress
measure algorithm returns all generalized Büchi dominions in Gji \ Y

j
i,` of size at most h.

The following lemma shows how the properties of the hierarchical graph decomposition
extend to GR(1) games. The first part is crucial for correctness: Every non-empty set found
by the progress measure algorithm on Gji \ Y

j
i,` for some i and ` is indeed a player-2 dominion

in the GR(1) game. The second part is crucial for the runtime argument: Whenever the basic
algorithm for GR(1) games would identify a player-2 dominion D with |Attr2(G, D)| ≤ 2i,
then D is also a generalized Büchi dominion in Gji \ Y

j
i,` for some `.

I Lemma 16. Let the notation be as in Algorithm GR(1)Game.
1. Every Xj

i,` 6= ∅ is a player-2 dominion in the GR(1) game on Gj with Xj
i,` ∩ U

j
` = ∅.

2. If for player 2 there exists in Gj a dominion D w.r.t. the generalized Büchi objective∧k1
t=1 Büchi(L

j
t) such that D ∩ U j` = ∅ for some 1 ≤ ` ≤ k2 and |Attr2(Gj , D)| ≤ 2i, then

D is a dominion w.r.t. the generalized Büchi objective
∧k1
t=1 Büchi(L

j
t \ Y

j
i,`) in Gji \ Y

j
i,`.

From this we can draw the following two corollaries: (1) When we had to go up to i∗
in the graph decomposition to find a dominion, then its attractor has size at least 2i∗−1

and (2) when kGenBüchiDominion returns an empty set, then all player-2 dominions in
the current game graph have more than hmax =

√
n vertices. In the second case either no

player-2 dominion exists or the subsequent call to GenBüchiGame returns one with more than√
n vertices, which can happen at most O(

√
n) times. Together with (1), this means we can

(a) charge the time spent in kGenBüchiDominion to the vertices in the dominion identified
in this iteration of the repeat-until loop (except for the last iteration) and (b) bound the
number of calls to GenBüchiGame with O(

√
n).

I Theorem 17. Algorithm GR(1)Game computes the winning set of player 1 in a GR(1)
game in O(k1 · k2 · n2.5) time.

6 Conclusion

In this work we present improved algorithms for generalized Büchi and GR(1) objectives,
and conditional lower bounds for generalized Büchi objectives. The existing upper bounds
and our conditional lower bounds are tight for (a) for dense graphs, and (b) sparse graphs
with constant size target sets. Two interesting open questions are as follows: (1) For sparse
graphs with θ(n) many target sets of size θ(n) the upper bounds are cubic, whereas the
conditional lower bound is quadratic, and closing the gap is an interesting open question.
(2) For GR(1) objectives we obtain the conditional lower bounds from generalized Büchi
objectives, which are not tight in this case; whether better (conditional) lower bounds can
be established also remains open.

Acknowledgements. K. C., M. H., and W. D. are partially supported by the Vienna Science
and Technology Fund (WWTF) through project ICT15-003. K. C. is partially supported
by the Austrian Science Fund (FWF) NFN Grant No S11407-N23 (RiSE/SHiNE) and an
ERC Start grant (279307: Graph Games). For W. D., M. H., and V. L. the research
leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
no. 340506.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:13

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In FOCS, pages 98–117, 2015.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results

For LCS and other Sequence Similarity Measures. In FOCS, pages 59–78, 2015.
3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, pages 434–443, 2014.
4 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster

alignment of sequences. In ICALP 2014, Proceedings, Part I, pages 39–51, 2014.
5 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and

basing hardness on an extremely popular conjecture. In STOC, pages 41–50, 2015.
6 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and

fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In
SODA, pages 377–391, 2016.

7 Rajeev Alur and Thomas A. Henzinger. Computer-aided verification, 2004. Unpublished,
available at http://www.cis.upenn.edu/group/cis673/.

8 Rajeev Alur, Thomas. A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

9 Rajeev Alur and Salvatore La Torre. Deterministic generators and games for ltl fragments.
ACM Trans. Comput. Log., 5(1):1–25, 2004.

10 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In STOC, pages 51–58, 2015.

11 Catriel Beeri. On the membership problem for functional and multivalued dependencies in
relational databases. ACM Transactions on Database Systems, pages 241–259, 1980.

12 Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. Dag-width and
parity games. In STACS, pages 524–536, 2006.

13 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, and Bar-
bara Jobstmann. Robustness in the presence of liveness. In CAV, pages 410–424, 2010.

14 Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and
Martin Weiglhofer. Interactive presentation: Automatic hardware synthesis from specifica-
tions: a case study. In DATE, pages 1188–1193, 2007.

15 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In FOCS, pages 661–670, 2014.

16 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In FOCS, pages 79–97, 2015.

17 J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

18 J. Richard Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel,
P. Suppes, and A. Tarski, editors, Proceedings of the First International Congress on Logic,
Methodology, and Philosophy of Science 1960, pages 1–11. Stanford University Press, 1962.

19 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the AMS, 138:295–311, 1969.

20 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In IWPEC, pages 75–85, 2009.

21 Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Qualitative
analysis of pomdps with temporal logic specifications for robotics applications. In IEEE
International Conference on Robotics and Automation, ICRA, pages 325–330, 2015.

22 Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Veronika Loitzenbauer.
Model and objective separation with conditional lower bounds: Disjunction is harder than
conjunction. In LICS, 2016. To appear, available at http://arxiv.org/abs/1602.02670.

http://www.cis.upenn.edu/group/cis673/
http://arxiv.org/abs/1602.02670

XX:14 Conditionally Optimal Algorithms for Generalized Büchi Games

23 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas
Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant
treewidth components. In POPL, pages 733–747, 2016.

24 Krishnendu Chatterjee and Monika Henzinger. Faster and Dynamic Algorithms For Maxi-
mal End-Component Decomposition And Related Graph Problems In Probabilistic Verifi-
cation. In SODA, pages 1318–1336, 2011.

25 Krishnendu Chatterjee and Monika Henzinger. An O(n2) Time Algorithm for Alternating
Büchi Games. In SODA, pages 1386–1399, 2012.

26 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Al-
ternating Büchi Games and Maximal End-component Decomposition. Journal of the ACM,
61(3):15, 2014.

27 Krishnendu Chatterjee, Monika Henzinger, and Veronika Loitzenbauer. Improved Algo-
rithms for One-Pair and k-Pair Streett Objectives. In LICS, pages 269–280, 2015.

28 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh Goyal.
Faster algorithms for algebraic path properties in recursive state machines with constant
treewidth. In POPL. ACM, 2015.

29 Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Simple stochastic
parity games. In CSL, pages 100–113, 2003.

30 Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1962.

31 Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE’01, pages 109–120.
ACM Press, 2001.

32 David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. The MIT Press, 1989.

33 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy.
In FOCS, pages 368–377, 1991.

34 Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simulation relations, parity
games, and state space reduction for büchi automata. SIAM J. Comput., 34(5):1159–1175,
2005.

35 Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion
planning for mobile robots. In IEEE International Conference on Robotics and Automation,
ICRA, pages 2020–2025, 2005.

36 Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. Synthesis of AMBA
AHB from formal specification: A case study. Journal of Software Tools Technology Trans-
fer, 2011.

37 Monika Henzinger, Valerie King, and Tandy Warnow. Constructing a Tree from Homeo-
morphic Subtrees, with Applications to Computational Evolutionary Biology. Algorithmica,
24(1):1–13, 1999.

38 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30, 2015.

39 Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, pages 384–406, 1981.

40 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

41 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In STACS, pages
290–301, 2000.

42 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A Deterministic Subexponential Algo-
rithm for Solving Parity Games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:15

43 Sudeep Juvekar and Nir Piterman. Minimizing generalized büchi automata. In CAV, pages
45–58, 2006.

44 Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. Deterministic Ω automata vis-a-vis
deterministic buchi automata. In ISAAC, pages 378–386, 1994.

45 Wouter Kuijper and Jaco van de Pol. Computing weakest strategies for safety games of
imperfect information. In TACAS, pages 92–106, 2009.

46 Orna Kupferman and Moshe Y. Vardi. Freedom, weakness, and determinism: From linear-
time to branching-time. In LICS, pages 81–92, 1998.

47 Orna Kupferman and Moshe Y. Vardi. From linear time to branching time. ACM Trans-
actions on Computational Logic, 6(2):273–294, 2005.

48 François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In ISSAC, pages
296–303, 2014.

49 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49(1):1–15, January 2002.

