
Classification and Formalization of
Instance-Spanning Constraints in

Process-driven Applications

Walid Fdhila, Manuel Gall, Stefanie Rinderle-Ma,
Juergen Mangler, Conrad Indiono

University of Vienna, Faculty of Computer Science, Vienna, Austria
{firstname.lastname}@univie.ac.at

Abstract. In process-driven applications, typically, instances share hu-
man, computer, and physical resources and hence cannot be executed
independently of each other. This necessitates the definition, verifica-
tion, and enforcement of restrictions and conditions across multiple in-
stances by so called instance-spanning constraints (ISC). ISC might refer
to instances of one or several process types or variants. While real-world
applications from, e.g., the logistics, manufacturing, and energy domain
crave for the support of ISC, only partial solutions can be found. This
work provides a systematic ISC classification and formalization that en-
ables the verification of ISC during design and runtime. Based on a col-
lection of 114 ISC from different domains and sources the relevance and
feasibility of the presented concepts is shown.

Keywords: Instance-spanning constraints, compliance, process-aware
information systems

1 Introduction

Checking and enforcing constraints such as regulations or security policies is
the key concern of business process compliance [29]. Enterprises have to invest
significantly into compliance projects, e.g., for large companies $4.6 million only
for the management of internal controls [31]. BPM research has provided sev-
eral solutions for compliance at design time, e.g., [6] and runtime (cf. survey
in [15]). Despite these large efforts, an important type of constraints has not
been paid sufficient attention to, i.e., Instance-Spanning Constraints (ISC). ISC
are constraints that refer to more than one instance of one or several process
types. Logistics is a domain where ISC play a crucial role for the bundling or re-
bundling of cargo over several transport processes [4]. Other domains craving for
ISC support are health care [7] and security [33]. Specifically, in highly adaptive
process-driven applications where processes dynamically evolve during runtime
[10] ISC provide the means for ensuring a certain level of control.

ISC support is scattered over a few approaches [13,17,18,27,7,33], but a com-
prehensive support for ISC formalization, verification, and enforcement is miss-
ing. Here, the property comprehensive refers to the context of ISC such as multi-
ple instances or processes, the expressiveness, e.g., ISC referring to data or time,

rinderas8
Schreibmaschinentext
Author version.
The final publication is available at Springer via
http://www.springer.com/gp/book/9783319453477#aboutBook

and the process life cycle phase the ISC is referring to. For a sufficient under-
standing of these requirements, a systematic classification of ISC is needed. An
ISC formalization can then be chosen based on the ISC classification and addi-
tional requirements such as complexity of the verification. The following research
questions address these needs:

1. How to systematically classify ISC?
2. How to formalize ISC based on ISC classification and additional require-

ments?
3. Do ISC classification and formalization meet real-world ISC requirements?

Questions 1 – 3 will be tackled following the research methodology set out in
Fig. 1. At first, objectives are harvested from literature that must be met by an
ISC classification (Question 1) and formalization (Question 2). The ISC classi-
fication will be created as new artifact. The ISC formalization choice (Question
2) is based on an analysis of existing languages. Based on an ISC collection of
114 examples from practice, literature, and experience, relevance and feasibility
of the ISC classification are evaluated (Question 3). Moreover, the ISC formal-
ization will be validated by formalizing and implementing representatives along
the provided ISC classification (Question 3). In summary, this work provides an
ISC classification and formalization as well as an evaluation based on an exten-
sive meta study on ISC examples (cf. [26] for a complete description and all 114
ISC examples).

• Literature
analysis

Objectives

• ISC	classification
• ISC	formalization

Artifacts
• Relevance
• Feasibility
• Coverage

Evaluation

ISC	collection

Fig. 1. Applied research methodology (adapted from [22])

Sect. 2 provides ISC objectives and the ISC classification. Sect. 3 discusses
alternatives for formalization languages. In Sect., 4, relevance and feasibility
of the ISC classification is evaluated. ISC representatives are formalized and
implemented in Sect. 5. Sect. 6 discusses related approaches and Sect. 7 closes
with a summary.

2 ISC classification

Following the methodology set out in Fig. 1, a collection of objectives on the ISC
classification and formalization is harvested from literature. ISC have a strong
runtime focus [33] and can thus be estimated as related to compliance monitor-
ing in business processes. In [15], objectives on compliance monitoring have been

selected and evaluated as Compliance Monitoring Functionalities (CMF). The
CMFs are grouped along modeling, execution, and user requirements. For the
ISC classification the focus is at the moment on modeling and execution require-
ments. User requirements will play an important role later on when investigating
feedback options and handling of ISC violations and conflicts. According to [15],
modeling and execution requirements are CMF 1: Constraints referring to time,
CMF 2: Constraints referring to data, CMF 3: Constraints referring to resources,
CMF 4: Supporting non-atomic activities, CMF 5: Supporting activity life cycles,
CMF 6: Supporting multiple instances constraints.

Although CMF 6 suggests the use of CMFs for ISC, the CMF framework
does not deal with ISC, but rather with multiple activity instantiations. Hence,
we complement the elicitation of objectives by including requirements stated in
literature on ISC, i.e., [13,17,18,27,7,33]. These works partly confirm CMF 1 –
CMF 6 and extend it by the context of a constraint [13,17,18], i.e., whether it
refers to a single/multiple processes and/or single/multiple instances. An exam-
ple for an ISC spanning multiple instances of a single process is a security con-
straint restricting the loan sum granted by one employee over all her customers
[33]. An example for an ISC spanning single instances of multiple processes is
imposing an order between two activities of different treatment processes [7].

