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Abstract. Gossip algorithms can be used for computing aggregation
functions of local values across a distributed system without the need to
synchronize participating nodes. Very recently, we have proposed accel-
eration strategies for gossip-based averaging algorithms based on ant
colony optimization, which reduce the message and time complexity of
standard gossip algorithms without additional communication cost. In
this paper, we extend our latest studies by analyzing in detail how the
proposed acceleration strategies influence the node selection of different
variants of PushPull gossip algorithms and show that the directions of
information dissemination across the network differ strongly according
to the type of the underlying “knowledge” of the neighbors (local vs.
global knowledge). This analysis leads to a better understanding of how
information is spread throughout the network and provides important
insights that can be used to further enhance the acceleration strategies.
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1 Introduction and Related Work

In distributed averaging tasks, the goal is to calculate the average v of a set
of initial values v; stored locally at the n nodes. Depending on the application,
v; could be sensor measurements, document attributes, media ratings, etc. One
possibility for computing v in a completely distributed manner is to use gossip
(or “epidemic”) algorithms. Because of their potential robustness and inher-
ently probabilistic nature (randomized communication schedules), these algo-
rithms have the potential for tolerating dynamic network changes, node failures,
or data loss and thus for providing a high degree of resilience and fault toler-
ance [1], allow for gradually trading runtime performance against communica-
tion cost, fault tolerance, energy consumption, and even privacy protection by
adapting the intensity and regularity of interaction between nodes. Although
several (theoretical) studies have proven that gossip averaging algorithms scale
well with the number of nodes n, most of these studies are restricted to fully
connected networks and based on rather strong assumptions. Applying gossip
algorithms on non-fully connected networks significantly increases the number
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of messages / rounds, especially on weakly connected networks without a regu-
lar structure. Distributed aggregation methods can be accelerated, e.g., based
on classical convergence acceleration techniques or Chebyhsev acceleration with
time-dependent coefficients [2]), via exploiting additional assumptions on the
distributed environment, e.g., based on the optimization of communication pat-
terns with respect to a fixed topology [3] or topology itself [4], or by assum-
ing that nodes have additional global knowledge about the topology and their
position and by using multi-hop communication, substantial improvements can
be achieved [5,11]. However, often a more general setup without such addi-
tional assumptions and only nearest-neighbor communication is required. Very
recently [6], we have proposed different acceleration strategies based on ant
colony optimization (ACO) in order to improve the diffusion speed of single-
hop gossip averaging. The pheromone concept of ACO is adapted such that each
node maintains a pheromone deposit for each outgoing link, which influences the
probability of selecting a neighboring node as communication partner. Moreover,
the (inverse) concept of pheromone evaporation is included to increase the attrac-
tiveness of nodes which have not been chosen for a long time. Just as in original
gossip, our accelerated versions are based on single-hop communication, where
every node only communicates with its direct neighbors without any overlay net-
work. The application of SI in distributed environments is motivated by the fact
that many natural examples of SI are based on (simple) individuals that commu-
nicate to develop collective behavior in a purely decentralized and self-organized
fashion. These characteristics make these natural systems robust to loss of mem-
bers and adaptable to a changing problem domain—all properties which are
highly demanded in the context of distributed computing environments. Due
to the underlying distributed setting, the pheromone update in [6] has to be
performed locally on each node. The learning encoded in the pheromones is not
directly based on the pseudo-random proportional ACO update rule but rather
on the (dis-)similarity of the estimates of neighbors compared to the local esti-
mate of nodes. Moreover, our “ants” are restricted to local movements only.
Contributions. We extend our study in [6] with an evaluation of the behavior of
our acceleration strategies by analyzing how the proposed acceleration strategies
influence the node selection of different variants of PushPull gossip algorithms.
Additionally, we show that the directions of information dissemination across
the network differ strongly according to the type of the underlying “knowledge”
of the neighbors (local vs. global knowledge).