50 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
51 Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
52 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA,

pages 1065–1075, 2010.
53 Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In VMCAI,

LNCS 3855, Springer, pages 364–380, 2006.
54 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages

179–190. ACM Press, 1989.
55 P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization, 25(1):206–230, 1987.
56 Sven Schewe. Solving Parity Games in Big Steps. In FSTTCS, pages 449–460, 2007.
57 Mikkel Thorup. All Structured Programs Have Small Tree Width and Good Register

Allocation. Information and Computation, 142(2):159 – 181, 1998.
58 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,

matrix and triangle problems. In FOCS, pages 645–654, 2010.
59 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. Announced at ICALP’04.
60 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages

664–673, 2014.
61 Ryan Williams. Faster decision of first-order graph properties. In CSL-LICS, pages 80:1–

80:6, 2014.
62 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

XX:16 Conditionally Optimal Algorithms for Generalized Büchi Games

A Omitted Details for Algorithms for Generalized Büchi Games

A.1 Reduction to Büchi Games
Another way to implement generalized Büchi games is by a reduction to Büchi games as
follows (see also [13]). Make k copies V ` of the vertices of the original game graph and draw
an edge (vj , uj) if (v, u) is an edge in the original graph and v 6∈ Tj , and an edge (vj , uj⊕1) if
(v, u) is an edge in the original graph and v ∈ Tj (where j⊕1 = j+1 for j < k and k⊕1 = 1).
Finally, pick the Büchi set T` of minimal size and make its copy T `` in V ` the target set
for the Büchi game. This reduction results an O(k ·min1≤`≤kb` ·m) time procedure when
combined with the basic algorithm for Büchi (b` = |T`|) and an O(k2n2) time procedure
when combined with the O(n2) time algorithm for Büchi [25].

A.2 Omitted Details for Basic Algorithm
The basic algorithm for generalized Büchi games is given in Algorithm GenBuchiGameBasic.
The proof of Theorem 6 consists of the following three propositions.

Algorithm GenBuchiGameBasic: Algorithm for Generalized Büchi Objective in
Game Graphs

Input : Game graph G = ((V,E), (V1, V2)) and objective
∧

1≤`≤k
Büchi (T`)

Output : Winning set of player 1
1 G1 ← G
2 {T 1

` } ← {T`}
3 j ← 0
4 repeat
5 j ← j + 1
6 for 1 ≤ ` ≤ k do
7 Y j

` ← Attr1(T j
` ,G

j)
8 Sj ← V j \ Y j

`

9 if Sj 6= ∅ then break
10 Dj ← Attr2(Sj ,Gj)
11 Gj+1 ← Gj \Dj

12 {T j+1
` } ← {T j

` \D
j}

13 until Dj = ∅
14 return V j

I Proposition 18 (Runtime Algorithm GenBuchiGameBasic). The basic algorithm for
generalized Büchi games terminates in O(k · b1 ·m) time, where b1 = |T1|, and thus also in
O(knm) time .

Proof. In each iteration of the repeat-until loop at most k + 1 attractor computations are
performed, which can each be done in O(m) time. We next argue that the repeat-until
loop terminates after at most 2b1 + 2 iterations. We use that (a) a player-2 edge from
Y j` = Attr1(Gj , T j`) to V j \ Y j` has to originate from a vertex of T j` and (b) if a player-1
attractor contains a vertex, then it contains also the player-1 attractor of this vertex. In each
iteration we have one of the following situations:

1. Sj = ∅: The algorithm terminates.
2. Attr1(Gj , T j1) = V j and Attr1(Gj , T j`) 6= V j for some ` > 1: We have that T j1 6⊆

Attr1(Gj , T j`) as T j1 ⊆ Attr1(Gj , T j`) would imply that also Attr1(Gj , T j1) = V j ⊆
Attr1(Gj , T j`) which is in contradiction to the assumption. Thus we obtain |T j+1

1 | < |T j1 |.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:17

3. Attr1(Gj , T j1) 6= V j and Dj ∩ T j1 6= ∅: We immediately get |T j+1
1 | < |T j1 |.

4. Attr1(Gj , T j1) 6= V j and Dj ∩ T j1 = ∅: In this case Dj = Attr2(Gj , Sj) = Sj and thus
in the next iteration we have either situation (1) or (2). Notice that, for each vertex
v ∈ Attr1(Gj , T j1) player 1 has a strategy to reach T j1 and thus for v to be in Dj the set
Dj has to contain at least one vertex of T j1 .

By the above we have that T j1 is decreased in at least every second iteration of the loop. For
T j1 = ∅ we have Attr1(Gj , T j1) = ∅ and thus V j+1 = ∅, which terminates the algorithm in
the next iteration. Thus we have that each iteration takes time O(km) and there are O(b1)
iterations. J

As we can always rearrange the Büchi sets such that b1 = min1≤`≤k b`, this gives an
O(k ·min1≤`≤k b` ·m) algorithm for generalized Büchi games.

For the final game graph Gj we have that all vertices are in all the player-1 attractors of
Büchi sets T`. Thus player 1 can win the game by following one attractor strategy until the
corresponding Büchi set is reached and then switching to the attractor strategy of the next
Büchi set.

I Proposition 19 (Soundness Algorithm GenBuchiGameBasic). Player 1 has a winning
strategy from each vertex in the set returned by the algorithm.

Proof. Let the j∗-th iteration be the last iteration of the algorithm. We have Sj∗ = ∅. Thus
each vertex of V j∗ is contained in Attr1(T j

∗

` ,Gj∗) for each 1 ≤ ` ≤ k. Additionally, either
V j
∗ = ∅ or T j

∗

` 6= ∅ for all 1 ≤ ` ≤ k. Further we have that V j∗ is closed for player 2 as
only player 2 attractors were removed from V to obtain V j

∗ (i.e., we apply Lemma 1(1)
inductively). Hence player 1 has the following winning strategy (with memory) on the
vertices of V j∗ : On the vertices of V j∗ \

⋂k
`=1 T

j∗

` first follow the attractor strategy for T j
∗

1
until a vertex of T j

∗

1 is reached, then the attractor strategy for T j
∗

2 until a vertex of T j
∗

2 is
reached and so on until the set T j

∗

k is reached; then restart with T j
∗

1 . On the vertices of⋂k
`=1 T

j∗

` ∩ V1 player 1 can pick any outgoing edge whose endpoint is in V j∗ . Since V j∗ is
closed for player 2 and T j

∗

` 6= ∅ for all 1 ≤ ` ≤ k, this strategy exists, never leaves the set
V j
∗ , and satisfies the generalized Büchi objective. J

For completeness we use that each 1-closed set that avoids one Büchi set is winning for
player 2 and that, by Lemma 1(3), we can remove such sets from the game graph.

I Proposition 20 (Completeness Algorithm GenBuchiGameBasic). Let V j∗ be the set
returned by the algorithm. Player 2 has a winning strategy from each vertex in V \ V j∗ .

Proof. By Lemma 1(3) it is sufficient to show that, in each iteration j, player 2 has a winning
strategy in Gj from each vertex of Sj . Let ` be such that Sj = V j \ Attr1(Gj , T j`). By
Lemma 1(1) Sj is closed for player 1 in Gj , that is, player 2 has a strategy that keeps the play
within Gj [Sj] against any strategy of player 1. Since Sj ∩ T j` = ∅, this strategy is winning
for player 2 (i.e., satisfies coBüchi

(
T j`

)
and thus the disjunctive co-Büchi objective). J

A.3 Omitted Details for Improved Algorithm
I Lemma 7 (restated). Let G = (G = (V,E), (V1, V2)) be a game graph and {Gi} its
hierarchical graph decomposition. For 1 ≤ i ≤ dlog2 ne let Zi be the set consisting of the
player 2 vertices that have no outgoing edge in Gi and the player 1 vertices with > 2i outgoing
edges in G.

XX:18 Conditionally Optimal Algorithms for Generalized Büchi Games

1. If a set S ⊆ V \ Zi is closed for player 1 in Gi, then S is closed for player 1 in G.
2. If a set S ⊆ V is closed for player 1 in G and |Attr2(S,G)| ≤ 2i, then (i) Gi[S] = G[S],

(ii) the set S is in V \ Zi, and (iii) S is closed for player 1 in Gi.

Proof. 1. By S ⊆ V \ Zi we have for all v ∈ S ∩ V1 that Out(G, v) = Out(Gi, v). Thus if
Out(Gi, v) ⊆ S, then also Out(G, v) ⊆ S. The claim then follows from Ei ⊆ E.

2. Since S is closed for player 1 and |S| ≤ 2i, (a) the set S does not contain vertices v ∈ V1
with Outdeg(G, v) > 2i. Further for every vertex of S also the vertices in V2 from which
it has incoming edges are contained in Attr2(S,G). Thus by |Attr2(S,G)| ≤ 2i no vertex
of S has more than 2i incoming edges from vertices of V2. Hence, by the ordering of
incoming edges in the construction of Gi, we obtain (b) for the vertices of S all incoming
edges from vertices of V2 are contained in Ei. Combining (a), i.e., Out(G, v) = Out(Gi, v)
for v ∈ S ∩ V1, and (b), i.e., (u,w) ∈ Ei for u ∈ V2 and w ∈ S, we have (i) Gi[S] = G[S].
Since S is closed for player 1 in G, every vertex u ∈ S ∩ V2 has an outgoing edge to
another vertex w ∈ S in G. Thus in particular these edges (u,w) are contained in Ei and
hence every vertex u ∈ S ∩ V2 has an outgoing edge to another vertex w ∈ S in Gi. It
follows that (ii) S ∩ Zi = ∅, and (iii) S is closed for player 1 in Gi (by (1)). J

I Corollary 21. If in Algorithm GenBuchiGame for some `, j, and i > 1 we have that
Sj = V j \Attr1(T j` ∪ Z

j
i ,G

j
i) is not empty but for i− 1 the set V j \Attr1(T j` ∪ Z

j
i−1,G

j
i−1)

is empty, then |Attr2(Sj ,Gj)| > 2i−1.