Concluding, we state as objectives for ISC classification and formalization:

Objective 1: coverage and support of CMF 1 – CMF 3 (modeling)

Objective 2: coverage and support of CMF 4 – CMF 6 (execution)

Objective 3: coverage and support of context single/multiple instances for
single/multiple processes

Objective 4: support during design / runtime

Regarding Objective 4: ISC might not only become effective during run-
time, but also during design time, e.g., imposing restrictions on different process
variants and their instances that can be checked during design time, such as
static information about roles in a process spanning separation of duty scenario.
Thus, support of ISC during design time is added to the objectives.

Fig. 2 depicts the proposed ISC classification designed along Objective 1 –
4 . Objective 1 suggests a classification along the modeling requirements time,
data and resource. Here, the classification of an ISC into several requirements is
conceivable. ISC A user is not allowed to do t2 if the total loan amount per day
exceeds $1M [33], for example, can be classified as time and data. For a selective
classification, ISC should not fit into multiple categories, but be assigned to
exactly one category. For this reason, the modeling requirements are grouped
into single and multiple requirements. Multiple modeling requirements describe
ISC for which more than one modeling requirement is existing such as in the
example above. An ISC is classified as single modeling requirement if none or
one modeling requirement is present. Objective 2 is not considered for the ISC
classification. In turn, the underlying CMFs are relevant for the formalization
and for the interplay with a process execution engine which manages task states
and multiple instances of a task.

Fig. 2. ISC classification according to objectives.

Objective 3 requires to extend the classification by the spanning property
of constraints, e.g., imposing a restriction that must hold across several process
instances. In the iUPC logical description [13,17,18,27], for example, the span-
ning part is described as context. ISC can span over processes and/or instances.
An ISC is considered single spanning if the constraint spans over processes or
instances and multi spanning when the constraint spans across both.

ISC can be enforced during design and run time (Objective 4). The pro-
posed ISC classification considers both, but due to the strong runtime focus of
ISC design-time will be a single group and run-time is divided into the four clas-
sifications provided by modeling requirements and context. A more extensive
discussion on design and runtime support of ISC is provided in Sect. 3.1.

3 Analysis of existing formalisms for ISC support

In Section 2, we have identified 4 objectives primordial for the classification and
formalization of ISC. In the following, we use these 4 objectives to evaluate a
list of existing formalisms and compare them to ISC requirements.

3.1 ISC support during design and runtime

We start with a discussion of ISC requirements on verification at design time
and runtime (cf. Objective 4).

Design time checking aims at verifying the process model compliability
with respect to the defined ISC, detecting and resolving conflicts between mul-
tiple ISC, and checking the reachable states of the instances with respect to the
defined ISC. This might imply generating and combining possible traces to be
checked against the ISC. One of the techniques used at design time is model
checking. This technique suffers from well known problem of state explosion and
is not well suited for checking constraints that refer to runtime data.

Runtime checking becomes necessary as soon as ISC refer to execution
data, time, or resources. Moreover, at runtime it is possible to deviate from the
original process model, and therefore a monitoring approach to check possible
violations becomes primordial. In contrast to design time checking, the process
models are not used in the monitoring of constraints (unless for conformance
checking), but the runtime events instead. At runtime, we differentiate between
two checking possibilities: (i) using partial traces, where events are analyzed

against the constraints when they arrive, and (ii) post checking, i.e., using com-
plete traces, which assume that the analyzed instances have completed. ISC span
multiple instances. Hence, the fact that an instance or a set of instances satisfy
an ISC at the time of their completion does not necessarily ensure that this ISC
will not be violated by the executing of future instances, i.e., combined with the
completed ones. Consequently, it becomes crucial for ISC monitoring to define
correctly the window for analyzing the instances against the constraints.

3.2 Analysis of formal languages

In this section, we have analyzed the commonly used formalisms in the areas of
business process compliance and concurrent systems as follows.

Event-B is a specification language that describes how the system is allowed
to evolve. In particular, it specifies the properties that the system must fulfill [1].
Event-B is mainly used for distributed systems, using artifacts; i.e. blueprints,
to reason about the behavior and the constraints of the future system. The main
advantage of Event-B is that it allows different level of abstractions through step-
wise refinement. Event-B is based on events, expresses the constraints between
them, and supports modality; i.e. time operators (CMF1). In the context of busi-
ness processes, Event-B has been used for verifying cloud resource allocation and
consumption [3] (CMF 2–3).

TLA+ is a syntactic extension of TLA (Temporal logic of Action), a spec-
ification language for describing and reasoning about asynchronous, nondeter-
ministic concurrent systems [9]. TLA+ combines temporal logic with logic of
action, is suited for reasoning about protocols, and can be used to specify safety
and liveness properties. Similarly to Event-B, TLA+ allows different levels of
abstraction through refinement.

Both TLA+ and Event-B can be appropriate for specifying and checking
ISC at design time. In particular, structural parts of ISC might checked before
runtime to detect inconsistencies or incorrect specifications. Both formalisms
are very expressive, support time, data and resources (Objective 1), and can
ensure properties such as liveness, fairness or safety at design time. However,
this does not prevent deviations from the specified model at run time. To our
knowledge, TLA+ and Event-B are meant to be used for specifying correct and
compliant models, but not for monitoring the system properties at run-time; i.e.
they does not satisfy Objective 4. Both languages are used for distributed and
concurrent systems and can support Objective 3.

