
Ontology-Based Behavioral Constraint Authoring
Christoph Czepa∗, Huy Tran∗, Uwe Zdun∗, Thanh Tran Thi Kim†, Erhard Weiss† and Christoph Ruhsam†

∗Faculty of Computer Science
University of Vienna, Vienna, Austria

Email: {christoph.czepa, huy.tran, uwe.zdun}@univie.ac.at
†Isis Papyrus Europe AG, Maria Enzersdorf, Austria

Email: {thanh.tran, erhard.weiss, christoph.ruhsam}@isis-papyrus.com

Abstract—A major approach for formalizing business policies
or compliance rules (e.g., stemming from regulatory laws or
standards) are behavioral constraints. Flexible business process
management approaches such as Adaptive Case Management
provide business users the necessary freedom to react to un-
foreseeable circumstances by ad-hoc changes, but behavioral
constraints are often defined and maintained on a technical
level which is inaccessible for business users. Consequently, long
update cycles of these constraints might result in the enactment
of obsolete, incomplete or faulty constraints which hinder the
work of the business user instead of supporting it. In this
paper, an ontology-based approach for defining and maintaining
behavioral constraints in the context of flexible business processes
is proposed. The approach aims at enabling business users to take
active part in the creation and maintenance of behavioral con-
straints. The practical applicability of the approach is discussed
by means of a realistic scenario on compliance in the context of
renovation, repairs, and maintenance of buildings.

I. INTRODUCTION

Many business domains are subject to a large amount
of compliance requirements stemming from sources such as
regulatory laws (e.g., Sarbanes-Oxley), standards (e.g., ISO
45001 - Occupational health and safety) or best practices (e.g.
ITIL). The classical approach for integrating such compliance
requirements in the enactment of business processes are flow-
driven, predefined business process models that become in-
stantiated and executed. Assuming the business process model
is correctly defined and the business users follow it exactly,
we can be sure that business process instances are compliant.
In reality, however, deviations from those predefined business
processes become frequently necessary. This has led to flexible
business process management approaches such as Adaptive
Case Management ([1], [2]) that enable business users to
actively shape the enactment of business processes by skip-
ping activities, performing ad-hoc activities, and defining and
changing goals. Several researchers propose approaches that
we can broadly collected under the umbrella term Behavioral
Constraints of business processes. Pesic & van der Aalst
propose a declarative approach called Declare for flexible
business process management that offers a graphical specifica-
tion language to loosely define business processes by relations
between activities such as a ‘response relation’ or ‘precedence
relation’ with underlying formal representations in Linear
Temporal Logic (LTL) or Event Calculus ([3], [4]). Ly et
al. propose a different graphical language called Compliance
Rule Graphs with elements such as ‘antecedent occurrence’

and ‘consequence occurrence’ [5]. Hildebrandt et al. propose
Dynamic Condition Response Graphs for trustworthy Adaptive
Case Management which is another graphical language com-
prising relations such as a ‘condition relation’ and a ‘response
relation’ [6]. Schönig & Zeisig propose DPIL (Declarative
Process Intermediate Language), a scripting language which
allows the definition of macros such as ‘sequence(a, b)’ that
become enacted by a rule engine.

What all these approaches have in common is a recurring
set of behavioral constraint patterns, most often with a
strong temporal focus. Dwyer et al. identified a collection
of fundamental temporal patterns such as ‘response’ and
‘precedence’ [7]. It is not surprising that such temporal aspects
play a major role in business process management, since the
order of execution of specific activities due to dependencies
between activities is often of importance.

Above-mentioned behavioral constraint approaches aim at
being user-friendly by offering graphical notations or textual
specification languages that are based on patterns that have
their origin in temporal logics (cf. [7], [8], [9]). However,
supporting the user by integrating domain knowledge has
not yet been considered, which poses an obstacle for end-
user acceptance. A more general approach that does not
particularly focus on temporal aspects of business processes
is the Semantics of Business Vocabulary and Business Rules
(SBVR) standard. It is an adopted standard of the Object
Management Group (OMG) which enables the use of domain
knowledge for the definition of rules. While this standard
enables the definition of a vast amount of different rules,
the automated verification of them, especially in a non-static,
temporal context, is not yet fully solved: The SBVR standard
document in the latest version 1.3 (May 2015) states that
“[...] capturing the formal semantics in an appropriate logic
(e.g., a temporal or dynamic logic) is a harder task. One
possibility is to provide a temporal package that may be
imported into a domain model, in order to provide a first-order
logic solution. Another possibility is to adopt a temporal modal
logic (e.g., treat a possible world as a sequence of accessible
states of the fact model). It may well be reasonable to defer
decisions on formal semantics for dynamic rules to a later
version of the SBVR standard.” Consequently, there seems to
be a link missing between behavioral constraint approaches—
which have a strong focus on dynamics of business processes
(i.e., temporal relationships)—and ontology-based constraint



approaches—which have a strong focus on static rules of
business processes.