Proof. By Lemma 1(1) Sj is closed for player 1 in Gji and by Lemma 7(1) also in Gj .
Assume by contradiction that |Attr2(Sj ,Gj)| ≤ 2i−1. Then by Lemma 7(2) we have that
Sj ⊆ V j \ Zji−1 and Sj is closed for player 1 in Gji−1. Since this means that in Gji−1 player 1
has a strategy to keep a play within Sj against any strategy of player 2 and Sj does not
contain a vertex of Zji−1 or T j` , the set Sj does not intersect with Attr1(T j` ∪ Z

j
i−1,G

j
i−1), a

contradiction to V j \Attr1(T j` ∪ Z
j
i−1,G

j
i−1) being empty. J

Theorem 8 is shown by the following three propositions.

I Proposition 22 (Soundness Algorithm GenBuchiGame). Player 1 has a winning strategy
from each vertex in the set returned by the algorithm.

Proof. When the algorithm terminates we have i = dlog2 ne and Sj = ∅. Since for i =
dlog2 ne we have Gji = Gj and Zji = ∅, the winning strategy of player 1 can be constructed
in the same way as for the set returned by Algorithm GenBuchiGameBasic (cf. Proof of
Proposition 19). J

I Proposition 23 (Completeness Algorithm GenBuchiGame). Let V j∗ be the set returned
by the algorithm. Player 2 has a winning strategy from each vertex in V \ V j∗ .

Proof. By Lemma 1(3) it is sufficient to show that, in each iteration j, player 2 has a
winning strategy in Gj from each vertex of Sj . For a fixed j with Sj 6= ∅, let i and ` be such
that Sj = V j \ Attr1(Gji , T

j
` ∪ Z

j
i). By Lemma 1(1) Sj is closed for player 1 in Gji and by

Lemma 7(1) also in Gj . That is, player 2 has a strategy that keeps the play within Gj [Sj]
against any strategy of player 1. Since Sj ∩ T j` = ∅, this strategy is winning for player 2 (i.e.,
satisfies the disjunctive co-Büchi objective). J

I Proposition 24 (Runtime Algorithm GenBuchiGame). The algorithm can be implemented
to terminate in O(k · n2) time.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:19

Proof. To efficiently construct the graphs Gji and the vertex sets Zji we maintain (sorted)
lists of the incoming and the outgoing edges of each vertex. These lists can be updated
whenever an obsolete entry is encountered in the construction of Gji ; as each entry is removed
at most once, maintaining this data structures takes total time O(m). For a given iteration j
of the outer repeat-until and the ith iteration of the inner repeat-until loop we have that the
graph Gji contains O(2i · n) edges and both Gji and the set Zji can be constructed from the
maintained lists in time O(2i ·n). Further the k attractor computations in the for-loop can be
done in time O(k · 2i · n), thus for any j the ith iteration of the inner repeat-until loop takes
time O(k · 2i · n). The time spent in the iterations up to the ith iteration forms a geometric
series and can thus also be bounded by O(k · 2i · n). When a non-empty set Sj is found in
the jth iteration of the outer repeat-until and in the ith iteration of the inner repeat-until
loop, then by Corollary 21 we have |Attr2(Sj ,Gj)| > 2i−1. The vertices in Attr2(Sj ,Gj) are
then removed from Gj to obtain Gj+1 and are not considered further by the algorithm. Thus
we can charge the time of O(k · 2i · n) to identify Sj to the vertices in Attr2(Sj ,Gj), which
yields a bound on the total time spent in the inner repeat-until loop, whenever Sj 6= ∅, of
O(k · n2). The total time for computing the attractors Attr2(Sj ,Gj) can be bounded by
O(m). Finally the time for the last iteration of the while loop, when Sj = ∅ and i = dlog2 ne,
can be bounded by O(k · 2dlog2 ne · n) = O(k · n2). J

I Remark (Winning Strategies). Algorithm GenBuchiGame can be modified to additionally
return winning strategies for both players within the same time bound: For player 2 a
winning strategy for the dominion Dj that is identified in iteration j of the algorithm can
be constructed by combining his strategy to stay within the player-1 closed set Sj with his
attractor strategy to the set Sj . For player 1 we can obtain a winning strategy in the last
iteration of the algorithm by combining her attractor strategies to the sets T` for 1 ≤ ` ≤ k
(cf. proof of Proposition 19).

B Omitted Details for Conditional Lower Bounds for Generalized
Büchi Games

The following lemma shows the correctness of the reduction from triangle detection.

I Lemma 25. Let G′ be the graph given by Reduction 10 for a graph G and let Tv =
(V 1 \ {v1}) ∪ (V 4 \ {v4}). Then the following statements are equivalent.

1. G has a triangle.
2. s 6∈W1(G′,

∧
v∈V Büchi (Tv)).

3. The winning set W1(G′,
∧
v∈V Büchi (Tv)) is empty.

Proof. (1)⇒(2): Assume that G has a triangle with vertices a, b, c and let ai,bi,ci be the
copies of a, b, c in V i. Now a strategy for player 2 in G′ to satisfy coBüchi (Ta) is as follows:
When in s, go to a1; when in a1, go to b2; when in b2, go to c3; when in c3, go to a4; and
when in a4, go to s. As a, b, c form a triangle, all the edges required by the above strategy
exist. When player 1 starts in s and follows the above strategy, then he plays an infinite
path that only uses vertices s, a1, b2, c3, a4 and thus satisfies coBüchi (Ta).

(2)⇒(1): Assume that there is a memoryless winning strategy for player 2 starting in
s and satisfying coBüchi (Ta). Starting from s, this strategy has to go to a1, as all other
successors of s are contained in Ta and thus would violate the coBüchi (Ta) objective. Then
the play continues on some vertex b2 ∈ V 2 and c3 ∈ V 3 and then, again by the coBüchi

XX:20 Conditionally Optimal Algorithms for Generalized Büchi Games

constraint, has to enter a4. Now by construction of G′ we know that there must be edges
(a, b), (b, c), (c, a) in the original graph G, i.e. there is a triangle in G.

(2)⇔(3): Notice that when removing s from G′ we get an acyclic graph and thus each
infinite path has to contain s infinitely often. Thus, if the winning set is non-empty, there is
a cycle winning for some vertex and then this cycle is also winning for s. For the converse
direction we have that if s is in the winning set, then the winning set is non-empty. J

The size and the construction time of the graph G′, given in Reduction 10, is linear in
the size of the original graph G and we have k = Θ(n) target sets. Thus if we would have a
combinatorial O(n3−ε) or O((k · n2)1−ε) algorithm for generalized Büchi games, we would
immediately get a combinatorial O(n3−ε) algorithm for triangle detection, which contradicts
STC (and thus BMM).

Notice, that the sets Tv in the above reduction are of linear size but can be reduced to
logarithmic size by modifying the graph constructed in Reduction 10 as follows. Remove all
edges incident to s and replace them by two complete binary trees. The first tree with s as
root and the vertices V 1 as leaves is directed towards the leaves, the second tree with root s
and leaves V 4 is directed towards s. Now for each pair v1, v4 one can select one vertex of
each non-root level of the trees to be in the set Tv such that the only safe path for player 2
starting in s has to use v1 and each safe path for player 2 to s must pass v4 (see also [22]).

I Remark (Size of k). Notice that the lower bounds apply to instances with k ∈ Θ(nc) for
arbitrary 0 < c ≤ 1, although the reductions produce graphs with k ∈ Θ(n). The instances
constructed by the reductions have the property that whenever player 2 has a winning
strategy, he also has a winning strategy for a specific co-Büchi set Tv. Now instead of solving
the instance with Θ(n) many target sets, one can simply consider O(n1−c) many instances
with Θ(nc) target sets and obtain the winning set for player 2 in the original instance by the
union of the player 2 winning sets of the new instances. Finally, towards a contradiction,
assume there would be an O((k · f(n,m))1−ε)-time algorithm for k ∈ Θ(nc), then together
we the above observation we would get an O((k · f(n,m))1−ε)-time algorithm for the original
instance.

I Remark (Digraph Parameters). In both reductions the constructed graph becomes acyclic
when deleting vertex s. Thus, our lower bounds also apply for a broad range of digraph
parameters. For instance let w be the DAG-width [12] of a graph, then there is no O(f(w) ·
(k · n2)1−ε)-time algorithm (under BMM) and no O(f(w) · (km)1−ε)-time algorithm (under
SETH).

C Omitted Details for Generalized Reactivity-1 Games

C.1 Omitted Details for Basic Algorithm
The basic algorithm for GR(1) games is described in Algorithm GR(1)GameBasic.

To prove Theorem 14, we first show that the dominions we compute via the generalized
Büchi games are indeed player-2 dominions for the GR(1) game.

