
ACO-inspired Acceleration of Gossip Averaging

Andreas Janecek
University of Vienna, Faculty of

Computer Science, Vienna, Austria
andreas.janecek@univie.ac.at

Wilfried N. Gansterer
University of Vienna, Faculty of

Computer Science, Vienna, Austria
wilfried.gansterer@univie.ac.at

ABSTRACT
Gossip (“epidemic”) algorithms can be used for computing
aggregation functions of local values across a distributed sys-
tem without the need to synchronize participating nodes.
Although several (theoretical) studies have proven that these
algorithms scale well with the number of nodes n, most
of these studies are restricted to fully connected networks
and based on rather strong assumptions, e. g., it is often as-
sumed that all messages are sent at exactly the same time
on different nodes. Applying gossip algorithms on non-fully
connected networks significantly increases the number of
messages / rounds, especially on weakly connected networks
without a regular structure.
We present new acceleration strategies for gossip-based av-
eraging algorithms based on ant colony optimization, which
specifically target weakly connected networks with irregular
structure, where existing gossip averaging algorithms tend
to be slow. The proposed acceleration strategies reduce the
message and time complexity of standard gossip algorithms
without any additional communication cost. The overhead
only consists of additional local computation which is pro-
portional to the node degree. All findings are confirmed
experimentally for different types of network topologies and
for different network sizes.

Keywords
Applications of Ant Colony Optimization, Gossip-based Av-
eraging, Epidemic Aggregation, Acceleration

1. INTRODUCTION
We focus on gossip-based averaging methods where every
node only communicates with its direct neighbors, i. e., only
only single-hop communication is performed. We distinguish
between different types of information exchange between
nodes (Push vs. PushPull) and the choice of the communi-
cation partner in each round (uniformly random vs. biased
based on the history of the process). The main contribution
of this paper is the proposal of several acceleration strate-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908832

gies for gossip-based averaging algorithms inspired by ant
colony optimization (ACO) for biased neighbor selection.
The choice of ACO is motivated by the similarity of nature-
inspired population-based algorithms such as ACO and dis-
tributed gossip algorithms: both are based on a population
of entities who communicate via simple rule-sets, both iter-
atively improve current approximations of the solution, and
both are stochastic in nature. The proposed acceleration
strategies are able to reduce the communication cost by a
factor of up to 2.7 compared to state-of-the-art gossip algo-
rithms using standard sampling from a uniform distribution.

Related Work. Although the combination of gossiping
with ACO and other techniques from swarm intelligence
and evolutionary computation has been investigated for the
task of rumor spreading [10, 13, 14, 26], to the best of
our knowledge it has not been considered yet for gossip-
based averaging. Various approaches to accelerating dis-
tributed aggregation methods have been studied. Since gos-
sip averaging can be represented as an iterative linear iter-
ation (with a distributed communication matrix), classical
convergence acceleration techniques in the form of station-
ary iterative methods, such as the second-order Richard-
son method [12] (known in load balancing as second-order
scheme [23]) or Chebyhsev acceleration with time-dependent
coefficients [12], are in principle applicable. However, for
gossip-based algorithms where the communication matrix is
time-dependent and for the fully decentralized setting which
we consider where no global view of the communication ma-
trix is available, the applicability of such acceleration tech-
niques is rather limited.
Besides classical convergence acceleration schemes for linear
iterations, faster convergence can also be obtained via ex-
ploiting additional assumptions on the distributed environ-
ment. Several conceptually different approaches have been
employed. For instance, one can optimize the communica-
tion patterns with respect to a fixed topology [4] or optimize
the topology itself [17]. Moreover, by assuming that the
nodes have additional (global) knowledge about the topol-
ogy of the system as well as about their position and by
using multi-hop communication, substantial improvements
can be achieved [1, 6]. However, in this paper we consider
a more general setup without such additional assumptions
and only nearest-neighbor communication, and thus these
acceleration techniques are not applicable in our context.
Compared to existing acceleration strategies, our approach
has several advantages: Absolutely no topology information
is needed, it can be applied to any type of network topol-
ogy, and it does not cause any communication overhead (nei-

ther in terms of messages nor in terms of data sent). More-
over, our approach is consistent with the fundamental “rules
of thumb” for gossip protocols which have been formulated
in [21]. Although we focus on averaging, our approach can
be extended to other types of aggregation functions, such as
sum, variance, etc.