LTL (Linear Temporal Logic) is a formal language, introduced by Pnueli
[24], referring to the temporal modality (CMF 1), and used for reactive and
concurrent systems. LTL is an extension of propositional logic, and expresses
properties of computation traces; i.e., is interpreted over execution traces. Re-
cently, LTL has been used for modeling and checking compliance constraints
of business processes at both design and run-time [16,2] (Objective 4). While
most of the approaches for design time verification would use a Kripke Struc-
ture for model checking LTL properties, some monitoring approaches rely on a
transformation of the constraints to a monitor (automata) that evaluates the

runtime events. Several extensions of LTL have been proposed to cover other as-
pects not originally considered. For example, DLTL (Dynamic Linear Temporal
Logic) strengthen the UNTIL modality with regular expression of the propo-
sitional dynamic logic. Similarly, RTL (Regular Temporal Logic) extends LTL
with semi-extended regular expressions, and MLTL extends it with metrics.

CTL (Computation Tree Logic), is a branching time logic that, in contrast
to LTL, expresses constraints on dynamic evolution of states rather than traces.
Unlike LTL, in CTL the evolution of time is nondeterministic, and every instant
of time has several successors, rather than, exactly one [32]. While LTL reasons
about events along a single computation path, CTL quantifies over paths that are
possible from a given state, through a computation tree. LTL and CTL are not
really comparable and have different expressive powers; i.e., there are formula
that can be expressed in CTL but not in LTL, and inversely. The strong fairness
property, which guarantee a fair behavior between concurrent instances cannot
be expressed in CTL. While LTL is better in expressiveness, the problem of
model-checking CTL formulae of a Kripke structure is of polynomial complexity
[32]. Several extensions of CTL has been proposed; e.g. CTRL extends it with
regular expressions [19].

CTL* can express all formulae of both LTL and CTL [32] However, the
problem of model checking becomes P-space complete. While LTL can be used
for monitoring, CTL and CTL* are mostly used for model checking at design
time (Objective 4).

PDL is a dynamic logic with several modalities that extends modal logic
by associating action to the operators; i.e; multimodal logic [5]. It particularly
expresses formulae of the form: after executing an action, it is necessary or pos-
sible that the proposition holds. PDL can also express nondeterministic behavior
through regular expressions and compound actions. The complexity of PDL de-
cidability is proved to be in deterministic exponential time which makes it not
appropriate for monitoring (Objective 4).

µ−Calculus is an extension of modal logic with two operators µ and v
corresponding to the least and greatest fixpoints operators [14]. µ−Calculus
is a superset of CTL* and PDL, and is also used for the formal verification
of concurrent systems. Despite its expressive power, the complexity of model
checking systems specified with µ−Calculus is considerably high.

Although CTL* and µ−Calculus are powerful branching-time logics, both of
which subsume CTL and LTL (µ−Calculus subsumes PDL as well), they are
complex to understand and to use by non-experts [19]. ISC can be conveniently
and concisely formulated in terms of regular expressions that are not provided
by standard temporal logics such as CTL and LTL [13,18]. Besides, LTL, CTL*
and µ−calculus adopt an inherent qualitative notion of time but when it comes
to quantitative time or metrics they become insufficient (C MF 1) [15]. LTL is
also not suitable for constraints that deal with data and resources (C MF 2-3),
or mult-instances (C MF 6) , which are aligned with Objectives 1-2 of ISC.

EC (Event Calculus) is a general logic programming treatment of time and
change [12]. Event calculus is based on first order predicate logic FOL and ex-

presses properties in terms of Fluents. A Fluent is a time-varying property whose
valuation is changing according to effect axioms defined in the theory of the prob-
lem domain. The time in EC is linear rather than the branching time used in
other logics, where time is a tree. Accordingly, Fluent valuation is relative to
time points instead of successive situations. EC provides an inherent support for
concurrent events [12], where events occurring in overlapping time intervals, from
different sources can be deduced (Objective 3). EC has benefited enormously
from several extensions; e.g. for expressing different properties such as non de-
terministic actions, gradual changes, compound events, indirect effects, actions
with duration or actions with delayed effects [21]. There exist a multitude of rea-
soners or solvers for EC; e.g. Discrete Event Calculus reasoner, F2LP [21]. EC
supports abductive reasoning to generate hypothetical events. In other words, it
permits constructing a rule based on the observed events. In the context of busi-
ness processes, EC has been widely used for either formalizing process models,
process choreographies (process interactions) [28], or obligations and compliance
rules [20]. As already mentioned in [15,20], EC adopts an explicit representation
of qualitative and quantitative time (C MF1), and supports the C MF 2-6 that
we pointed as relevant for ISC checking. Moreover EC supports checking at both
design and runtime (Objective 4).

Other Languages: In particular, SQL-like languages such as PQL or
APQL [8] as declarative languages based upon temporal logic seem to be good
candidates for expressing complex constraints and querying instance events at
runtime. In contrast to the logic based reasoning, they are data-centric and can
deal with the CMFs that we have defined. Currently, PQL is used for querying
process model instances. Also eCRG (extended Compliance Rule Graph) is
a visual monitoring language for business process compliance which supports
control and data flow including time and resource perspectives [11] (C MF2-3).
eCRG is based on FOL and can be used at both, design and runtime (Objective
4).

ISC checking at design-time is not always decidable due to loops or quantifi-
cation over infinite sets (e.g., time, integer, arbitrary data objects). While the
assumption of finite sets is made implicit for LTL and CTL, and therefore they
are considered as decidable at design time, it does not hold for more expressive
language such as EC. The expressive power of EC precludes its decidability at de-
sign time, but meanwhile can cope with most ISC specifications. Since temporal
logic properties are decidable over finite-state models, adopting this assumption
makes EC also decidable at design time. LTL, CTL, PDL, EC, eCRG and SQL-
like languages are all decidable at runtime (monitoring) since they check over
traces. However, they have different complexity.

Table 1 elaborates on the above discussion and classifies the studied languages
with respect to Objectives 1–4. eCRG, SQL-like languages, and EC seem to
be good candidates for ISC formalization. SQL-like languages are more data-
centric, but remain as a good alternative to support ISC. Overall, EC is adopted
for ISC formalization and used as basis for design time checking and runtime
monitoring.