I Lemma 26. Given a game with game graph G and GR(1) objective
∧k1
t=1 Büchi (Lt) →∧k2

`=1 Büchi (U`). Each player-1 dominion D of the game graph G with generalized Büchi
objective

∧k1
t=1 Büchi (Lt), i.e., each 2-closed set D ⊆ W1

(
G,
∧k1
t=1 Büchi (Lt)

)
, for which

there is an index 1 ≤ ` ≤ k2 with D ∩ U` = ∅, is a player-2 dominion of G with the original
GR(1) objective.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:21

Proof. By definition of a dominion, in G player 1 has a strategy that visits all sets Lt
infinitely often and only visits vertices in D. But then for some ` the set Büchi set U` is not
visited at all and thus in G the strategy is player 2 winning for the GR(1) objective. J

Next we show that each player-2 dominion contains a sub-dominion that does not intersect
with one of the sets U`, and thus can be computed via generalized Büchi.

I Lemma 27. Given a game with game graph G and GR(1) objective
∧k1
t=1 Büchi (Lt) →∧k2

`=1 Büchi (U`). Each player-2 dominion D has a subset D′ ⊆ D that is a player-2 dominion
with D′ ∩ U` = ∅ for some 1 ≤ ` ≤ k2.

Proof. First, note that D is closed for player-1 and by definition of a dominion then D =
W2(G[D],

∧k1
t=1 Büchi (Lt)→

∧k2
`=1 Büchi (U`)). Moreover, as each 1-closed set in G[D] is also

1-closed in G, a set D′ ⊆ D is a player-2 dominion of G iff it is player-2 dominion of G[D].
Towards a contradiction we will assume that there does not exist such a player-2 dominion

D′ in G[D]. Then player-1 has a winning strategy for the game graphs G`[D] = G[D] \
Attr1(U`,G[D]) with the GR(1) objective, for all 1 ≤ ` ≤ k2. As U` ∩ G`[D] = ∅ the
same strategy is also winning for the disjunctive co-Büchi objective

∨k1
t=1 coBüchi (Lt). Now

consider the following strategy for player 1 in G[D]. The winning strategy of player 1 is
constructed from his winning strategies for the game graphs G`[D] and the attractor strategies
for Attr1(U`,G[D]) for 1 ≤ j ≤ k2 as follows. Player 1 maintains a counter c ∈ {1, . . . , k2}
that is initialized to 1. As long as the current vertex in the play is contained in Gc[D], player 1
plays his winning strategy for Gc[D]. If a vertex of Attr1(Uc,G[D]) is reached, player 1 follows
the corresponding attractor strategy until Uc is reached. Then player 1 increases the counter
by one or sets the counter to 1 if its value was k2 and continues playing the above strategy
for the new value c. In each play one of two cases must happen:

Case 1: After some prefix of the play for some counter value c the set Attr1(Uc,G[D]) is
never reached. Then the play satisfies the disjunctive co-Büchi objective

∨k1
t=1 coBüchi (Lt)

and thus the GR(1) objective.
Case 2: For all c ∈ {1, . . . k2} the set Uc is reached infinitely often. Then the play satisfies
the generalized Büchi objective

∧k2
`=1 Büchi (U`) and thus the GR(1) objective.

Hence, we have shown that D ⊆W1, a contradiction. J

Next we show that whenever Algorithm GR(1)GameBasic removes vertices from the
game graph these vertices are indeed winning for player 2. This is due to Lemma 26, stating
that these sets are dominions in the current game graph and Lemma 1, stating that all
player-2 dominions of the current game graph Gj are also winning for player 2 in the original
game graph G.

I Proposition 28 (Completeness Algorithm GR(1)GameBasic). Let V j∗ be the set of vertices
returned by Algorithm GR(1)GameBasic. Each vertex in V \ V j∗ is winning for player 2.

Proof. By Lemma 1(3) it is sufficient to show that in each iteration j with Sj 6= ∅
player 2 has a winning strategy from the vertices in Sj in Gj . Let j be such that
Sj = W1

(
Gj \ Y j` ,

∧k1
t=1 Büchi

(
Ljt

))
. We first show that Sj is also a player-1 domin-

ion for the generalized Büchi game on Gj (i.e., a player-2 dominion on Gj). By Lemma 1(1)
the set V j \ Y j` is 1-closed in Gj , i.e., it is 2-closed in Gj . Thus each dominion of Gj \ Y j` is
also 2-closed in Gj and hence a dominion in Gj (see also Lemma 1(2)). Now as Sj does not
contain any vertices of U` it is a player-2 dominion in G with the GR(1) objective. Finally,
from the above and Lemma 1 we have that also Attr2(Gj , Sj) is a player-2 dominion in G
with the GR(1) objective. J

XX:22 Conditionally Optimal Algorithms for Generalized Büchi Games

Algorithm GR(1)GameBasic: Basic Algorithm for GR(1)

Input : Game graph G, Obj.
∧k1

t=1 Büchi (Lt)→
∧k2

`=1 Büchi (U`)
Output : Winning set of player 1

1 G1 ← G
2 {U1

` } ← {U`}; {L1
t} ← {Lt}

3 j ← 0
4 repeat
5 j ← j + 1
6 for 1 ≤ ` ≤ k2 do
7 Y j

` ← Attr1(U j
` ,G

j)

8 Sj ←W1

(
Gj \ Y j

` ,
∧k1

t=1 Büchi
(
Lj

t \ Y
j

`

))
9 if Sj 6= ∅ then break

10 Dj ← Attr2(Sj ,Gj)
11 Gj+1 ← Gj \Dj

12 {U j+1
` } ← {U j

` \D
j}; {Lj+1

t } ← {Lj
t \D

j}
13 until Dj = ∅
14 return V j

For the final game graph Gj∗ we can build a winning strategy for player 1 by combining
his winning strategies for the disjunctive objective in the subgraphs Gj∗` and the attractor
strategies for Attr1(U`,Gj

∗).

I Proposition 29 (Soundness Algorithm GR(1)GameBasic). Let V j∗ be the set of vertices
returned by Algorithm GR(1)GameBasic. Each vertex in V j∗ is winning for player 1.

Proof. First note that V j∗ is closed for player 2 by Lemma 1(1). Thus as long as player 1
plays a strategy that stays within V j∗ , a play that reaches V j∗ will never leave V j∗ . The
following strategy for player 1 for the vertices of V j∗1 satisfies this condition. The winning
strategy of player 1 is constructed from the winning strategies of player 2, i.e., the disjunctive
co-Büchi player, in the generalized Büchi games with game graphs Gj∗` = Gj∗ \ Y j∗` and
objectives

∧k1
t=1 Büchi

(
Lj
∗

t

)
and the attractor strategies for Attr1(U`,Gj

∗) for 1 ≤ j ≤ k2.
Player 1 maintains a counter c ∈ {1, . . . , k2} that is initialized to 1 and proceeds as follows.
(1) As long as the current vertex in the play is contained in Gj

∗

c = Gj
∗ \ Y j∗c , player 1

plays his winning strategy for the disjunctive co-Büchi objective on Gj∗c . (2) If a vertex of
Attr1(Uc,Gj

∗) is reached, player 1 follows the corresponding attractor strategy until Uc is
reached. Then player 1 increases the counter by one or sets the counter to 1 if its value
was k2 and continues with (1). As the play stays within W1, one of two cases must happen:
Case 1: After some prefix of the play for some counter value c the set Attr1(Uc,Gj

∗) is never
reached. Then the play satisfies the disjunctive co-Büchi objective

∨k1
t=1 coBüchi (Lt) and

thus the GR(1) objective. Case 2: For all c ∈ {1, . . . k2} the set Uc is reached infinitely often.
Then the play satisfies the generalized Büchi objective

∧k2
`=1 Büchi (U`) and thus the GR(1)

objective. J

Finally the runtime of Algorithm GR(1)GameBasic is composed of the number of
iterations of the nested loops and the runtime for the generalized Büchi algorithm.

I Proposition 30 (Runtime Algorithm GR(1)GameBasic). Algorithm GR(1)GameBasic
runs in O(k2 · n ·B) where B is the runtime bound for the used ConjBüchi algorithm, i.e., if
we use Algorithm GenBuchiGame to solve ConjBüchi, the bound is O(k1 · k2 · n3).

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:23

Proof. As in each iteration of the outer loop, except the last one, at least one vertex is
removed from the maintained graph, there are only O(n) iterations. In the inner loop we
have k2 iterations, each with a call to the generalized Büchi game algorithm. Thus, in total
we have a running time of O(k2 · n ·B). J

C.2 Progress Measure Algorithm for Finding Small Dominions
In this section we prove Theorem 15. We first restate the progress measure of [43] in our
notation and simplified to generalized Büchi, then adapt it to not compute the winning sets
but dominions of a given size, and finally give an efficient algorithm to compute the progress
measure.

Recall the iterative construction of an attractor Attrp(G, U), with R0 = U and Rj+1 =
Rj ∪ {v ∈ Vp | Out(v) ∩ Rj 6= ∅} ∪ {v ∈ Vp̄ | Out(v) ⊆ Rj} for all j ≥ 0. The p-rank of a
vertex v w.r.t. a set U is given by rankp(G, v, U)= min{j | v ∈ Rj} if v ∈ Attrp(G, U) and is
∞ otherwise.