2. GOSSIP-BASED AVERAGING
In distributed averaging tasks, the goal is to calculate the
average v̄ of a set of initial values vi (e. g., sensor measure-
ments, document attributes, media ratings, etc.) stored lo-
cally at n nodes (vi is the initial value on ni). One possi-
bility for computing v̄ in a completely distributed manner
is to use gossip (“epidemic”) algorithms. Because of their
inherently probabilistic nature (randomized communication
schedules), these algorithms have the potential for tolerat-
ing dynamic network changes, node failures, or data loss
and thus for providing a high degree of resilience and fault
tolerance [22]. Moreover, they allow for gradually trading
runtime performance against communication cost, fault tol-
erance or energy consumption by adapting the intensity of
interaction between nodes. This is very attractive in situa-
tions where classical parallel or fusion center approaches or
flooding-based solutions are too expensive, where runtime is
not the most important aspect, or where not only the final
“correct” result, but also approximate intermediate results
are of interest.

2.1 Push Averaging (the PushSum Algorithm)
In purely push-based algorithms information is pushed to
other nodes without receiving an answer, i. e., without pulling
for information. For computing v̄, each node i additionally
holds a value xi and a weight wi. Initially, xi(0) is set to the
local value at each node, i. e., xi(0) = vi. For computing v̄,
all weights wi are initialized with 1. In order to compute∑n
i=1 vi instead of v̄, the weight of a single node is set to 1

and the weights of all other nodes to 0. Typical push averag-
ing algorithms are given in [15, 19] and consist of an active
and a passive thread. In the active thread, each node selects
a random communication partner p, sends half of its value
(xi/2) and half of its weight (wi/2) to p, and halves its own
value and weight. If the passive thread receives a message
(i. e., an “update”) from node i, it adds the received value xi
and received weight wi to its own value and weight, respec-
tively. At all times t, the current estimate of the average v̄
on each node can be computed as xi(t)/wi(t). The Push-
Sum algorithm preserves the mass conservation invariant —
at any time the sum of all values (i. e., approximations) in
the network remains constant throughout the algorithm. As
we will see in Section 2.2, mass conservation is an important
advantage of PushSum over PushPull approaches.

2.2 PushPull Averaging
PushPull also consist of an active and a passive thread [15].
However, in contrast to unidirectional PushSum, averaging
is based on exchange of information. In the active thread,
each node i selects a random neighbor p as communication
partner and pushes its current local estimate xi to p. Node p
receives the packet from i (the sender), replies with its own
current estimate xp, and stores the average of the received
and its own estimate (xi, xp) as its new estimate. Finally,
the sender receives the answer and updates its own local es-
timate. As opposed to PushSum, no separate weights are

needed — if all weights are initialized with the same value
(e. g., 1), they would remain unchanged after each bidirec-
tional information exchange. As an example, consider that
the sender i would halve its weight (i. e., wi = 0.5) before
sending the value/weight pair to p. Node p would do the
same (i. e., wp = 0.5) before sending its own value/weight
pair to node i, and both communication partners would store
the sum of both weights (wi + wp ≡ 1) as new weight.

In information dissemination tasks (i.e., rumor spreading),
PushPull variants for rumor spreading can reduce the amount
of update messages to only O(n log log n) as compared to
O(n log n) for Push variants, cf. [18]. However, for averaging
problems there is no distinction between possibly large up-
date messages and empty request messages. Thus, although
PushPull approaches usually need fewer rounds than Push-
Sum, it is not guaranteed that PushPull generally also re-
duces the number of messages, since PushPull has the draw-
back that the number of messages per round is doubled.
Moreover, the mass conservation invariant can be violated
in PushPull algorithms if an atomic violation happens, i. e.,
if a node receives a push while it is waiting for a pull-reply.
Existing extensions of PushPull averaging algorithms that
guarantee mass conservations (cf. [16]) typically suffer from
the drawbacks of either increasing the number of rounds or
penalizing the selection of some nodes.

2.3 Implementation Strategies
The algorithms from Section 2 can be implemented as purely
round-based (denoted as R) or as round and event-based
(denoted as RE) implementations. Moreover, the update
process may have a significant influence on the number of
rounds (sometimes also called cycles or iterations in the lit-
erature) as well as on the total number of messages necessary
to achieve a given accuracy. In a separate update strategy,
all nodes send their messages at the same time — as often
required in the literature, cf. [15]. The update of received
information can only be performed after all nodes have fin-
ished sending in each round. On the contrary, in an immedi-
ate update strategy, all nodes send their packets at slightly
different times. Thus, it is possible that the update based
on received information is performed before a node performs
the sending process in the current round. Although separate
update strategies can be applied for PushSum, they cause
problems for PushPull, since mass conservation is not guar-
anteed (cf. Section 2.2). In order to allow for a comparison
of PushSum and PushPull, we focus only on immediate up-
date strategies in the rest of this paper.