In this paper, we propose an ontology-based behavioral
constraint authoring approach which has the ontology of a
domain linked with the application ontology of the business
process management solution (which provides the functional-
ity of specific tasks) and allows for using well-known domain
concepts in the definition of behavioral constraints. Based on
this explicitly defined domain knowledge, business users can
define behavioral constraints on basis of the well-known con-
cepts and relations of their business domain, supported by an
ontology-fetching auto-completion and suggestion feature. The
ontology can be adapted by creating derived concepts from
existing ones that are used in existing behavioral constraints.
Any such adaptation has a direct effect on the enactment of
the constraint, as the derived concept is considered in the
enactment of the constraint. By deriving domain-specific con-
cepts from more generic concepts such as an activity or goal,
the enactment of business processes becomes interfaced with
the ontology. Consequently, business process elements, such
as activities, goals and data objects, have in the background
an organized structure, the ontology, which can be leveraged
to enact ontology-based behavioral constraints while business
processes are executed. The core benefits of the approach are
(1) the possibility to modify behavioral constraints indirectly
by modifying the ontology, which can have an impact on
existing rules, (2) the authoring of behavioral constraints in
the language of the business domain, and (3) the underlying
temporal logic pattern-based approach that enables an auto-
mated verification of defined behavioral constraints.

II. MOTIVATING EXAMPLE

The building and construction industry is subject to a vast
amount of compliance rules stemming from sources such as
regulatory laws and standards. Let us consider a compliance
document published by the EPA (United States Environmental
Protection Agency) in 2011 regarding how to cope with
potentially lead-contaminated paint during renovations, repairs
and maintenance of buildings [10]. The compliance guide
applies to all activities that disturb painted surfaces (short
DPS) in residential houses, apartments and child-occupied
facilities such as schools and day-care centers built before
1978 in the US. Let us further consider a process management
application of a company that manages construction, mainte-
nance, repair and renovation work in cooperation with many
and changing subcontractors from diverse professions such as
plumbers, carpenters and electricians. The company seeks to
avoid non-compliance (to maintain its good reputation and
avoid litigation) by assisting the subcontractors in staying com-
pliant. Consequently they try to implement EPA’s compliance
guide by defining several behavioral constraints that become
automatically enacted by the process management software.

One problem the company is facing now is determining
which tasks, that are potentially performed by the subcontrac-
tors, are DPS activities. They recognize that the subcontractors
know better which of their activities fall into this category.

Since the pool of existing subcontractors is already large and
assumed to be growing, and new DPS activities might evolve
over time, the management demands a viable solution that
reliably captures all future DPS activities in order to ensure
compliance with EPA rules.

The approach proposed in this paper enables the company
to specify behavioral constraints based on the more general
and rather abstract concept of “disturbing painted surfaces”,
whereas the subcontractors are enabled to relate their concrete,
specific DPS activities to this more general and abstract
concept. Consequently, the company provides the framework
for the subcontractors to support them in achieving compliance
with EPA rules, and the subcontractors are encouraged to
properly document their domain knowledge in an explicitly
defined ontology.

III. APPROACH

The general idea of ontology-based behavioral constraints
is the integration of behavioral constraint enactment in busi-
ness process management with domain-specific ontologies to
directly leverage domain knowledge in behavioral constraints.
At the runtime of business processes, case instance elements
such as instances of tasks, goals and data are at the same
time instances of ontology concepts. Consequently, it is known
for every such instance what concept is behind. Based on
the structured information of the ontology, users can define
ontology-based behavioral constraints, and instances of be-
havioral constraints can be evaluated by considering state
changes over time and the background knowledge given by
the ontology.

The approach comprises the following core components:
• The Ontology consists of the ontology of the application,

which is the interface to the business process enactment
engine, and a domain-specific ontology, which refines the
application ontology of the business process enactment
engine, and can be used to capture additional domain-
specific knowledge explicitly.

• Behavioral Constraints are derived from compliance rules
or best practices and defined on the basis of domain
knowledge stemming from the ontology.

• Constraint Patterns with sound underlying formal repre-
sentations are the foundation for the creation of behav-
ioral constraints.

• The Constraint Editor is a tool for authoring of behavioral
constraints. It is based on constraint patterns and the
ontology to support the business user during constraint
authoring.

• Case Enactment is realized as flexible business process
enactment approach (e.g., Adaptive Case Management).
There exists a tight connection between case enactment
and the ontology of the domain, so that case elements
(such as activities, goals and data) are conceptually
defined in, and instances stemming from, an ontology.

• Constraint Enactment supports the business user by eval-
uating concrete instances of behavioral constraints during
case enactment.