The progress measure of [43] is defined as follows. Let
∧k
`=1 Büchi(Ti) be a generalized

Büchi objective. For each 1 ≤ ` ≤ k we define a value m` to be m` = |V \ T`| and a function
ρ` : V → {0, 1, . . . ,m`,∞}. The intuitive meaning of a value ρ`(v) is the number of moves
player 1 needs, when starting in v, to reach a vertex of T` ∩W1, i.e., ρ`(v) will equal to the
rank rankp(G, v, T` ∩W1). As there are only m` many vertices which are not in T`, one can
either reach them within m` steps or cannot reach them at all.

The actual value ρ`(v) is defined in a recursive fashion via the values of the successor
vertices of v. That is, for v 6∈ T` we define ρ`(v) by the values ρ`(w) for (v, w) ∈ E. Otherwise,
if v ∈ T`, then we already reached T` and we only have to check whether v is in the winning
set. That is, whether v can reach a vertex of the next target set T`⊕1 that is also in the
winning set W1. Hence, for v ∈ T` we define ρ`(v) by the values ρ`⊕1(w) for (v, w) ∈ E,
where `⊕ 1 = `+ 1 if ` < k and k⊕ 1 = 1. For v ∈ V one considers all the successor vertices
and their values and then picks the minimum if v ∈ V1 or the maximum if v ∈ V2. In both
cases ρ`(v) is set to this value increased by 1 if v 6∈ T`. If v ∈ T`, the value is set to ∞ if the
minimum (resp. maximum) over the successors is ∞ and to 0 otherwise. This procedure is
formalized via two functions. First, best`(v) returns the value of the best neighbor for the
player owning v.

best`(v) =


min(v,w)∈E ρ`⊕1(w) if v ∈ V1 ∧ v ∈ T`
min(v,w)∈E ρ`(w) if v ∈ V1 ∧ v 6∈ T`
max(v,w)∈E ρ`⊕1(w) if v ∈ V2 ∧ v ∈ T`
max(v,w)∈E ρ`(w) if v ∈ V2 ∧ v 6∈ T`

Second, the function incr`v formalizes the incremental step described above. To this end
for each set {0, 1, . . . ,m`,∞} we define the unary ++ operator as x++ = x+ 1 for x < m`

and x++ =∞ otherwise.

incr`v(x) =
{

0 if v ∈ T` ∧ x 6=∞
x++ otherwise

The functions ρ`(.) are now defined as the least fixed-point of the operation that updates
all ρ`(v) to max(ρ`(v), incr`v(best`(v))). The least fixed-point can be computed via the lifting
algorithm [41], that starts with all the ρ`(.) initialized as the zero functions and iteratively
updates ρ`(v) to incr`v(best`(v)), for all v ∈ V , until the least fixed-point is reached.

XX:24 Conditionally Optimal Algorithms for Generalized Büchi Games

Now given the progress measure, we can decide the generalized Büchi game by the
following theorem. Intuitively, player 1 can win starting from a vertex with ρ1(v) <∞ by
keeping a counter ` that is initialized to 1, choosing the outgoing edge to best`(v) whenever
at a vertex of V1, and increasing the counter with ⊕1 when a vertex of T` is reached.

I Theorem 31. [43, Thm. 1] Player 1 as a winning strategy starting in a vertex v iff
ρ1(v) <∞.

As our goal is to compute small dominions, say of size h, instead of the whole winning set,
we have to modify the above progress measure as follows. In the definition of the functions
ρ` we redefine the value m` to be min{h − 1, |V \ T`|} instead of |V \ T`|. The intuition
behind this is that if the dominion contains at most h vertices, then from each vertex in the
dominion we can reach each set T` within h− 1 steps and we do not care about vertices with
a larger distance.

With Algorithm GenBuchiProgressMeasure we give an O(k · h ·m)-time realization
of the lifting algorithm for computing the functions ρ`. It is a corrected version of the
lifting algorithm in [43, Section 3.1], tailored to generalized Büchi objectives and dominion
computation, and exploits ideas from the lifting algorithm in [34]. The main idea is to
consider a value ρ`(v) for a pair (v, `) only h times and each time increase the value but only
doing computations in the order of the degree of v. To this end we maintain a list of pairs
(v, `) for which ρ`(v) must be increased because of some update on v’s neighbors, values B`(v)
storing the value of best`(v) from the last time we updated ρ`(v), and for v ∈ V1 a counter
C`(v) which stores the number of successors w ∈ Out(v) with ρ`(w) = B`(v). Moreover, in
order to initialize C`(v) when B`(v) is updated, we use the function cnt`(v) counting the
number of successor vertices that have minimal ρj . Notice that for v ∈ T` we only distinguish
whether ρ`⊕1(v) is finite or not.

cnt`(v) =
{
|{w ∈ Out(v) | ρ`⊕1(w) <∞}| if v ∈ T`
|{w ∈ Out(v) | ρ`(w) = best`(v)}| if v 6∈ T`

Whenever the algorithm considers a pair (v, `), it first computes best`(v), cnt`(v) in
O(Outdeg(v)), stores these values in B`(v) and C`(v), and updates ρ`(v) to incr`v(best`(v)).
It then identifies the pairs (w, `), (w, `	 1) that are affected by the change of the value ρ`(v)
and adds them to the set L, in O(Indeg(v)).
I Remark. While for the progress measure in [43] ρ`(v) 6=∞ is equivalent to ρ`′(v) 6=∞ for
all 1 ≤ `′ ≤ k, this does not hold in general for our modified progress measure ρ. Thus we
consider the set {v ∈ V | ρ`(v) 6=∞ for some `} as a player-1 dominion and not just the set
{v ∈ V | ρ1(v) 6=∞} .

The correctness of Algorithm GenBuchiProgressMeasure is by the following invariants
that are maintained during the whole algorithm. These invariants show that (a) the data
structures L, B`, and C` are maintained correctly, and (b) the values ρ`(v) are bounded from
above by (i) incr`v(best`(v)) and (ii) by the rank rank1(G, v, T` ∩D) if v is in a dominion D
of size ≤ h.

I Invariant 32. The while loop in Algorithm GenBuchiProgressMeasure has the follow-
ing loop invariants.

1. For all v ∈ V and all 1 ≤ ` ≤ k we have ρ`(v) ≤ incr`v(best`(v)).
2. For all v ∈ V and all 1 ≤ ` ≤ k we have that if ρ`(v) 6= 0 or v ∈ T`, then ρ`(v) =

incr`v(B`(v)).

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:25

Algorithm GenBuchiProgressMeasure: Lifting Algorithm for Generalized Büchi

Input : Game graph G = ((V,E), (V1, V2)), objective
∧

1≤`≤k
Büchi (T`), integer h

Output : player 1 dominion / winning set for player 1 if h = n

1 foreach v ∈ V , 1 ≤ l ≤ k do
2 B`(v)← 0
3 if v ∈ V1 then C`(v)← Outdeg(v)
4 ρ`(v)← 0
5 L← {(v, `) | v ∈ V, 1 ≤ ` ≤ k, v /∈ T`}
6 while L 6= ∅ do
7 pick some (v, `) ∈ L and remove it from L
8 t← ρ`(v)
9 B`(v)← best`(v)

10 if v ∈ V1 then C`(v)← cnt`(v)
11 ρ`(v)← incr`

v(best`(v))
12 foreach w ∈ In(v) \ T` with (w, `) 6∈ L, ρ`(w) <∞ do
13 if w ∈ V1, t = B`(w) then
14 C`(w)← C`(w)− 1
15 if C`(w) = 0 then L← L ∪ {(w, `)}
16 else if w ∈ V2, ρ`(v) > B`(w) then L← L ∪ {(w, `)}
17 if ρ`(v) =∞ then
18 foreach w ∈ In(v) ∩ T`	1 with (w, `	 1) 6∈ L, , ρ`	1(w) <∞ do
19 if w ∈ V1, then
20 C`	1(w)← C`	1(w)− 1
21 if C`	1(w) = 0 then L← L ∪ {(w, `	 1)}
22 else if w ∈ V2 then L← L ∪ {(w, `	 1)}

23 return {v ∈ V | ρ`(v) 6=∞ for some `}

3. For v ∈ V1 we have C`(v) =
{
|{w ∈ Out(v) | ρ`⊕1(w) <∞}| if v ∈ T` ,
|{w ∈ Out(v) | ρ`(w) = B`(v)}| if v 6∈ T`, ρ`(v) <∞ .

4. The set L consists exactly of the pairs (v, `) with ρ`(v) < incr`v(best`(v)).
5. For all v ∈ V and all 1 ≤ ` ≤ k we have ρ`(v) ≤ rank1(G, v, T`∩D) < h for each player-1

dominion D with |D| ≤ h.

By the following lemmata we prove the above loop invariants to be valid.

I Lemma 33. After each iteration of the while loop in Algorithm GenBuchiProgress-
Measure we have ρ`(v) ≤ incr`v(best`(v)), for all v ∈ V and all 1 ≤ ` ≤ k.