TLA+ Event B LTL CTL PDL µ−Calculus eCRG SQL-Like EC

Objective 1 + + +/- +/- +/- +/- + + +

Objective 2 + + +/- +/- +/- + + + +

Objective 3 + + + + + + + + +

Objecjtive 4
design + + + + +/- +/- +/- +/- +/-

runtime - - + +/- +/- +/- + + +
Caption: (Full support (+), Not Supported(-), partly supported (+/-))

Table 1. Evaluation of formalisms with respect to Objectives 1–4

4 Relevance and feasibility of ISC classification

114 ISC examples were collected during a meta study described in [26]. Manu-
facturing, logistics/transport, health care, security and energy/smart grid were
identified as relevant application domains which were complemented by other
domains such as teaching and insurance during the study. Altogether, 42% of
the ISC examples stem from the energy domain, 16% from automotive and man-
ufacturing, 10% from security, 9% from logistics and transport, 7% from health
care, and 16% from other domains. Among the analyzed sources were EU and
WWTF projects (16%), regulatory documents (42%), industry papers (15%),
literature (9%), as well as ISC examples from experiences (18%). The complete
collection of ISC examples is provided in [26] as well.

In order to show the relevance and feasibility of the ISC classification (cf. Fig.
2), the ISC were manually categorized with respect to the following aspects1.

– Application: design / runtime
– Context: single / multiple processes / instances
– Modeling requirements: structure, data, time, resource, execution data

Regarding application, it can be observed that all examples refer to runtime
(except those in category undef). Hence, the classification into design time and
runtime is not reflected by the examples. Nonetheless, ISC examples for design
time can be envisaged (e.g., static role assignment), however, the emphasis seems
to be ISC support during runtime. Execution data [18] can be observed as addi-
tional modeling requirement when compared to the CMFs in [15]. Structure is
present in every ISC (as implicitly also the case for the CMF framework [15]).

The distribution of the examples with respect to context and modeling re-
quirements is depicted in Fig. 3. About 20% of the examples can be classified
as spanning multiple processes, instances, and modeling requirements. 11% span
multiple context and are categorized to fit a single modeling requirement. In
total, 53% of the ISC are classified as single context spanning either processes or
instances. 25% of the ISC in category single context are further categorized as
referring to multiple modeling requirements and 28% as single modeling require-
ment. 16% of the examples are not considered due to unclear context (12%) or
missing modeling requirements (4%). For this data set, each ISC fits exactly one
of the classification categories.

1 Note that ISC for which no categorization was possible without further information
were categorized as undef. The reason behind is that the ISC in many cases did not
have a specified connected process model.

Fig. 3. Distribution of classification.

To learn more about the modeling requirements, they were plotted against
the domain and the source (cf. Fig. 4). Structure is a modeling requirement
present in every domain (cf. Fig. 4(a)) ranging from about 35% to 45%. There
are differences for modeling requirements data. Specifically, data is not present
at all for domain energy whereas for the other domains the amount of ISC re-
ferring to data ranges from about 20% to 32%. Time plays some role for all
domains, but seems to be especially represented for the energy domain (about
38%) compared to a range from about 6% to 20% for all other domains. Look-
ing into the energy examples, many ISC refer to a certain time frame (Service
Level Agreements (SLA)). Resource is present throughout all domains, again
the energy domain shows less ISC referring to resources (about 1%) than the
other domains (about 14% to 29%). All ISC referring to execution data fall into
domain energy. Resources seem to play a particularly important role in manu-
facturing and automotive as well as in security. The latter is not very surprising
as the assignment of resources is an essential security measure.

For analyzing modeling requirements along source (cf. Fig. 4(b)), it was de-
cided to aggregate sources into categories practice (covering projects and regu-
latory documents), experience, and literature (covering literature and industry
papers) in order to compare practice and research. Industry papers could have
also been categorized under practice as these paper mostly describe real-world
use cases. Figure 4(b) shows that practice has more emphasis on time as litera-
ture, whereas literature emphasizes on resources. Literature also contains more
examples with modeling requirement data then the practical examples. Expe-
rience seems to balance out modeling requirements from practice, e.g., time,
and literature, e.g., data. Only practice refers to example with execution data.
One can interpret this as follows: category practice is dominated by the energy
domain where time plays an important role. Nonetheless, the rather marginal
coverage of time by literature in contrast to practice is interesting to look into.
Also the practice category introduces execution data which has not been consid-
ered by literature at all. The experience examples intentionally try to resemble
a balanced coverage of all modeling requirements.

To round off the explorative analysis of the ISC collection, the usage of the
ISC examples was analyzed. [18,27] distinguish categories compliance, attribu-
tion, behavior, and meta where compliance refers to checking certain properties,
attribution to, for example, runtime assignments, behavior to enforcement of
certain actions during runtime such as synchronization, and meta to constraints
defined on other constraints. Figure 5 shows the distribution of ISC example

(a) domain (b) source

Fig. 4. Modeling requirements for domain and source (normalized, grouped barcharts)

usage for the different domains. For automotive and manufacturing, compliance
and behavior are present with an emphasis on compliance. Energy refers to
compliance, but no other category (except undef). For health care and security
compliance and behavior are equally presented, where for health care also some
undef cases are present. Logistics, security, and others exhibit also examples for
attribution. For logistics the category with highest presence is behavior. Trying
an interpretation, automotive and manufacturing show a similar distribution of
usage, i.e., compliance and behavior with an emphasis on compliance. For the
energy domain, only compliance is present. This can be explained by the sole
existence of SLAs in the respective regulatory document which are to be checked
rather than to be enforced. For health care and security behavior seems to play
an equally important role as compliance because certain regulations are to be
enforced or synchronization plays an important role. Security also demands for
attribution, e.g., for assignment of roles. Logistics has more demand for behavior
(e.g., synchronizing deliveries) and a relatively high demand for attribution.