ONTOLOGY

Domain 
Ontology

Application
Ontology

Business Users

define

Behavioral Constraints

define

dependent on

Case Elements
(e.g., Activities, Goals, Content)

based on

refines

CASE ENACTMENT

perform

Constraint Patterns

concrete 
elements of

Behavioral Constraint Instances

CONSTRAINT ENACTMENT

state changes trigger 
reevaluation of

concrete 
instances of

CONSTRAINT EDITOR

Fig. 1: Approach Overview

• Business Users define the knowledge of their domain,
handle cases, and are enabled to define behavioral con-
straints by our approach.

Figure 1 contains an overview on the proposed approach.
Business Users build up and maintain the business ontology
of their business domain (Domain Ontology) which refines
business process management concepts (defined in the Appli-
cation Ontology) by domain-specific concepts, and they create
Behavioral Constraints by leveraging the Domain Ontology
and a set of Constraint Patterns. While the domain ontology
is completely adaptable, the set of constraint patterns is
dependent on underlying formal checking techniques and must
be defined by users with appropriate technical background.
During Case Enactment, business users perform activities to
work towards goals. Of course, this involves also the creation
and modification of contents (data objects of a case). All these
concrete case elements (aka instances) are stemming from
ontology concepts. Every time case elements change state,
the Constraint Enactment component reevaluates the instances
of behavioral constraints. Since case elements are instances
of domain ontology concepts, behavioral constraint instances
can be evaluated by querying domain knowledge (taxonomy,
relationships) from the ontology.

The creation of ontology-based behavioral constraints by
business users using the constraint editor is shown schemati-
cally by a sequence diagram in Figure 2. The constraint editor
makes extensive use of the ontology while the business user
types a constraint. In the beginning, the business user starts
typing and the constraint editor requests ontology concepts
matching the (incomplete) user inputs (e.g., by matching the
starting string of concepts or by computing the Levenshtein
distance). The response is a set of concepts which are proposed
to the business user. The user either selects a proposed concept
or continues typing. Eventually a proposed concept must be
selected. Once the business user has selected a concept, it

Business 
User

Constraint 
Editor

Ontology

keystroke
fetchConcepts(String)

Set<Concept>
propose Concepts

loop

select Concept
fetchRelations(Concept)

Set<Relation>propose Relations & 
Grammar Elements

alt

keystroke
fetchRelations(Concept, String)

Set<Relation>propose Relations & 
Grammar Elements

loop

select Relation fetchTargetConcepts(Concept,
Relation)

Set<Concept>
propose Concepts

alt
select Grammar Element

�

�

�

�

alt

�

�

fetchTargetConcepts(Concept,
Relation, String)

Set<Concept>
propose Concepts

loop keystroke

�

Fig. 2: Sequence diagram for constraint authoring

becomes possible to use the context of the specific domain
concept. Thus, further auto-completions can be based on the
set of relations of the concept. If appropriate, the constraint
editor makes not only proposals based on the ontology, but
also proposes the possible elements of the constraint grammar
to the user. When the user selects a specific relation, the
context for suggesting further inputs is narrowed down to
concepts that are potential targets of this relation originating
from the already selected concept. Figure 2 continues with
processing user inputs to update the set of possible target
concepts in the current relation context. Once the user has
selected a target concept, the next part of the constraint



could be either an element of the constraint grammar or a
relation. For concepts that are derived from the application
concepts Goal and Activity, the specific runtime state of these
concepts can be directly specified after the name of each
concept. Standard runtime states of goals are initiated and
completed, and standard runtime states of activities are started
and finished.

Constraint patterns stemming from different sources (such
as Dwyer et al. [7], Elgammal et al. [11] and van der Aalst &
Pesic [12]) can be integrated. For example, Response describes
a temporal cause-effect constraint which can be expressed as
Expression I requires Expression II later

where Expression I is the cause and Expression II is the
effect. An Expression is defined based on the ontology and
allows leveraging domain-specific knowledge for the creation
of behavioral constraints. The following ontology elements can
be used to define such an ontology-based expression:

• Concepts: Concepts are the anchor for defining ontology
expressions, so every ontology-based expression must
start with a concept. If a concept is derived from a Goal
or Activity, then the runtime state can be specified directly
after the name of the concept.

• Relations: Once the context of a concept is defined,
the relations of this concept to other concepts become
obvious and usable.

• Constraint Concepts: Constraint concepts are specialized
child concepts that allow defining specific constraints
that determine whether an instance of the parent concept
is also an instance of the constraint concept. These
constraints may be related to attributes and/or relations
of the parent concept.