2.3.1 Implementing PushSum
In purely round-based PushSum implementations each
node sends one packet in each round — independent of the
number of packets a node has received in the last round. Al-
gorithm 1 shows the main steps that are performed in each
round . Due to the immediate update strategy, sending and
receiving can be performed within the same loop, since it is
assumed that all nodes perform sending at slightly different
times, and that the passive thread at each node can receive
and process packets immediately. In purely round-based
PushSum implementations each node sends one packet in
each round — independent of the number of packets a node
has received in the last round. Algorithm 1 shows the main
steps that are performed in each round . Due to the immedi-
ate update strategy, sending and receiving can be performed

Algorithm 1: PushSum R

1 for i = random permutation over all n do
2 p← random neighbor of node i;

3 xi ← xi/2; //At sender: update value
4 wi ← wi/2; //At sender: update weight

5 xp += xi; //At receiver: update value
6 wp += wi; //At receiver: update weight

7 end

within the same loop, since it is assumed that all nodes per-
form sending at slightly different times, and that the passive
thread at each node can receive and process packets imme-
diately. The random permutation over all n is important,
since a loop with a fixed sequence (for 1 to n loop) would
unrealistically let the same nodes perform sending prior to
other nodes in each round.

Round and event-based PushSum. Instead of allowing
each node to send one message in each round, it is also possi-
ble to let each node send as many packets as it has received
in the previous round. There are still n packets sent in
each round, but not all nodes are allowed to send packets —
instead, some nodes may send several packets in the same
round. This approach is still round-based as the communica-
tion is performed in rounds, but it is also event-based as the
number of received packets indicates the number of packets
that can be sent in the next round, cf. Algorithm 2. At each
node, nRecLastRound stores the number of packets that
each node has received in the last round. nRecLastRound
is initialized with ones, i. e., in the first round, each node
sends one packet, and necThisRound is initially set to 0.

Algorithm 2: PushSum RE

1 for i = random permutation over all n do
2 for j = 1:nRecLastRound(i) do
3 p← random neighbor of node i;
4 nRecThisRoundp += 1;

5 . . . //identical to lines 4-7 of Alg. 1

6 end

7 end
8 nRecLastRound← nRecThisRound;
9 nRecThisRound← 0;

2.3.2 Implementing PushPull
Purely round-based PushPull. Algorithm 3 shows the
main steps that are performed in each round for PushPull R.
Each node sends one packet per round. Whenever a node
p receives a (push) message from node i (the sender), the
current local value of p is stored in a temporary variable txp
(Line 4) and the local value of p is updated with received
local value of i (Line 5). Finally, the local value of i is
updated with the temporarily stored previous local value of
p (Line 6). Recall that a delayed update at either node p or
node i will probably lead to an atomic violation.

Round and event-based PushPull. The update of Push-
Pull RE in Algorithm 4 is similar to the purely round-based
variant, but the selection process of sending nodes is differ-
ent. Again, 2× n messages are sent in each round.

Algorithm 3: PushPull R

1 for i = random permutation over all n do
2 p← random neighbor of node i;

3 txp ← xp; //store txp temporarily
4 xp ← (xi + xp)/2; //At receiver p: update x
5 xi ← (xi + txp)/2; //At sender i: update x
6 end

Algorithm 4: PushPull RE

1 for i = random permutation over all n do
2 for j = 1:nRecLastRound(i) do
3 p← random neighbor of node i;
4 nRecThisRoundp += 1;

5 . . . //identical to lines 4-6 of Alg. 3

6 end

7 end
8 nRecLastRound← nRecThisRound;
9 nRecThisRound← 0;

3. ACCELERATION BASED ON ACO
Now we present new acceleration strategies inspired by ACO.
Compared to basic gossip-based averaging algorithms where
communication partners are selected solely based on ran-
dom decisions, our acceleration strategies feature a biased
neighbor selection method to accelerate the diffusion speed
of gossip algorithms. Our approach exploits a concept from
ant colony optimization (ACO), a well-established swarm in-
telligence (SI) technique for finding optimal routes in graphs
based on the concept of ants using pheromone trails.