Fig. 5. Usage of ISC examples along domain (normalized, grouped barchart)

5 Formalization of ISC representatives

Preliminaries: As aforementioned, EC is a temporal formalism that can specify
properties of dynamic systems in terms of events and the effects of their occur-
rence on predefined fluents (properties). While fluents are conditions regarding
the state of a system, events are occurrence of actions that might change the
state of the system and consequently the valuation of the fluents. A typical flu-
ent would indicate that a process variable holds a specific value at a given time.
EC mainly defines a set of domain independent predicates, which can be aug-
mented by a domain related predicate. Figure 6 describes a subset of the basic
predefined predicates of EC [21]). Specifically, the occurrence of an event e at a
time t is represented by the predicate Happens(e, t). This can influence a fluent
f by terminating its old valuation that holds until point in time t, and initiating
it with a new valuation that holds after t (through the predicates Terminates
and Initiates respectively). The reader can refer to [21] for the complete set of
domain independent fluents.

As evaluation of the applicability of EC in the context of ISC, we have for-
malized 4 representative scenarios derived from the ISC classification and imple-
mented them with a reasoner. The scenarios are described in Fig. 7 and refer to
the following categories of the ISC classification (cf. Fig. 2): Scenario 1: single
context/multi modeling; Scenario 2: single context/single modeling; Scenario
3: multi context/single modeling; Scenario 4: multi context/multi modeling.

Scenario 1: The scenario is taken from the energy domain and adapted
from the engergy domain, and states that when starting the readout opera-
tion at time t, 99% of all meter readouts should be read within 6 hours and
the readout values not exceeding X. The ISC includes time as well as data
and concerns all instances of the same meter readout process (Single/Multi).
First, we define the events that have to be caught by the ISC checker, which
are the starting action for launching meter readouts and an event related to
each meter readout that finished. Note that the readouts of the different me-
ters are simultaneous. If we assume n as the number of all meters, then the
checker needs to wait for all instances to complete until 6 hours from the
start time, in order to check whether the condition of 99% is met. The sta-
tus of each meter is represented by the fluent ReadoutF inish(meter), whose
value is set to true if the readout is finished and false otherwise. The fluent

if e occurs at time t, then f is released from the commonsense law of inertia after tRelease(e, f, t)
if e occurs at time t, then f is false and not released from the commonsense law of inertia after tTerminates(e, f, t)

Initiates(e, f, t) if e occurs at time t, then f is true and not released from the commonsense law of inertia after t

e occurs at time tHappens(e, t)
f is true at time tHoldsAt(f,t)

InitiallyP(f) f is true at timepoint 0

PREDICATE MEANING
f is false at timepoint 0InitiallyN(f)

Fig. 6. A subset of EC predicates (cf. [21])

Type: [Multi / Multi]

"Print similar jobs together."

EVENTS FLUENTS
 PrintStart(printer, queuetype) Printing(printer, queuetype)
 PrintEnd(printer, queuetype) PrintQueue(printer, queuetype,
integer)

STATEMENTS
 ∀printer, queuetype
 InitiallyP(PrintQueue(printer, queuetype, 0)) ∧
 InitiallyN(Printing(printer, queuetype));

 ∀printer, queuetype1, queuetype2, integer, time
 Happens(PrintStart(printer, queuetype1), time) ∧
 ¬HoldsAt(Printing(printer, queuetype1), time) ∧
 ¬HoldsAt(Printing(printer, queuetype2), time) ∧
 (queuetype1 != queuetype2) =>
 HoldsAt(PrintQueue(printer, queuetype1, integer), time) =>
 Initiates(PrintStart(printer, queuetype1), Printing(printer,
queuetype1), time) ∧
 Initiates(PrintStart(printer, queuetype1), PrintQueue(printer,
queuetype1, integer + 1), time);

 ∀printer, queuetype1, queuetype2, integer, time
 Happens(PrintStart(printer, queuetype1), time) ∧
 ¬HoldsAt(Printing(printer, queuetype1), time) ∧
 HoldsAt(Printing(printer, queuetype2), time) ∧
 (queuetype1 != queuetype2) =>
 HoldsAt(PrintQueue(printer, queuetype1, integer), time) =>
 Initiates(PrintStart(printer, queuetype1), PrintQueue(printer,
queuetype1, integer + 1), time);

∀printer, queuetype, integer, time
Happens(PrintStart(printer, queuetype), time) ∧
HoldsAt(Printing(printer, queuetype), time) ∧
HoldsAt(PrintQueue(printer, queuetype, integer), time) =>
Terminates(PrintStart(printer, queuetype), PrintQueue(printer,
queuetype, integer), time) ∧
Initiates(PrintStart(printer, queuetype), PrintQueue(printer, queuetype,
integer + 1), time);

∀printer, queuetype, integer, time
Happens(PrintEnd(printer, queuetype), time) ∧
HoldsAt(Printing(printer, queuetype), time) ∧
HoldsAt(PrintQueue(printer, queuetype, integer), time) =>
Initiates(PrintEnd(printer, queuetype), PrintQueue(printer, queuetype,
integer - 1), time);

∀printer, queuetype1, queuetype2, integer, time
Happens(PrintEnd(printer, queuetype1), time) ∧
HoldsAt(Printing(printer, queuetype1), time) ∧
¬ HoldsAt(Printing(printer, queuetype2), time) ∧
(queuetype1 != queuetype2) ∧
HoldsAt(PrintQueue(printer, queuetype1, 0), time) ∧
HoldsAt(PrintQueue(printer, queuetype2, integer), time) ∧
(integer > 0) =>
Terminates(PrintEnd(printer, queuetype1), Printing(printer,
queuetype1), time) ∧
Initiates(PrintEnd(printer, queuetype1), Printing(printer, queuetype2),
time);