During case enactment, ontology expressions are evaluated
based on the actual instances and relations that are present
in a case instance. An ontology expression consisting of a
(constraint) concept C is matched by E iff ∃i | i ∈ I ∧ i : C
where I is the set of case elements of a case instance E that
are instances of ontology elements, and I comprises states
of activities and goals as well as states of data objects by
representing a snapshot of the case instance at the instant
in time in which an event occurs (i.e., state change of ac-
tivity, goal or data). An ontology expression consisting of a
(constraint) concept C with a runtime state C.s is matched
by E iff ∃i | i ∈ I ∧ i : C ∧ i.s = C.s. An ontology
expression consisting of a relation R is matched by E iff
∃(i1, i2) : R | i1 ∈ I ∧ i2 ∈ I.

IV. PRACTICAL SCENARIO

This section extends the motivating example (cf. Section
II) and discusses how the proposed approach can be applied
to realize automated support for enacting EPA rules [10].
Figure 3 contains an ontology that covers both the abstract
concept of “disturbing painted surfaces” (DPS) and specific
DPS activities of subcontractors. The concept Disturbing
Painted Surfaces plays the special role of a constraint concept
and represents some On Site Activity that disturbs Painted

Application
Ontology Layer

Activity

Domain
Ontology Layer

Disturbing Painted 
Surfaces

is a

Painted 
Surfaces

disturbs

Subdomain (1)
Ontology Layer

Grind 
Wall

is a
Subdomain (2)
Ontology Layer

Pry Open 
Wall

disturbs

is a

On Site 
Activity

is a

Site
has location

Fig. 3: Layered ontology for “disturbing painted surfaces”
activities

Surfaces. Consequently all concepts derived from Disturbing
Painted Surface have implicitly a relation disturbs to the
concept Painted Surfaces. Moreover, concepts that have a
relation disturbs to Painted Surface and are at the same
time derived from an On Site Activity concept (that includes
children of the Activity concept) represent at the same time
a Disturbing Painted Surfaces concept. Child activities like
Grind Wall can be derived from this concept. Alternatively,
the concept Pry Open Wall has the relation disturbs and is
derived from the more general concept On Site Activity. By
having the disturbs relation and by being at the same time
an On Site Activity, it is also a Disturbing Painted Surfaces
concept.

The sample ontology in Figure 3 is organized in layers. Sub-
contractors are enabled to create and maintain their own Sub-
domain Ontology Layer that builds upon the Domain Ontology
Layer. This layer is maintained by the umbrella organization
that employs the subcontractors. The Application Ontology
Layer is the interface to the business process management
software. By having the freedom to modify the ontology of
the subdomain, subcontractors can add new activities to the
ontology any time and benefit from the behavioral constraint
support that has been defined on the basis of existing concepts.

For that reason ontology-based behavioral constraints are
derived from the EPA compliance guide. EPA rules are only
applicable to “activities that disturb painted surfaces in a home
or child-occupied facility built before 1978”. Consequently it
must be checked whether the building is a home or child-
occupied facility built before 1978 prior to disturbing its
surfaces, so as to possibly take precautions due to potential
lead contamination. A business user can create such behavioral
constraints by using the already existing, more general domain



is a
construction date
smaller than 1978
or unknown

Home
Potentially Lead-

Contaminated 
Home

Site

is a

Domain
Ontology Layer

Fig. 4: Constraint concept with constraint defined on attribute
of the parent concept

Application
Ontology Layer

Goal

Domain
Ontology Layer

Warnings signs 
posted at entrance 

to work area

is a

Doors in the work 
area closed and 

sealed

is a

Windows in the 
work area closed

Floors in the work 
area covered with 
taped-down plastic

is a is a

Fig. 5: Creating specific goals for EPA rules

concepts House and Child-Occupied Facility, and derive the
new constraint concepts Potentially Lead-Contaminated Home
and Potentially Lead-Contaminated Child-Occupied Facility
that become effective whenever the construction date attribute
of the parent concept is smaller than 1978 or not yet defined
(Figure 4).

Flexible business process approaches like ACM are goal-
driven. Consequently several goals related to preparing the
work area must be reached in advance of disturbing potentially
lead-contaminated surfaces. These goals are (list contains
examples and is not meant to be exhaustive):

• Warning signs posted at entrance to work area
• Floors in the work area covered with taped-down plastic
• Doors in the work area closed and sealed

Business users can create such goals by deriving child con-
cepts from the more general Goal concept (Figure 5). To make
sure that these goals are reached before any potentially lead-
contaminated surface is disturbed, the business user makes use
of the constraint editor to create behavioral constraints. List-
ing 1 contains four Precedence constraints. Important goals
related to the preparations for lead-contaminated work areas
must be reached first and only then is it allowed to perform
DPS activities. As can be seen for these sample constraints,
the controlled natural language grammar of the behavioral

constraint language (“operand1 requires operand2 earlier”)
becomes intertwined with expressions originating from the
domain ontology. The operator “has location” stems from the
relation with the same designation between the concepts On
Site Activity and Site. The behavioral constraints are close to
natural language, which aims at making them comprehensible
for business users, but they still follow a structured, well-
defined scheme comprising the constraint grammar and the
ontology, which is the basis for automated tool support for
constraint enactment.
Disturbing Painted Surfaces started has location