2 Gossip-Based PushPull Averaging

PushPull averaging is based on exchange of information (cf. [7]). In the active
thread, each node 7 selects a random neighbor p as communication partner and
pushes its current local estimate. Node p receives the packet, replies with its own
current estimate (pull-reply), and stores the average of the received and its own
estimate as its new estimate. Finally, the sender receives the answer and updates
its own local estimate. There exists another group of gossip algorithms which
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are based solely on push averaging. The PushSum algorithm ([8]) needs more
rounds than PushPull to converge but has the benefit that it preserves the mass
conservation invariant — at any time the sum of all values (. e., approximations)
in the network remains constant throughout the algorithm. This guarantees the
correctness of algorithm even if messages are delayed [9]—a very important
property for distributed systems. The mass conservation invariant can be vio-
lated in basic PushPull algorithms if an atomic violation happens, . e., if a node
receives a push while it is waiting for a pull-reply. In order to deal with this
problem, an enhanced version of PushPull called Symmetric PushSum Protocol
(SPSP, [10]) can be used instead whenever mass conservation needs to be pre-
served. If there are no atomic violations, SPSP is identical to PushPull. Since
PushPull is much simpler than SPSP, we focus on PushPull in the rest of this
paper. However, whenever mass conservation needs to be preserved, SPSP can
be used instead. PushPull/SPSP can be implemented as purely round-based or
round and event-based implementation. Moreover, the update process may have
a significant influence on the number of rounds and on the total number of mes-
sages necessary to achieve a given accuracy. If all nodes send their messages at
the same time —as often stated in the literature ([7]) —the update of received
information can only be performed after all nodes have finished sending in each
round. If all nodes send their packets at slightly different times, it is possible that
the update based on received information is performed before a node performs
sending in the current round. A detailed evaluation of these different implemen-
tation strategies can be found in [6]. Here, we focus on the round-based PushPull
strategy with immediate update, where each node actively sends one packet per
round (and additionally replies with a pull-reply message if it receives a push
message). Whenever a node p (the receiver) receives a (push) message from node
i (the sender), the current local value of p is stored in a temporary variable tz,,
and the local value of p is updated with received local value of i. Finally, the
local value of ¢ is updated with the temporarily stored previous local value of p.
Recall that a delayed update will probably lead to an atomic violation.

3 Acceleration Based on ACO

Consider that each node in the network maintains a pheromone deposit for each
outgoing link, as typical in ACO. The amount of pheromone along a directed
link influences the probability of selecting a neighbor as communication partner.
Our goal is to accelerate the diffusion speed of gossip algorithms by selecting
links with higher pheromone value with higher probability. We describe how the
amount of pheromone along a path is calculated, and how the (inverse) concept
of evaporation is included. The variable \; refers to the local estimate at node
1, i.e., \; = x;. We discuss the acceleration strategies for PushPull, although the
same ACO-based communication partner selection strategy can be applied for
SPSP. At all times t, every node ¢ has a current estimate \; of the average v.
Beyond that, node i also has (possibly outdated) information about the estimates
of its neighbors, stored in the vector y, of length deg(i). The elements of this
vector are ordered according to the IDs of the neighbors of i.
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Ezxample. Consider a node a connected to nodes b, ¢, d, e. Whenever node a com-
municates with one of its neighbors, it updates not only its own estimate A,
but also y,. The absolute difference between y, and A, is denoted as d, (i. e.,
d, = |y, — Aa1| ), and serves as the basis for our biased communication partner
selection. Motivated by the concept of ACO, d, represents the intensity of the
pheromone trail along the edges between a and its neighbors. Node a will now
choose edges with higher pheromone values with higher probability, i.e., it is more
likely that node a selects a node with a strongly different local estimate than
a node whose local estimate is very similar. The rationale behind is that more
progress towards the true average will be made if an information exchange brings
more new information. Clearly, since only local knowledge about neighbors is
available, most elements in y, and therefore also d, will be outdated since a
does not always know the true current estimate of all of its neighbors. E.g., con-
sider that in round ¢ nodes b and a exchange information, and that in round ¢t+1
node a exchanges information only with node ¢ while b exchanges information
with another node. At the end of round ¢+ 1 the information of node a about the
estimate of b is outdated and probably differs (at least slightly) from b's current
estimate. However, as we will see later, even partly outdated estimates are better
than basic PushPull without any information about the neighbors. In ACO, the
attractiveness of a pheromone trail is reduced as the pheromones evaporate over
time. We exploit this strategy in the opposite direction and increase the attrac-
tiveness of edges over time in order to increase the attractiveness of nodes which
have not been chosen for a long time. Whenever node a communicates with a
neighbor — either as active sender or as receiver —it stores the number of the
current round in the vector t,. The elements of ¢, are also ordered according
to the IDs of the neighbors of a. In our example, t,(1) contains the informa-
tion in which round the latest information exchange between a and b happened,
independently of which of the two nodes initiated the information exchange.
For all gossip algorithms, ACO-based acceleration can be implemented using a
roulette-wheel selection or a greedy selection strategy: The vectors d, and t, are
used to calculate p, according to p, = di ® (t1 — t, ), where exponentiation
is meant element-wise (the parameter o can be used emphasize edges with high
pheromone trails), the symbol ® represents element-wise multiplication, and ¢
refers to the number of the current round. After normalization, p , contains prob-
abilities for selecting each neighboring node based on a roulette-wheel selection.
Additionally, a greedy strategy can be used to select the node with the most
different estimate. All values of d, which are smaller than the maximum value
of d, are set to 0 before calculating the vector p, in the above equation. If there
is only one unique maximum value in d,, this node will be selected, otherwise
the roulette wheel selection is used (i. e., frequency of iteration is also an issue
in this case).