Terminates(TaskStart(user, task), TaskCount(user, value), time) ∧
 Initiates(TaskStart(user, task), TaskCount(user, value + 1), time);

∀user, task, value, day, time
Happens(TaskStart(user, task), time) ∧
¬HoldsAt(LastTaskDay(user, day), time) =>
Initiates(TaskStart(user, task), LastTaskDay(user, getday(time), time) ∧
Terminates(TaskStart(user, task), TaskCount(user, value), time) ∧
Initiates(TaskStart(user, task), TaskCount(user, value + 1), time);

∀user, task, value, day, time
Happens(TaskStart(user, task), time) ∧
HoldsAt(LastTaskDay(user, day), time) ∧ (day < getday(time)) =>
Terminates(TaskStart(user, task), LastTaskDay(user, day), time) ∧
Initiates(TaskStart(user, task), LastTaskDay(user, getday(time), time) ∧
Terminates(TaskStart(user, task), TaskCount(user, value), time) ∧
Initiates(TaskStart(user, task), TaskCount(user, 0), time);

Type: [Multi / Single]

"A user is not allowed to
execute more than 100 tasks
(of any workflow) in a day."

EVENTS FLUENTS
 TaskStart(user, task) TaskCount(user, value)
 TaskEnd(user, task) LastTaskDay(user, day)

FUNCTIONS
 getday(time) : Day

STATEMENTS
 ∀user
 InitiallyP(TaskCount(user,0));

 ∀user, task, value, time
 Happens(TaskStart(user, task), time) =>
 HoldsAt(TaskCount(user, value), time) ∧ (value < n);

 ∀user, task, value, day, time
 Happens(TaskStart(user, task), time) ∧
 HoldsAt(LastTaskDay(user, day), time) ∧ (day = getday(time)) =>

∀time1, time2, meter, data, counter,value
Happens(GlobalReadoutStart(), time1) ∧
Happens(ReadoutEnd(meter, data), time2) ∧
 (time2 > time1) ∧ (time2 < time1 + 6) => (data <= X) ∧
Terminates(ReadoutEnd(meter, data), Value(counter, value), time2) ∧
 Initiates(ReadoutEnd(meter, data), Value(counter,value+1), time2) ∧
 Initiates(ReadoutEnd(meter, data), ReadoutFinished(meter), time2);

∀time, counter, value
Happens(GlobalReadoutStart(), time) =>
HoldsAt(Value(counter, value), time+6) ∧ (value = n)

FORMULA

∀time, meter, counter,value1
Happens(ReadoutEnd(meter), time) ∧
HoldsAt(Value(counter, value1), time) ∧ (value1 modulo N > 0) =>
Terminates(ReadoutEnd(meter), Value(counter, value1), time2) ∧
Initiates(ReadoutEnd(meter), Value(counter,value1+1), time2);

∀time1,time2, meter, counter , violations ,value1, value2
Happens(ReadoutEnd(meter), time2) ∧
Happens(ReadoutStart(meter), time1) ∧ (time2-time1 > 5) ∧
HoldsAt(Value(counter, value1), time) ∧ (value modulo N = 0) =>
HoldsAt(Value(violations,value2), time2)) ∧
(value2 +1 < (99*N/100)) ∧
Terminates(ReadoutEnd(meter), Value(violations, value2), time2) ∧
Initiates(ReadoutEnd(meter), Value(violations,value2+1), time2);

∀time1,time2, meter, counter , violations ,value1, value2
Happens(ReadoutEnd(meter), time2) ∧
Happens(ReadoutStart(meter), time1) ∧ (time2-time1 <= 5) ∧
HoldsAt(Value(counter, value1), time) ∧ (value modulo N = 0) =>
HoldsAt(Value(violations,value2), time2)) ∧
(value2 < (99*N/100)) ∧
Terminates(ReadoutEnd(meter), Value(violations, value2), time2) ∧
Initiates(ReadoutEnd(meter), Value(violations,value2+1), time2);

EVENTS FLUENTS
 GlobalReadoutStart() ReadoutFinished(meter)
 ReadoutEnd(meter) Value(counter, value)

STATEMENTS
 InitiallyP(Value(counter,0))
 InitiallyP(Value(violations,0))

 ∀meter, time
 Happens(ReadoutStart(meter), time) =>
 Terminates(ReadoutStart(meter), ReadoutFinished(meter), time);

 ∀meter, time2
 Happens(ReadoutEnd(meter), time2) =>
 ∃time1 Happens(ReadoutStart(meter), time1) ∧ (time2 > time1);

 ∀meter, time1, time2, counter, violations, value1, value2
 Happens(ReadoutEnd(meter), time2) ∧
 Happens(ReadoutStart(meter), time1) ∧ (time2-time1 > 5) ∧
 HoldsAt(Value(counter, value1), time) ∧
 (value1 modulo N > 0) =>
 Initiates(ReadoutEnd(meter), ReadoutViolation(meter), time2) ∧
 Terminates(ReadoutEnd(meter),Value(violations, value2),time2)∧
 Initiates(ReadoutEnd(meter), Value(violations,value2+1), time2);

Type: [Single / Single]

"For 100 (simultaneous) ad
hoc readouts of end
devices/"activate/deactivate
customer interface" readouts/
meter checks, 99 % <= 5
min is required."