Potentially Lead-Contaminated Home or Potentially
Lead-Contaminated Child-Occupied Facility requires
Warning signs posted at entrance to work completed
earlier

Disturbing Painted Surfaces started has location
Potentially Lead-Contaminated Home or Potentially
Lead-Contaminated Child-Occupied Facility requires
Floors in the work area covered with taped-down
plastic completed earlier

Disturbing Painted Surfaces started has location
Potentially Lead-Contaminated Home or Potentially
Lead-Contaminated Child-Occupied Facility requires
Doors in the work area closed and sealed completed
earlier

Listing 1: Behavioral constraints related to preparations

Automated support for enacting behavioral constraints can
be provided by translating the constraints to a formal verifi-
cation language. Possible formalisms and techniques include
Computation Tree Logic (CTL), LTL (Linear Temporal Logic),
EPL (Event Processing Language) and EC (Event Calculus).
For the proposed ontology-based behavioral constraint ap-
proach, we do not intend to prescribe a specific underlying
formalism or verification technique. Nevertheless, we would
like to showcase how the enactment of ontology-based behav-
ioral constraints works from beginning to end. For this purpose
we use LTL, since it is an established formal language for
the definition of desired properties of hardware and software
systems [13]. LTL has become a de facto standard in busi-
ness process verification due to the possibility of translating
LTL formulas to nondeterminstic finite automata (NFAs) for
runtime verification ([14], [3]) of business processes, and the
extensive use of LTL as a specification language in model
checking ([15], [16]) of business processes and for compli-
ance and security modeling ([11], [17]). LTL representations
of the behavioral constraints are automatically generated by
applying the mappings proposed by Dwyer et al. [7] and by
properly resolving propositional variables based on the domain
ontology. We will now discuss an exemplary enactment of the
first ontology-based behavioral constraint in Listing 1, which
is defined as
Disturbing Painted Surfaces started has location

Potentially Lead-Contaminated Home or Potentially
Lead-Contaminated Child-Occupied Facility requires
Warning signs posted at entrance to work completed
earlier.

For automatic enactment as LTL specification, the operands
Disturbing Painted Surfaces started has location

Potentially Lead-Contaminated Home or Potentially
Lead-Contaminated Child-Occupied Facility



0 0
A

!A & !B

1

!A & !B

A | B

Fig. 6: NFA for precedence constraint

denoted as B, and
Warning signs posted at entrance to work completed

denoted as A, must be resolved to propositional variables to
be able to enact the Precedence constraint [7] as LTL formula
¬B W A ≡ �¬B ∨ ¬B U A by an NFA (Figure 6) that
represents the formula [14].

As a concrete case let us consider the renovation of a flat in a
building which was constructed in 1971. A new case is opened
in the business process software for this renovation. The
renovator adds Home as the site of the renovation and enters
the construction date 1971. From this moment on, the case
instance has an instance of the concept Home which is at the
same time an instance of Potentially Lead-Contaminated Home
because of the construction date, which is smaller than 1978.
During the enactment of this case, the renovator can perform
various ad-hoc activities. For example, when the renovator
intends to start wall grinding (by instantiating the Grind Wall
concept and starting the activity) on this site (has location
relation), the propositional variable B becomes true. Since the
Grind Wall instance has the is a relation to Disturbing Painted
Surfaces and the has location relation to the Home instance,
which is also a Potentially Lead-Contaminated Home because
of the construction date, B is resolved to true. Consequently,
B = true is the input to the automaton which is in state 0,
but the automaton does not accept such an input. Thus, the
Grind Wall activity would violate the behavioral constraint.
Once the renovator enters that warning signs are posted at
entrance to work, A = true is sent to the NFA. This causes a
state transition of the automaton from state 0 to state 1. From
that moment on Disturbing Painted Surfaces activities can no
longer violate the behavioral constraint since all future inputs
are accepted by this automaton.

V. DISCUSSION

The proposed ontology-based behavioral constraint ap-
proach enables the use of domain knowledge in behavioral
constraints of business processes. As a result of this in-
tegration, the behavioral constraints can be formulated in
a structured natural language that offers both the elements
stemming from behavioral constraint patterns and the elements
of the business domain. Since the resulting ontology-based
behavioral constraints are formally defined on the basis of the
ontology and constraint patterns (with one or more underlying
formal verification techniques), automated verification support
for the enactment of these constraints becomes possible during

the handling of cases by business users. Since the general idea
of ontology-based behavioral constraints can be used indepen-
dently from a specific grammar and notation of behavioral con-
straints, it might be integrable with existing approaches such as
Declare [3] and DPIL [18]. Declare provides a graphical front-
end for the definition of behavioral constraints which become
directly enacted as declarative workflows (by automata that
represent Linear Temporal Logic specifications or by Event
Calculus run as Prolog programs). By using the graphical
notation of different arrow connectors, the user can define
behavioral constraints among activities which are symbolized
by boxes with labels. These approaches can integrate the
proposed approach by enabling the user to specify ontology
expressions instead of those labels. DPIL (Declarative Process
Intermediate Language) is a textual language for the specifi-
cation of behavioral constraints that become enacted by the
JBoss Drools rule engine. Instead of defining business process
elements such as data objects and activities in DPIL scripts,
a user could select such elements from the business ontology.
Integrating domain ontologies into those existing behavioral
constraint approaches might improve usability for business
users.