Overhead. There is only a small overhead compared to basic gossip averaging
since there is no additional communication. Only local computation and the
following local memory space are required: at each node 7, two additional vectors
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y, and ¢, with an average length of d4., (the average node degree) must be
stored.

ACO-based Acceleration Using Global Knowledge (reference algorithm):
In order to demonstrate the best possible results that can be achieved with our
acceleration strategies, we have simulated our algorithms based on the assump-
tion that perfect (global) knowledge of the current estimates of all neighbors is
available at all nodes. Technically, this can be simulated by replacing possibly
outdated values in vector y, with the current estimates of all neighboring nodes.

4 Evaluation and Analysis of Acceleration Strategies

All algorithms are implemented in Matlab in a simulation that allows for exe-
cuting different algorithmic variants while being able to monitor the state of the
network at any time from a bird’s-eye-view perspective. The error of the esti-
mated average is calculated after each round as ||v(t) — v1]||2 /||v(0)||2, where,
v(t) is the n-dimensional vector of all estimates after round ¢ and v(0) is a vector
consisting of the initial estimates (cf. [11]). All algorithms are terminated once
the error is less than 1078 (single precision). A detailed experimental evaluation
of the acceleration strategies can be found in [6]. This evaluation includes (i)
different network topologies / sizes, (it) different initialization fields, (iii) four
different gossip algorithms, (iv) purely round-based as well as round- and event-
based implementations, and (v) acceleration strategies based on local and global
knowledge with roulette-wheel and greedy selection strategies. Summarizing the
results, we can say that not only the average node degree significantly influ-
ences the amount of acceleration, but also the irregularity of the topology. The
acceleration strategies work best for weakly connected, irregular networks. In
the optimal case an acceleration factor of up to 2.7 can be observed.