SCENARIOS EVENT CALCULUS
EVENTS FLUENTS
 GlobalReadoutStart() ReadoutFinished(meter)
 ReadoutEnd(meter, data) Value(counter, value)

STATEMENTS
 ∀meter, time, counter, value
 Happens(GlobalReadoutStart(), time) =>
 Terminates(GlobalReadoutStart(), ReadoutFinished(meter), time)∧
 Initiates(GlobalReadoutStart(), Value(counter, 0), time) ∧
 Terminates(GlobalReadoutStart(), Value(counter, value), time) ∧
 ¬(value = 0);

Type: [Single / Multi]

"When starting the read-out
operation at time t, 99% of
all meter readouts should be
read out within 6 hours and
the read out value does not
exceed X."

Fig. 7. ISC scenarios based on [26] and formalized using EC

V alue(counter, value) is used to check the value of the counter; i.e., number of
finished readouts, after 6 hours. Each event of type ReadoutF inish(meter); i.e.
Happens(ReadoutEnd(meter, data), time2), increments the value of the counter
by terminating the old valuation of the fluent V alue(counter, oldvalue) to false;
i.e., Terminates(ReadoutEnd(meter, data), V alue(counter, value), time2), and
initiating the fluent V alue(counter, oldvalue+ 1) to true:
Initiates(ReadoutEnd(meter, data), V alue(counter, value+ 1), time2).

Scenario 2: The second scenario (Single/Single) removes the data constraint
from the first one but extends it by limiting the constraint to each 100 finished
instances, which requires to reinitialize the counter after each 100 readouts. For
each group of 100 finished readouts, 99% of the instances should have finished
within 5 minutes. This makes the constraint selective, since it selects the first
100 completed readouts first, than applies the deadline constraint. To this en-
deavor, we have added a violation counter that increments each time a readout
takes more than 5 minutes to finish. We use the modulo function to reinitialize
the number of violations after 100 readouts. If the number of violations ex-
ceeds 99%, the last statement will evaluate to false. It is possible to consider
another fluent for each meter to express if its readout exceeded 5 min; e.g.,
Readoutviolation(meter).

Scenario 3 is of type Multi/Single and states that a user is not allowed to
execute more than 100 tasks of the same or different workflows in the same day.
The ISC clearly spans multiple processes, but here we assume that a user can
instantiate each process only once. For the formalization (cf. Fig. 7), we use a
predefined function getday(time) that extracts the day as an integer value from
the given discrete time. At each new day, the counter is reset allowing the user to
execute more tasks for the day. A simple counter is incremented on the execution
of a task.

Scenario 4: is of type Multi/Multi and states that similar jobs of different
processes are printed together (cf. Fig. 7). The modeling requirements are re-
source for the printers as well as data for the print job type. Scenario 4 can be
interpreted in various ways. For this simple implementation, we have opted to
represent a queuing system, incremented as new print jobs of the same type are
added. Each job type is added to an associated queue. Only the currently active
job type represented in the Printing(printer, queuetype) fluent are worked on by
the limiting resource. Jobs are finished in batches and printing jobs are switched
as the queue empties at a PrintEnd(printer, queuetype) event. To improve the
queuing system, an additional time-based counter could be added.

Implementation Each of the representative scenarios has been formalized with
EC, and implemented and simulated with Decreasoner (Discrete Event Calculus
Reasoner)2. Decreasoner uses discrete time representation, and transforms the
problem into a satisfiability problem (SAT). Since the examples have been taken
from the aforementioned domains; e.g., energy or healthcare, where no processes
were provided, we have simulated the generation of the events in a separate

2 http://decreasoner.sourceforge.net

model 1:
0
Count(Counter1, 0).
Happens(GlobalReadoutStart(), 0).
1
Happens(ReadoutEnd(Meter1), 1).
2
+Count(Counter1, 1).
+ReadoutFinished(Meter1).
Happens(ReadoutEnd(Meter2), 2).

5
+Count(Counter1, 4).
+ReadoutFinished(Meter4).
Happens(ReadoutEnd(Meter5), 5).

6
-ReadoutInProgress(Meter5).
+Count(Counter1, 5).
+ReadoutFinished(Meter5).
+ThresholdSuccess(Counter1).
P

4
+Count(Counter1, 3).
+ReadoutFinished(Meter3).
Happens(ReadoutEnd(Meter4), 4).

3
+Count(Counter1, 2).
+ReadoutFinished(Meter2).
Happens(ReadoutEnd(Meter3), 3).

Fig. 8. ISC scenarios checking results with Decreasoner

module. These events are represented as Happens(event(..), time). statements,
applicable for each scenario. We specified event occurrences at different times
and with different data. This replaces the simulation using a replay of the process
models or logs. Checking results of the first scenario are depicted in Fig. 8. In
particular, it shows the trace for one model, where it shows the valuations of the
fluents as well as events occurrence at different time points. A fluent preceded
by a ”+” means that the fluent is evaluated to true, while a fluent preceded by
”-” means that it is evaluated to false.

6 Related Work

A multitude of approaches for business process compliance exist that can be
mainly categorized into design time, e.g., [29,6] and runtime approaches (see,
for example, the survey on compliance monitoring approaches in [15]). However,
there are only a few approaches that directly deal with ISC. Heinlein [7] addresses
ISC at structural level only, i.e., offering means to define constraints on process
activities between different instances. Other approaches focus on certain usage
scenarios for ISC in Process-Aware Information Systems (PAIS) such as access
control [33], batching [25], and queuing [23,30]. These usage scenarios provide
valuable input for the objectives and evaluation of a comprehensive approach
for ISC support in PAIS.

The iUPC approaches [13,17,18,27] provide a comprehensive logical descrip-
tion for constraints in general, i.e., the iUPC framework. Moreover, the design
and enactment of ISC in PAIS are preliminarily addressed in [13]. A special kind
of ISC usage, i.e., for synchronization is formalized and implemented in [17].
However, a systematic and integrated approach for formalizing, verifying, and
implementing ISC in PAIS fulfilling the ISC objectives is missing.