Opening behavioral constraint authoring and change to busi-
ness users might be a controversial topic since the actions of
business users are at the same time subject to these behavioral
constraints. Classically business processes are defined as flow
charts (e.g., BPMN models) and business users are ought to
follow exactly the steps as prescribed by the process model.
This enables a strong control but tempts the business user
to perform undocumented actions (i.e., actions that are not
disclosed to the IT system) if it becomes necessary to leave
the predefined flow of actions. Knowledge-intensive business
domains require more flexibility which has led to constraint-
based business processes. Those do not longer require the
business user to stick to predefined, step-by-step business
processes. The main objective of constraint-based business
processes is supporting the business user to stay compliant
with necessary rules (e.g., regulatory laws, standards) while
enabling largest possible flexibility. Thus, behavioral con-
straints must be seen as a support feature for business users
to stay compliant. Behavioral constraints are not meant to
hinder the work of the business user. If business users were
excluded from having control over behavioral constraints, it
would become likely that they again perform undocumented
actions just to meet the rules of the IT system.

Ontology-based behavioral constraints create new chal-
lenges which are not covered by the work presented in this
paper. It is an open research challenge how to keep the
behavioral constraints consistent with an evolving ontology.
Concepts of the ontology and relations among them might
change over time which can lead to disappearance of on-
tology elements that are part of behavioral constraints. This
might have different possible implications for the behavioral
constraint: The existence of the behavioral constraint might
no longer be necessary, so it may be deleted. Alternatively,
there might be still the need for this behavioral constraint but



an adaption to the current ontology is required. If and how
business users can be supported to make such an adaption (e.g.,
by keeping track of ontology changes and leveraging change
histories of ontology elements of behavioral constraints) must
be further investigated. In general, the maintainability of
behavioral constraints by business users must scale even with
a growing number of behavioral constraints. These challenges
lead to many new interesting possibilities for future research.

Further studies are required on the understandability of the
behavioral constraint patterns by business users. It could be
of interest to find out whether the total count of possible
behavioral constraint patterns offered has an influence on
understandability. Of interest is also the influence of a specific
grammar of such constraint patterns on the understandability.

VI. RELATED WORK

Yu et al. propose a verification approach for service com-
positions that are described by BPEL models [19]. Their
approach implements a constraint grammar, based on the
constraint patterns by Dwyer et al. [7], directly in an ontology.
The focus of their work seems to be the realization of these
constraint patterns by an ontology, but the connection to
domain-specific ontologies is not discussed. Since the set of
constraint patterns is maintained by technical users, in our case
we do not see the requirement for representing the grammar as
part of an ontology. Our approach links the constraint pattern-
based grammar with expressions stemming from a domain
ontology.

While the previously mentioned approach is pattern-based,
an approach by Yan et al. seeks to directly abstract LTL
formulas by natural language [20]. In particular, expressions
in structured natural language are directly transformed to LTL.
However, the controlled grammar of the language still contains
LTL operators (globally, always, eventually) that might be hard
to comprehend for non-technical business users as language
elements. An integration of domain knowledge by leveraging
ontologies is not part of their approach.

SBVR (Semantics of Business Vocabulary and Business
Rules) is an adopted standard released and maintained by the
OMG (Object Management Group) [21]. The intention behind
SBVR is to offer a structured natural language approach for the
authoring of business rules. However, automated verification
support for SBVR is challenging, especially for non-static
rules with temporal aspects. Elgammal & Butler propose a
manual translation of SBVR rules to an LTL-based graphical
compliance rule language [22]. Solomakhin et al. propose
a formalization of SBVR rules by first-order deontic-alethic
logic (FODAL) to support automated reasoning based on an
ontology. Manaf et al. [23] propose SBVR as a specification
language for service choreographies. They show with an
example that the same rule can be expressed by DecSer-
Flow patterns [12] (LTL pattern-based specification language
for service flows) and SBVR. The DecSerFlow language is
also the foundation for the declarative workflow approach
Declare [3]. Declarative workflow approaches predominantly
enable the definition of behavioral constraints with a temporal

context which specify business processes in a declarative
manner, but they do not focus on the integration of domain
ontologies. Our approach aims at bridging these worlds by
enabling business users to define behavioral constraints that
have a temporal focus, in an editor that makes use of the
domain ontology to allow for defining rules in the well-known
business terms of the specific business domain.