Analysis. In the following, we analyze in detail how the proposed acceleration
strategies as well as the reference strategies influence the node selection of one
representative gossip algorithm. Figure 1 shows the influence of the ACO-based
acceleration on the selection of communication partners for a 2D-torus graph
with 256 nodes. The number of rounds was set to 400 for all algorithms, and all
algorithms were terminated when the error dropped below 10~8. The results are
average values over 10 runs. For larger networks, the results are similar but more
difficult to visualize. Figure 1(a) and (b) show the initialization fields used for
creating the plots in Fig. 1(c—f); large red dots in Fig. 1(b) refer to initialization
values close to 1, and small red dots to initialization values close to 0. We used an
initialization with a peak shifted towards the upper right corner in order to better
visualize the important information. For being able to reference specific nodes,
we labeled the grid with numbers from 1 to 16 along the z-axis, and with letters
from A to P along the y-axis. The size of the blue arrows between any two nodes
in Fig. 1(c—f) indicates how often nodes have communicated with each other. For
example, the arrow pointing from node A1l to node A2 indicates how often node
A2 has been selected as communication partner by node A1, and vice versa. Note
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Fig. 1. Influence of acceleration strategies on a 2D-torus with 16 x 16 nodes (Color
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that there is also an arrow from node Al to node A16 (the arrow left of node
Al), and one arrow from node Al to node P1 (the arrow underneath node Al).
This is due to the fact that Fig.1 shows the results for a 2D-torus graph. The
size of the arrows is proportional to the communication frequency along this link
— a large arrow indicates that a node has been selected frequently, while a small
arrow indicates that a node has been chosen only rarely. Note that each node
selects one communication partner per round, although Fig. 1(e) and (f) give the
impression that some nodes select more communication partners than others. In
fact, the size of the arrows is chosen such that higher-than-average values are
represented with large arrows, while the arrow size for average and smaller-than-
average values varies only slightly. Moreover, arrows are normalized w.r.t. the
largest arrow for each figure. Figure 1(c) refers to the original PushPull algorithm
without acceleration. As expected, the selection of nodes is uniformly distributed
since each node is connected to four neighboring nodes and all nodes are always
selected with the same probability. Figure 1(d—f) illustrate how this distribution
changes when the ACO-based acceleration strategy is applied. The results using
local knowledge are shown in Fig. 1(d) for the roulette-wheel selection strategy
with a = 1, and in Fig. 1(e) for the greedy selection strategy. The results for the
reference algorithm with global knowledge using the greedy selection strategy are
shown in Fig. 1(f). Since the results in Fig. 1(d) are a hybrid between Fig. 1(c)
and (e), we focus on Fig. 1(e) and (f). It is interesting to observe the patterns
in Fig. 1(e) and (f): in both cases, there are patterns similar to a “number sign”
(“#”), whose lanes intersect at D4, L4, D12, and L12. The intersection point at
L12 is located at the peak of the initialization field; all other intersection points
are located at nodes with maximal distance to L12: L4 and D12 are located
eight single-hops away from the node at L12, and D4 is located eight single-
hops away from L4 and D12, respectively. The reason for this special shape
is the regular diffusion of information in a rectangular 2D-torus graph (such
regular behavior can also be observed for hypercubes, however, this information
cannot be displayed in a 2D plot). We point out that the “directions” of these
lanes differ between Fig. 1(e) and (f). In Fig.1(e) (local knowledge), there are
two intersections at L4 and D12 with arrows pointing away from them, and
two intersections at D4 and L12 where arrows are pointing towards them. In
Fig. 1(f) (global knowledge), the arrows tend to point away from all intersection
points. Indeed, the plot in Fig. 1(f) could be decomposed into four identical
squares, which is not the case for Fig. 1(e). One explanation for this difference
is the fact that in Fig. 1(e) the neighboring nodes of D4 and L12 tend to have
outdated information about the estimates of D4 and L12 and chose these nodes
more often than others. However, the diffusion of information for these two
acceleration strategies is very similar and there are also only small variations in
the speed and direction of information diffusion in the network. This analysis
provides interesting insights how information diffuses throughout the network.
In our current research we aim at applying the observed distribution of node
selection from our acceleration algorithms based on global knowledge (Fig. 1(f))
on gossip algorithms with only local knowledge. The goal is to further increase
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the diffusion speed — however, without the need for exact knowledge of the
neighbors’ estimates.

5 Conclusions

We have extended our study on ACO-based acceleration strategies for gossip-
based averaging algorithms, and evaluated the behavior of our acceleration
strategies by analyzing how they influence the node selection of different vari-
ants of PushPull gossip algorithms. We have shown that the directions of infor-
mation dissemination across the network differ strongly according to the type
of the underlying “knowledge” of the neighbors (local vs. global knowledge).
This analysis leads to a better understanding of how information is spread
throughout the network and provides important insights that can be used to
further enhance the acceleration strategies. This research has been partially sup-
ported by the Vienna Science and Technology Fund (WWTF) through project
ICT15-1135.
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