7 Conclusion and Outlook

ISC are the means to define restrictions and behavior across multiple instances of
the same or different process types. This enables a required level of control, even
for ultra-dynamic process-driven applications for which each instance evolves in a
different way. This work provides the fundament for comprehensive ISC support

in process-driven applications by an ISC classification and a corresponding ISC
formalization based on Event Calculus. The feasibility is evaluated based on a
collection of 114 ISC examples from different domains and resources. It could
be observed that ISC requirements exist for many domains from manufacturing
to health care and can be harvested from different sources such as regulatory
documents or project deliverables. Future work will include user requirements
in ISC support as well as an integration with existing process engines.

Acknowledgment This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edn. (2010)

2. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules. In:
Int’l Conf. on Business Information Systems. pp. 106–118 (2010)

3. Boubaker, S., Gaaloul, W., Graiet, M., Hadj-Alouane, N.B.: Event-b based ap-
proach for verifying cloud resource allocation in business process. In: Int’l Conf.
on Services Computing. pp. 538–545 (2015)

4. Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards
the enhancement of business process monitoring for complex logistics chains. In:
Business Process Management Workshops. pp. 305–317. Springer (2013)

5. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18(2), 194 – 211 (1979)

6. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Int’l Conf. on
Service-Oriented Computing. pp. 169–180 (2007)

7. Heinlein, C.: Workflow and process synchronization with interaction expressions
and graphs. In: Int’l Conf. on Data Engineering. pp. 243–252 (2001)

8. ter Hofstede, A.H.M., Ouyang, C., Rosa, M.L., Song, L., Wang, J., Polyvyanyy,
A.: APQL: A process-model query language. In: Asia Pacific Business Process
Management Conference. pp. 23–38 (2013)

9. Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M., Yu, Y.: Checking
cache-coherence protocols with tla+. Form. Methods Syst. Des. 22(2), 125–131
(2003)

10. Kaes, G., Rinderle-Ma, S., Vigne, R., Mangler, J.: Flexibility requirements in real-
world process scenarios and prototypical realization in the care domain. In: OTM
Workshops. pp. 55–64 (2014)

11. Knuplesch, D., Reichert, M., Kumar, A.: Visually monitoring multiple perspectives
of business process compliance. In: Int’l Conf. on Business Process Management.
pp. 263–279 (2015)

12. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–95

13. Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and enactment of instance-
spanning process constraints. In: Int’l Conf. on Web Information Systems Engi-
neering. pp. 652–658 (2012)

14. Lenzi, G.: The modal µ-calculus: a survey. Task quarterly 9(3), 293–316 (2005)

15. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support. Information Systems 54, 209–234 (2015)

16. Maggi, F., Montali, M., Westergaard, M., van Der Aalst, W.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata.
In: Business Process Management, pp. 132–147 (2011)

17. Mangler, J., Rinderle-Ma, S.: Rule-based synchronization of process activities. In:
Commerce and Enterprise Computing. pp. 121–128 (2011)

18. Mangler, J., Rinderle-Ma, S.: IUPC: identification and unification of process con-
straints. CoRR abs/1104.3609 (2011), http://arxiv.org/abs/1104.3609

19. Mateescu, R., Monteiro, P.T., Dumas, E., de Jong, H.: Ctrl: Extension of {CTL}
with regular expressions and fairness operators to verify genetic regulatory net-
works. Theoretical Computer Science 412(26), 2854 – 2883 (2011)

20. Montali, M., Maggi, F.M., Chesani, F., Mello, P., Aalst, W.M.P.v.d.: Monitoring
business constraints with the event calculus. ACM Trans. Intell. Syst. Technol.
5(1), 17:1–17:30 (2014)

21. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann (2006)

22. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. Journal of management
information systems 24(3), 45–77 (2007)

23. Pflug, J., Rinderle-Ma, S.: Dynamic instance queuing in process-aware information
systems. In: Symposium on Applied Computing. pp. 1426–1433 (2013)

24. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
Annual Symp. on. pp. 46–57 (1977)

25. Pufahl, L., Herzberg, N., Meyer, A., Weske, M.: Flexible batch configuration in
business processes based on events. In: Int’l Conference on Service-Oriented Com-
puting. pp. 63–78 (2014)

26. Rinderle-Ma, S., Gall, M., Fdhila, W., Mangler, J., Indiono, C.: Collecting examples
for instance-spanning constraints. Tech. Rep. arXiv:1603.01523, arXiv (2016)

27. Rinderle-Ma, S., Mangler, J.: Integration of process constraints from heterogeneous
sources in process-aware information systems. In: Int’l Workshop on Enterprise
Modelling and Information Systems Architectures. pp. 51–64 (2011)

28. Rouached, M., Fdhila, W., Godart, C.: A semantical framework to engineering
wsbpel processes. Information Syst. and e-Business Management 7(2), 223–250
(2008)

29. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Int’l Conf. on Business Process Management, pp. 149–164.
Springer (2007)

30. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predict-
ing delays in service processes. In: Int’l Conf. on Advanced Information Systems
Engineering. pp. 42–57 (2014)

31. Ulfelder, S.: Building a compliance framework. Comp. World 38(27), 34–35 (2014)
32. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Int’l Conf. on Tools

and Algorithms for the Construction and Analysis of Systems. pp. 1–22 (2001)
33. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow

management. In: Symposium on Access Control Models and Technologies. pp. 190–
199 (2006)

http://arxiv.org/abs/1104.3609

	Classification and Formalization of Instance-Spanning Constraints in Process-driven Applications