The work presented in this paper is also related to the huge
body of compliance research. Van der Werf et al. propose
“Context-Aware Compliance Checking” [24] by deriving on-
tologies from audit logs and checking rules in Semantic Web
Rule Language (SWRL) [25]. Yip et al. propose a similar
approach [26]. Despite using ontologies, their approaches are
different from ours since they do not focus on temporal
behavioral constraints and constraint authoring in structured
natural language. Elgammal et al. propose a Compliance Re-
quest Language (CRL) that is formally grounded on temporal
logic and mapped to LTL formulas [27]. They identify a set
of compliance patterns comprising atomic patterns (extension
of the order and occurrence patterns proposed by Dwyer et
al. [7]), composite patterns (e.g., mutual exclusion and coexis-
tence), resource patterns (i.e., rules related to roles) and timed
patterns (i.e., rules related to quantitative time). CRL does
not yet consider ontologies. Awad et al. propose a graphical
language called BPMN-Q for the specification of compliance
requirements which can be transformed to temporal logic for-
mulas [28], but ontologies are not considered. Ly et al. propose
a Compliance Monitoring Functionality Framework (CMFF)
which contains ten criteria, and they analyze existing compli-
ance monitoring approaches based on their framework [29].
The framework considers many important compliance aspects
such as activity lifecycles, nonatomic activities, data, roles,
reactive and proactive support, but it does not specifically
focus on specification languages or ontologies.

In summary, it can be said that on the one hand there exists a
large body of work on compliance of business processes which
does not explicitly consider the integration of ontologies, and
on the other hand there are efforts to create business rules on
basis of an ontology. Our work is positioned in between. It
is grounded on well-established temporal logic patterns that
allow an automated verification (like existing compliance and
declarative workflow approaches [8], [3]), and it allows to
define parts of constraints on basis of knowledge stemming
from an ontology (as it is also the goal of standardization
efforts in SBVR [21]).

VII. IMPLEMENTATION

The approach is implemented as a prototype extension of
the Papyrus Platform1. Figure 7 shows a screenshot of the
ontology editor and the constraint editor.

VIII. CONCLUSION AND FUTURE WORK

The presented approach aims at offering a constraint author-
ing that is approachable to non-technical users by making use

1http://www.isis-papyrus.com

http://www.isis-papyrus.com


Ontology Editor

Constraint Editor

Fig. 7: Ontology editor and constraint editor in Isis Papyrus

of ontology-based domain knowledge. The approach is applied
in the context of a realistic scenario (Section IV), but further
evaluations are necessary. There exist many assumptions that
must be further evaluated: By allowing the business user to
actively shape the behavioral constraints, the approach might
allow a faster integration and adaption of behavioral con-
straints, eliminating long delays caused by static maintenance
cycles for integrating and modifying behavioral constraints.
Consequently, it might be as well avoided that obsolete, faulty
and unnecessary constraints are enacted that might drive busi-
ness users into cheating the process management software by
performing undisclosed actions. Thus, the approach might also
contribute to a more complete documentation (i.e., audit trails).
Moreover, it may encourage business users to capture their
tacit knowledge as (non-mandatory) behavioral constraints.
The evaluation of those assumptions by qualitative and quan-
titative studies are opportunities for future research. Moreover,
open challenges regarding consistency and maintainability (as
outlined in Section V) must be resolved.

ACKNOWLEDGMENT

The research leading to these results has received funding from
the FFG project CACAO, no. 843461 and the Wiener Wissenschafts-,
Forschungs- und Technologiefonds (WWTF), Grant No. ICT12-001.

REFERENCES

[1] K. D. Swenson, Mastering the unpredictable: how adaptive case man-
agement will revolutionize the way that knowledge workers get things
done. Meghan-Kiffer Press, 2010.

[2] M. J. Pucher, “Considerations for implementing adaptive case man-
agement,” in Taming the Unpredictable Real World Adaptive Case
Management: Case Studies and Practical Guidance, L. Fischer, Ed.
Future Strategies Inc., 2011.

[3] M. Pesic and W. M. P. van der Aalst, “A declarative approach for flexible
business processes management,” in BPM Workshops. Springer, 2006,
pp. 169–180.

[4] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. v. d. Aalst,
“Monitoring business constraints with the event calculus,” ACM Trans.
Intell. Syst. Technol., vol. 5, no. 1, pp. 17:1–17:30, Jan. 2014.

[5] L. T. Ly, S. Rinderle-Ma, and P. Dadam, CAiSE, Hammamet, Tunisia.
Springer, 2010, ch. Design and Verification of Instantiable Compliance
Rule Graphs in Process-Aware Information Systems, pp. 9–23.