Proof. As all ρ`(v) are in initialized to 0 and 0 is the minimum value, the inequalities are
all satisfied in the base case when the algorithm first enters the the while loop. Now for the
induction step consider an iteration of the loop and let us assume the invariant is satisfied
beforehand. The value ρ`(v) is only changed when the pair (v, `) is processed and then set
to incr`v(best`(v)). Thus the invariant is satisfied after these iterations. In all the other
iterations with different pairs (v′, `′) the values ρ`′(v′) are either unchanged or increased. As
incr`v(best`(v)) is monotonic in the values of the neighbors, this can only increase the right
side of the inequality and thus this invariant is also satisfied after these iterations. Hence, if
the invariant is valid before an iteration of the loop it is also valid afterwards. J

I Lemma 34. After each iteration of the while loop in Algorithm GenBuchiProgress-
Measure we have that if ρ`(v) 6= 0 or v ∈ T`, then ρ`(v) = incr`v(B`(v)), for all v ∈ V and
all 1 ≤ ` ≤ k.

XX:26 Conditionally Optimal Algorithms for Generalized Büchi Games

Proof. As ρ`(v) is initialized to 0, this is trivially satisfied in the base case. Now for the
induction step consider an iteration of the loop and let us assume the invariant is satisfied
beforehand. The values ρ`(v), and B`(v) are only changed when the pair (v, `) is processed
and then the invariant is trivially satisfied by the assignments in line 9 and line 11 of the
algorithm. J

I Lemma 35. After each iteration of the while loop in Algorithm GenBuchiProgress-
Measure for v ∈ V1 we have

C`(v) =
{
|{w ∈ Out(v) | ρ`⊕1(w) <∞}| if v ∈ T` ,
|{w ∈ Out(v) | ρ`(w) = B`(v)}| if v 6∈ T`, ρ`(v) <∞ .

Proof. As base case consider the point where the algorithm first enters the the while loop.
All ρ`(v) and B`(v) are initialized to 0 and thus in both cases the right side of the invariant
is equal to Outdeg(v), which is exactly the value assigned to C`(v).

Now for the induction step consider an iteration of the loop and let us assume the invariant
is satisfied beforehand. Let v ∈ V1. In an iteration where (v, `) is processed in line 10 we set
C`(v) to cnt`(v) and hence the invariant is satisfied by the definition of cnt`(v). Otherwise
the condition for C`(v) is only affected if a u ∈ Out(v) is processed. We distinguish the two
cases where v ∈ T` and where v 6∈ T`.

If v ∈ T` then C`(v) is only affected in iterations where pairs (u, `⊕ 1) are considered. If
the updated value of ρ`⊕1(u) is less than ∞ then the set {w ∈ Out(v) | ρ`⊕1(w) < ∞}
is unchanged and also C`(v) is not changed by the algorithm, i.e., the invariant is still
satisfied. Otherwise if the updated value of ρ`⊕1(u) is ∞ then u drops out from the set
{w ∈ Out(v) | ρ`⊕1(w) <∞} but also the algorithm decreases C`(v) by one, i.e., again
the invariant is satisfied.
If v 6∈ T` and ρ`(v) <∞ then C`(v) is only affected in iterations where pairs (u, `) are
considered. Let ρo`(u) be the value of ρ`(u) before its update. If ρo`(u) > B`(v) then
u 6∈ {w ∈ Out(v) | ρ`(w) = B`(v)} and thus the set is not affected by the increased
ρ`(u). In that case the algorithm does not change C`(v) and thus the invariant is satisfied.
Otherwise if ρo`(u) = B`(v) then u ∈ {w ∈ Out(v) | ρ`(w) = B`(v)} before the iteration
but is dropped during the iteration. In that case the algorithm decreases C`(v) by one
and thus the invariant is still satisfied.
Notice that by (1), and (2) it cannot happen that ρo`(u) < B`(v). Assume by contradiction
ρo`(u) < B`(v). Let besto`(v) denote the value of best`(v) before the update of ρ`(u).
By (1) we have ρ`(v) ≤ incr`v(besto`(v)), by the definition of besto`(v) and v ∈ V1 \ T`
we have besto`(v) ≤ ρo`(u) < B`(v). By (2) we have either ρ`(v) = incr`v(B`(v)) or
ρ`(v) = 0. In the first case, as incr`v(x) is strictly increasing for x < ∞, we have
incr`v(besto`(v)) < incr`v(B`(v)) = ρ`(v) and thus a contradiction to (1)). In the second
case the pair (v, `) was not processed yet and we have a contradiction by B`(v) = 0. J

I Lemma 36. After each iteration of the while loop in Algorithm GenBuchiProgressMea-
sure we have that the set L consists exactly of the pairs (v, `) with ρ`(v) < incr`v(best`(v)).

Proof. The set L is initialized in line 5 with all pairs (v, `) such that v 6∈ T`. For all of these
vertices we have best`(v) = 0 and thus incr`v(best`(v)) = 1, i.e., ρ`(v) = 0 < incr`v(best`(v)) =
1. Now consider (v, `) 6∈ L, i.e., v ∈ T`. As all ρ`(v) = 0, we have incr`v(best`(v)) = 0 and
thus ρ`(v) = 0 6< incr`v(best`(v)) = 0. Hence, in the base case a pair (v, `) is in L iff
ρ`(v) = 0 < incr`v(best`(v)) = 1.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:27

Now for the induction step consider an iteration of the loop and let us assume the
invariant is satisfied beforehand. For the pair (v, `) processed in the iteration ρ`(v) is set
to incr`v(best`(v)) and thus it can be removed from L. Notice that (a) the value of ρ`(w)
is only changed when a pair (w, `) processed and (b) incr`v(best`(w)) can only increase
when other pairs (v, `) are processed. Thus we have to show that in a iteration where the
algorithm processes the pair (v, `) all pairs (v, `′) with with ρ`′(w) = incr`v(best`(w)) before
the iteration and ρ`′(w) < incr`v(best`(w)) after the iteration are added to the set L. The
only vertices affected by the change of ρ`(v) are those in In(v) which are either (i) not in
T`, or (ii) in T`	1. In the former case only ρ` is affected while in the latter case only ρ`	1 is
affected. Let ρo`(v) and ρn` (v) be the values before, respectively after, the update on ρ`(v).
Notice that if w 6∈ T` and ρ`(w) = 0, then (w, `) ∈ L by the initialization in line 5. Thus in
the following, by (3), we can assume ρ`(w) = incr`v(B`(w)) for all (w, `) 6∈ L. We consider
the following cases.

w ∈ In(v) \ T` and w ∈ V1: Then incr`v(best`(w)) > ρ`(w) iff all u ∈ Out(w) have
ρ`(u) > B`(w). As (w, `) /∈ L we know that before the iteration there is at least one
u ∈ Out(w) with ρ`(u) = B`(w). In case u 6= v it will not be changed during the iteration
and thus incr`v(best`(w)) 6> ρ`(w). Hence incr`v(best`(w)) > ρ`(w) iff v is the only vertex
in Out(w) with ρo`(v) = B`(w). But then by (3) C`(v) = 1 and thus the algorithm will
reduce C`(v) to 0 and add (v, `) to the set L.
w ∈ In(v) \T` and w ∈ V2: Then incr`v(best`(w)) > ρ`(w) iff there is an u ∈ Out(w) with
ρ`(u) > B`(w). If there would be such an u ∈ Out(w) different from v then by induction
hypothesis already (v, `) ∈ L. Thus we must have that ρn` (v) > B`(w) and thus (w, `) is
added to L in line 16 of the algorithm.
w ∈ In(v) ∩ T`	1 and w ∈ V1: Then incr`v(best`(w)) > ρ`	1(w) iff all u ∈ Out(w) have
ρ`(u) =∞ and ρ`	1(w) = 0. This is the case iff v was the only vertex in Out(w) with
ρ`(v) <∞. But then by (3) C`(v) = 1 and thus the algorithm will decrement C`(v) to 0
and add (v, `	 1) to the set L.
w ∈ In(v)∩ T`	1 and w ∈ V2: Then incr`v(best`(w)) > ρ`	1(w) iff there is an u ∈ Out(w)
with ρ`(u) = ∞ and rho`	1(w). If there would be such an u ∈ Out(w) different from
v then by induction hypothesis already (v, ` 	 1) ∈ L or ρ`	1(w). Thus, we have that
ρn` (v) =∞ > rho`	1(w) and incr`v(ρn` (v)) =∞ > ρ`	1(w) = 0. In that case (w, `	 1) is
added to L in line 22 of the algorithm. J

I Lemma 37. For all v ∈ V and all 1 ≤ ` ≤ k we have ρ`(v) ≤ rank1(G, v, T` ∩D) < h for
each player-1 dominion D with |D| ≤ h.

Proof. As all functions ρ`(.) are initialized as the 0-function, the invariant is satisfied trivially
in the . base case where the algorithm first enters the the while loop.