[6] T. Hildebrandt, M. Marquard, R. R. Mukkamala, and T. Slaats, OTM
Workshops, Graz, Austria. Springer, 2013, ch. Dynamic Condition
Response Graphs for Trustworthy Adaptive Case Management, pp. 166–
171.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE. ACM, 1999, pp.
411–420.

[8] A. Elgammal, O. Turetken, W.-J. van den Heuvel, and M. Papazoglou,
“Formalizing and appling compliance patterns for business process
compliance,” Software & Systems Modeling, vol. 15, no. 1, pp. 119–
146, 2016.

[9] W. M. P. van der Aalst and M. Pesic, DecSerFlow: Towards a Truly
Declarative Service Flow Language. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 1–23.

[10] EPA, “Small Entity Compliance Guide to Renovate Right,”
http://epa.gov/sites/production/files/documents/sbcomplianceguide.pdf,
last accessed: July 1, 2016.

[11] A. Elgammal, O. Turetken, and W.-J. Van Den Heuvel, “Using patterns
for the analysis and resolution of compliance violations,” International
Journal of Cooperative Information Systems, vol. 21, no. 01, pp. 31–54,
2012.

[12] W. M. P. Aalst and M. Pesic, WS-FM, Vienna, Austria. Springer, 2006,
ch. DecSerFlow: Towards a Truly Declarative Service Flow Language,
pp. 1–23.

[13] A. Pnueli, “The temporal logic of programs,” in Foundations of Com-
puter Science, Oct 1977, pp. 46–57.

[14] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on ltl on
finite traces: Insensitivity to infiniteness,” in AAAI. AAAI Press, 2014,
pp. 1027–1033.

[15] R. Eshuis, “Symbolic model checking of uml activity diagrams,” ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 1, pp. 1–38, Jan. 2006.

[16] Z. Sbai, A. Missaoui, K. Barkaoui, and R. Ben Ayed, “On the verification
of business processes by model checking techniques,” in ICSTE, vol. 1,
Oct 2010, pp. V1–97–V1–103.

[17] A. Armando and S. E. Ponta, “Model checking of security-sensitive
business processes,” in FAST. Springer, 2010, pp. 66–80.

[18] M. Zeising, S. Schonig, and S. Jablonski, “Towards a common platform
for the support of routine and agile business processes,” in Collaborate-
Com, Oct 2014, pp. 94–103.

[19] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, WISE 2006,
Wuhan, China. Springer, 2006, ch. Pattern Based Property Specification
and Verification for Service Composition, pp. 156–168.

[20] R. Yan, C.-H. Cheng, and Y. Chai, “Formal consistency checking over
specifications in natural languages,” in DATE, 2015, pp. 1677–1682.

[21] OMG, “Semantics of Business Vocabulary and Rules (SBVR),” http:
//www.omg.org/spec/SBVR/, last accessed: July 1, 2016.

[22] A. Elgammal and T. Butler, ICSOC 2014 Workshops. Springer,
2015, ch. Towards a Framework for Semantically-Enabled Compliance
Management in Financial Services, pp. 171–184.

[23] N. A. Manaf, S. Moschoyiannis, and P. J. Krause, “Service choreogra-
phy, sbvr, and time,” in FOCLASA, Madrid, Spain, 2015, pp. 63–77.

[24] J. M. E. M. Werf, H. M. W. Verbeek, and W. M. P. Aalst, BPM, Tallinn,
Estonia. Springer, 2012, ch. Context-Aware Compliance Checking, pp.
98–113.

[25] W3C, “SWRL: A Semantic Web Rule Language Combining OWL and
RuleML,” https://www.w3.org/Submission/SWRL/, last accessed: July
1, 2016.

[26] F. Yip, N. Parameswaran, and P. Ray, “Rules and ontology in compliance
management,” in EDOC, Oct 2007, pp. 435–435.

[27] A. Elgammal, O. Turetken, W.-J. Heuvel, and M. Papazoglou, “For-
malizing and applying compliance patterns for business process com-
pliance,” Software & Systems Modeling, vol. 15, no. 1, pp. 119–146,
2014.

[28] A. Awad, G. Decker, and M. Weske, BPM, Milan, Italy. Springer,
2008, ch. Efficient Compliance Checking Using BPMN-Q and Temporal
Logic, pp. 326–341.

[29] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W. M. van der
Aalst, “Compliance monitoring in business processes: Functionalities,
application, and tool-support,” Information Systems, vol. 54, pp. 209 –
234, 2015.

http://epa.gov/sites/production/files/documents/sbcomplianceguide.pdf
http://www.omg.org/spec/SBVR/
http://www.omg.org/spec/SBVR/
https://www.w3.org/Submission/SWRL/

	Introduction
	Motivating Example
	Approach
	Practical Scenario
	Discussion
	Related Work
	Implementation
	Conclusion and Future Work
	References