Now for the induction step consider an iteration of the loop and let us assume all the
invariants are satisfied beforehand. First, notice that as |D| ≤ h, we have rank1(G, v, T`∩D) <
h for all 1 ≤ ` ≤ k and v ∈ D. The value ρ`(v) is only updated in line 11 and there set to
incr`v(best`(v)). We distinguish three different cases.

Assume v ∈ V1 and rank1(G, v, T` ∩D) = j with 1 ≤ j < h then, by definition of rank1,
there is a w ∈ D,w 6= v, with (v, w) ∈ E and rank1(G, w, T` ∩ D) = j − 1. Now as
the invariant is valid before the iteration and ρ`(w) is not changed during the iteration,
we have ρ`(w) ≤ j − 1 and thus best`(v) ≤ j − 1. Hence, incr`v(best`(v)) ≤ j and the
invariant is still satisfied.

XX:28 Conditionally Optimal Algorithms for Generalized Büchi Games

Assume v ∈ V2 and rank1(G, v, T` ∩D) = j with 1 ≤ j < h then, by definition of rank1,
rank1(G, w, T` ∩ D) = j − 1 for each (v, w) ∈ E (as D is 2-closed we have w ∈ D).
Now as the invariant is valid before the iteration and ρ`(w) is not changed during the
iteration, we have ρ`(w) ≤ j − 1 for each (v, w) ∈ E and thus best`(v) ≤ j − 1. Hence,
incr`v(best`(v)) ≤ j and the invariant is still satisfied.
Finally, assume rank1(G, v, T` ∩ D) = 0, that is v ∈ T`. By induction hypothesis for
all w ∈ D with (v, w) ∈ E it holds that ρ`⊕1(v) < h and thus best`(v) < h. Hence,
incr`v(best`(v)) = 0 and the loop invariant is still satisfied.

Hence, this loop invariant is maintained during the whole algorithm. J

The next lemma gives the ingredients to show that the set W = {v ∈ V | ρ`(v) 6=
∞ for some `} is a player-1 dominion by exploiting the fact that the functions ρ` form a
fixed-point of the update operator.

I Lemma 38. Let W = {v ∈ V | ρ`(v) 6= ∞ for some `} be the set computed by Algo-
rithm GenBuchiProgressMeasure.

1. For all v ∈ V : If ρ`(v) <∞, then player 1 has a strategy to reach {v′ ∈ T` | ρ`(v′) = 0}
from v by only visiting vertices in W .

2. For all v ∈ T`: If ρ`(v) = 0, then player 1 has a strategy to reach {v′ ∈ T`⊕1 | ρ`⊕1(v′) = 0}
from v by only visiting vertices in W .

Proof. Notice that by the Invariants (1) & (4) we have ρ`(v) = incr`v(best`(v)) for all v ∈ V
and all 1 ≤ ` ≤ k, i.e., the functions ρ`(v) are a fixed-point for the incr`v(best`(v)) updates.
1) Consider a vertex v ∈ V with ρ`(v) = j for 0 < j < h. We will show by induction in j
that then player 1 has a strategy to reach S = {v′ ∈ T` | ρ`(v′) = 0} from v by only visiting
vertices in W . For the base case we exploit that the functions ρ`(v) are a fixed-point of the
incr`v(best`(v)) updates. By the definition of incr`v we have that ρ`(v) = 0 only if v ∈ T` 3

and thus we already have reached S.
For the induction step let us assume the claim holds for all j′ < j and consider a vertex v

with ρ`(v) = j. We distinguish the cases v ∈ V1 and v ∈ V2.

v ∈ V1: Since ρ is a fixed-point of incr`v(best`(v)), we have that there is at least one w
with (v, w) ∈ E and ρ`(w) = j − 1. By the induction hypothesis, player 1 has a strategy
to reach S starting from w, and, as player 1 can choose the edge (v, w), also a strategy
starting from v.
v ∈ V2: Since ρ is a fixed-point of incr`v(best`(v)), we have that ρ`(w) < j for all w with
(v, w) ∈ E. By the induction hypothesis player 1 has a strategy to reach S starting from
any w with (v, w) ∈ E, and thus also when starting from v.

Moreover, in both cases only the vertex v is added to the path induced by the strategy, which
by definition is in W . Hence, in both cases player 1 has a strategy to reach S from v by only
visiting vertices in W , which concludes the proof of part 1.
2) Let S′ = {v′ ∈ T`⊕1 | ρ`⊕1(v′) = 0}. Again we distinguish whether v ∈ V1 or v ∈ V2.

If v ∈ V1, then, as the functions ρ` form a fixed-point, there is at least one w with
(v, w) ∈ E and ρ`⊕1(w) <∞. Then by (1) player 1 has a strategy to reach S′ starting
from w, and, as player 1 can choose the edge (v, w), also a strategy starting from v.

3 Recall that we assume that each vertex has at least one outgoing edge.

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:29

If v ∈ V2, then, as ρ is a fixed-point, ρ`⊕1(w) <∞ for all w with (v, w) ∈ E. Then by (1)
player 1 has a strategy to reach S′ starting from any w with (v, w) ∈ E, and thus also
when starting from v.

Again, in both cases only the vertex v is added to the path induced by the strategy, which
by definition is in W , and thus in both cases player 1 has a strategy to reach S′, which
concludes the proof of part 2. J

We are now prepared to prove the correctness of Algorithm GenBuchiProgressMea-
sure.

I Proposition 39. For the game graph G and objective
∧

1≤`≤k Büchi (T`), Algorithm Gen-
BuchiProgressMeasure either returns a player-1 dominion or the empty set, and, if there
is at least one player-1 dominion of size ≤ h then returns a player-1 dominion containing all
player-1 dominions of size ≤ h.

Proof. We will show that (1) W = {v ∈ V | ρ`(v) 6=∞ for some `} is a player-1 dominion
and that (2) each player-1 dominion of size ≤ h is contained in W .
1) The following strategy is winning for player 1 and does not leave W . First, for vertices
v ∈ W \

⋃k
`=1 T` pick some ` s.t. ρ`(v) < ∞ and play the strategy given by Lemma 38(1)

to reach U` ∩W . The first time a set U` is reached, start playing the strategies given by
Lemma 38(2) to first reach the set U`⊕1 ∩W , then the set U`⊕2 ∩W and so on. This strategy
visits all Büchi sets infinitely often and will never leave the set W . That is, W is a player-1
dominion.
2) Consider a player-1 dominion D with |D| ≤ h. Then, we have that rank1(G, v, T` ∩D) ≤
h− 1 for all T` and by Invariant (5) that ρ`(v) ≤ h− 1 for all v ∈ D. That is, each d ∈ D
has ρ1(v) <∞ and thus D ⊆W . J

Finally, let us consider the runtime of Algorithm GenBuchiProgressMeasure.

I Proposition 40. Algorithm GenBuchiProgressMeasure runs in time O(k · h ·m).

Proof. Notice that the functions best`(v) and cnt`(v) can be computed in time O(Outdeg(v))
while incr`v(.) is in constant time. An iteration of the initial foreach loop takes time
O(Outdeg(v)) and, as each v ∈ V is considered k times, the entire foreach loop takes
time O(k ·m). However, the running time of Algorithm GenBuchiProgressMeasure is
dominated by the while loop. Processing a pair (v, `) ∈ L takes time O(Outdeg(v)+Indeg(v)).
Moreover, whenever (v, `) is processed, the value ρ`(v) is increased by 1 if v 6∈ T` or by ∞ if
v ∈ T` and thus each pair can be considered at most h times. Hence, for the entire while
loop we have a running time of O

(
h ·
∑k
`=1
∑
v∈V (Outdeg(v) + Indeg(v))

)
which can be

simplified to O(k · h ·m). J

C.3 Omitted Details for Improved Algorithm for GR(1) Objectives
In this section we prove Theorem 17.

I Lemma 16 (restated). Let the notation be as in Algorithm GR(1)Game.

1. Every Xj
i,` 6= ∅ is a player-2 dominion in the GR(1) game on Gj with Xj

i,` ∩ U
j
` = ∅.

2. If for player 2 there exists in Gj a dominion D w.r.t. the generalized Büchi objective∧k1
t=1 Büchi(L

j
t) such that D ∩ U j` = ∅ for some 1 ≤ ` ≤ k2 and |Attr2(D,Gj)| ≤ 2i, then

D is a dominion w.r.t. the generalized Büchi objective
∧k1
t=1 Büchi(L

j
t \ Y

j
i,`) in Gji \ Y

j
i,`.

XX:30 Conditionally Optimal Algorithms for Generalized Büchi Games

Proof. 1. By Theorem 15 the set Xj
i,` is a player-2 dominion on Gji \Y

j
i,` w.r.t. the generalized

Büchi objective
∧k1
t=1 Büchi

(
Ljt \ Y

j
i,`

)
of player 2. By Lemma 1(1) V j \ Y ji,` is closed for

player 1 on Gji . Thus by Lemma 1(2) Xj
i,` is a player-2 dominion w.r.t. the generalized

Büchi objective also in Gji . As X
j
i,` is player 1 closed in Gji and does not intersect with Zji ,

it is player 1 closed in Gj by Lemma 7(1). Thus by Eji ⊆ Ej , the set Xj
i,` is a player-2

dominion w.r.t. the generalized Büchi objective also in Gj . Since Xj
i,` does not intersect

with U j` , it is also a player-2 dominion in the GR(1) game on Gj (cf. Lemma 26).
2. Since every player-2 dominion is player-1 closed, we have by Lemma 7(2) that (i) Gj [D] =
Gji [D], (ii) D does not intersect with Zji , and (iii) D is player 1 closed in Gji . Thus we
have that (a) D does not intersect with Y ji,` and (b) player 2 can play the same winning
strategy for the vertices in D on Gji as on Gj . J

I Corollary 41. Let j be some iteration of the repeat-until loop in Algorithm GR(1)Game
and consider the call to kGenBüchiDominion(Gj , {U j` }, {L

j
t}, hmax).

1. If for some i > 1 we have Xj
i,` 6= ∅ but X

j
i−1,` = ∅, then |Attr2(Xj

i,`,Gj)| > 2i−1.
2. If kGenBüchiDominion(Gj , {U j` }, {L

j
t}, hmax) returns the empty set, then for every player-

2 dominion D in the GR(1) game we have |Attr2(D,Gj)| > hmax.

Proof. 1. By Lemma 16(1) Xj
i,` is a player-2 dominion in the GR(1) game on Gj with

Xj
i,` ∩ U

j
` = ∅ and thus in particular a dominion w.r.t. the generalized Büchi objective∧k1

t=1 Büchi
(
Ljt

)
such that Xj

i,` ∩ U
j
` = ∅. Assume by contradiction |Attr2(Xj

i,`,Gj)| ≤
2i−1. Then by Lemma 16(2) we have Xj

i−1,` 6= ∅, a contradiction.
2. Assume there exists a dominion D with |Attr2(D,Gj)| ≤ hmax. Then by Lemma 27 there

is also a dominionD′ ⊆ D that meets the criteria of Lemma 16(2). Let i′ the minimal value
such that |Attr2(D′,Gj)| ≤ 2i′ , certainly i′ ≤ dlog2(hmax)e. Now, by Lemma 16(2), we
have thatD′ is a dominion w.r.t. the generalized Büchi objective

∧k1
t=1 Büchi

(
Ljt \ Y

j
i′,`

)
in

Gji′ \Y
j
i′,`. By the correctness of Algorithm GenBuchiProgressMeasure, the set Xj

i′,` is
a dominion containing D′ and thus kGenBüchiDominion(Gj , (V j1 , V

j
2)), {U j` }, {L

j
t}, hmax)

returns a non-empty set. J

Next we show that whenever Algorithm GR(1)Game removes vertices from the game
graph these vertices are indeed winning for player 2. This is due to Lemma 16(1), stating
that these sets are dominions in the current game graph and Lemma 1, stating that all
player-2 dominions of the current game graph Gj are also winning for player 2 in the original
game graph G.

I Proposition 42 (Completeness of Algorithm GR(1)Game). Let V j∗ be the set of vertices
returned by Algorithm GR(1)Game. Each vertex in V \ V j∗ is winning for player 2.

Proof. By Lemma 1(3) it is sufficient to show that in each iteration j with S` 6= ∅ player 2
has a winning strategy from the vertices in S` in G`. If a non-empty set Sj is returned by
kGenBüchiDominion, then Sj is winning for player 2 by Lemma 16(1). For the case where
Sj is empty after the call to kGenBüchiDominion, the set Sj is determined in the same
way as in the basic algorithm for GR(1) games and thus is winning by the correctness of
Algorithm GR(1)GameBasic (cf. Proof of Proposition 28). J

For the final game graph Gj∗ we can build a winning strategy for player 1 in the same
way as for Algorithm GR(1)GameBasic. That is, by combining his winning strategies for
the disjunctive objective in the subgraphs Gj∗` and the attractor strategies for Attr1(U`,Gj

∗).

K. Chatterjee, W. Dvořák, M. Henzinger and V. Loitzenbauer XX:31

I Proposition 43 (Soundness of Algorithm GR(1)Game). Let V j∗ be the set of vertices
returned by Algorithm GR(1)Game. Each vertex in V j∗ is winning for player 1.

Proof. When the algorithm terminates we have Sj = ∅. Thus the winning strategy of player 1
can be constructed in the same way as for the set returned by Algorithm GR(1)GameBasic
(cf. Proof of Proposition 29). J

Finally, as the runtime of the procedure kGenBüchiDominion scales with the size of the
smallest player-2 dominion in Gj and we have only make O(

√
n) many calls to GenBüchiGame

we obtain a runtime of O(k1 · k2 · n2.5).

I Proposition 44 (Runtime Algorithm GR(1)Game). The algorithm can be implemented to
terminate in O(k1 · k2 · n2.5) time.

Proof. We analyze the total runtime over all iterations of the repeat-until loop. The analysis
uses that whenever a player-2 dominion Dj is identified, then the vertices in Dj are removed
from the maintained game graph. In particular we have that whenever kGenBüchiDominion
returns an empty set, either at least hmax =

√
n vertices are removed from the game graph

or the algorithm terminates. Thus this case can happen at most O(n/hmax) = O(
√
n)

times. In this case GenBüchiGame is called k2 times. By Theorem 8 this takes total time
O(
√
n · k2 · k1 · n2) = O(k1k2 · n2.5).

We next bound the total time spent in kGenBüchiDominion. To efficiently construct
the graphs Gji and the vertex sets Zji we maintain (sorted) lists of the incoming and the
outgoing edges of each vertex. These lists can be updated whenever an obsolete entry is
encountered in the construction of Gji ; as each entry is removed at most once, maintaining
this data structures takes total time O(m). Now consider a fixed iteration i of the outer
for-loop in kGenBüchiDominion. The graph Gji has O(2i · n) edges and thus, given the
above data structure for adjacent edges, the graphs Gji and the sets Zji can be constructed
in O(2i · n) time. Further the k2 attractor computations in the inner for-loop can be
done in time O(k2 · 2i · n). The runtime of iteration i is dominated by the k2 calls to
GenBüchiProgressMeasure. By Theorem 15 the calls to GenBüchiProgressMeasure, with
parameter h set to 2i, in iteration i take time O(k1k2 · n · 22i). Let i∗ be the iteration at
which kGenBüchiDominion stops after it is called in the jth iteration of the repeat-until
loop. The runtime for this call to kGenBüchiDominion from i = 1 to i∗ forms a geometric
series that is bounded by O(k1k2 · n · 22i∗). By Corollary 41 either (1) a dominion D with
|Attr2(D,Gj)| > 2i∗−1 vertices was found by kGenBüchiDominion or (2) all dominions in Gj
have more than hmax vertices. Thus either (2a) a dominion D with more than hmax vertices
is detected in the subsequent call to GenBüchiGame or (2b) there is no dominion in Gj and j
is the last iteration of the algorithm. Case (2b) can happen at most once and its runtime
is bounded by O(k1k2 · n · 22 log(hmax)) = O(k1k2 · n2). In the cases (1) and (2a) more than
2i∗−1 vertices are removed from the graph in this iteration, as hmax > 2i∗−1. We charge each
such vertex O(k1k2 · n · 2i

∗) = O(k1k2 · n · hmax) time. Hence the total runtime for these
cases is O(k1k2 · n2 · hmax) = O(k1k2 · n2.5). J

I Remark (Winning Strategies). Algorithm GR(1)Game can be modified to additionally
return winning strategies for both players. Procedure GenBüchiProgressMeasure(G, ψ, h)
can be modified to return a winning strategy within the returned dominion (cf. proof
of Proposition 39). Procedure GenBüchiGame can be modified to return winning strategies
for both player in the generalized Büchi game (cf. remark at the end of Appendix A). Thus
for player 2 a winning strategy for the dominion Dj that is identified in iteration j of the
algorithm can be constructed by combining his winning strategy in the generalized Büchi

XX:32 Conditionally Optimal Algorithms for Generalized Büchi Games

game in which Sj was identified with his attractor strategy to the set Sj . For player 1 we can
obtain a winning strategy in the final iteration of the algorithm by combining for 1 ≤ ` ≤ k2
her attractor strategies to the sets U` with her winning strategies in the generalized Büchi
games for each of the game graphs Gji \ Y

j
i,` (cf. proofs of Proposition 29 and 43).

	Introduction
	Preliminaries
	Basic definitions for Games on Graphs
	Conjectured Lower Bounds

	Algorithms for Generalized Büchi Games
	Conditional Lower bounds for Generalized Büchi Games
	Generalized Reactivity-1 Games
	Conclusion
	Omitted Details for Algorithms for Generalized Büchi Games
	Reduction to Büchi Games
	Omitted Details for Basic Algorithm
	Omitted Details for Improved Algorithm

	Omitted Details for Conditional Lower Bounds for Generalized Büchi Games
	Omitted Details for Generalized Reactivity-1 Games
	Omitted Details for Basic Algorithm
	Progress Measure Algorithm for Finding Small Dominions
	Omitted Details for Improved Algorithm for GR(1) Objectives