Ant Colony Optimization (ACO) [7, 8, 9] is motivated
by the behavior of living ants, which can find the shortest
path to a food source by laying and following pheromone
trails. ACO aims at finding approximate solutions to op-
timization problems, such as finding good paths through
graphs. This mechanism of communication by modifying the
environment is also referred to as stigmergy. Consider two
solution states i and j (in a shortest-path problem, cf. [7],
i and j could represent two different nodes). Following [8],
the transition probability for ant k from i to j is defined as

pkij =
(ταij)(η

β
ij)∑

j∈allowedi (ταij)(η
β
ij)

(1)

where τij is the intensity of the pheromone trail on edge
(i, j), ηij is the desirability of the solution state transition
ij (for example, the inverse distance between two nodes i and
j), and α, β are parameters to control the influence of τij
and ηij , respectively. The data structure allowedi contains
all allowed solution states for ant k in state i. After all ants
have completed a solution, the trail intensity is updated by
τij = ρ·τij+

∑
k ∆τkij , where ρ is the pheromone evaporation

coefficient (1-ρ represents the evaporation of the trail) and
∆τkij is the amount of pheromone deposited by the kth ant.

Motivation. The application of SI in distributed environ-
ments is motivated by the fact that many natural exam-
ples of SI such as ant colonies or bird flocking are based
on (simple) individuals (also referred to as agents or boids)
that communicate to develop collective behavior in a purely
decentralized and self-organized fashion [3, 20]. These char-

acteristics make these natural systems robust to loss of mem-
bers and adaptable to a changing problem domain — all prop-
erties which are highly demanded in the context of dis-
tributed computing environments. Indeed, SI methods are
in many aspects similar to gossip algorithms: individuals
communicate iteratively with one another in a self-organizing
way, and their decisions are based on probabilistic compo-
nents combined with some simple rule sets based on local
information. However, whereas gossiping protocols usually
communicate completely randomly, SI is biased towards an
optimal solution — a very desired aspect in our context.
Despite some attempts to apply them in distributed environ-
ments (cf. [5]), many current SI implementations are often
implemented as centralized, synchronous and sequential al-
gorithms (see the discussions in [24, 25]). Examples of such
centralization aspects include all kinds of rankings or elitism
(e.g., the global best in particle swarm optimization, cf. [20]),
but also global pheromone updates in ACO. Also partly be-
cause of these centralization aspects, the main application
fields of SI are in the domain of meta-heuristics that aim at
creating approximate solutions to hard search and optimiza-
tion techniques, such as parameter optimization or routing
problems (cf. [2]). We follow a different approach and utilize
the concepts of ACO in a completely distributed network,
which allows for applications in completely decentralized
and asynchronous environments. Due to this distributed
setting, the pheromone update has to be performed locally
on each node. The learning encoded in the pheromones is
not directly based on the pseudo-random proportional rule
(Equ. 1) but rather on the similarity/dissimilarity of the es-
timates of neighbors compared to the local estimate of nodes.
Moreover, our “ants” are restricted to local movements only.

3.1 Acceleration Using Local Knowledge
We propose four slightly different acceleration strategies for
PushSum and PushPull gossip, which are based on the same
problem statement and setup: Consider the scenario that
each node in the network maintains a pheromone deposit
for each outgoing link, as typical in ACO. The amount of
pheromone along a directed link between a sending node and
its neighboring nodes influences the probability of selecting
a neighboring node as communication partner. The main
idea of our approach is to accelerate the diffusion speed of
gossip algorithms by selecting links with higher pheromone
value with higher probability. In the following, we describe
how the amount of pheromone along a path is calculated,
and how the (inverse) concept of evaporation is included in
our approach. For PushSum, the local estimate at node i
of the global average v̄ can be computed as xi/wi, while for
PushPull the local estimate equals xi (no weights in Push-
Pull). In order to improve readability, we use the variable
λi for all algorithms to refer to the local estimate at node i.
For PushSum, λi = xi/wi, and for PushPull λi = xi.

3.1.1 ACO-based Acceleration for PushPull

First, we discuss the concept for PushPull variants. We will
see later that PushSum variants are more difficult in terms of
neighbor selection since there is no bidirectional information
exchange. At all times t, every node i has a current estimate
λi of the average v̄. Beyond that, node i also has (possibly
outdated) information about the estimates of its neighbors,
stored in the vector ~yi of length deg(i). The elements of ~yi
are ordered according to the IDs of the neighbors of i.

Example. Consider a node a connected to nodes b, c, d, e.
Whenever a communicates with one of its neighbors, it up-
dates its own estimate λa, and also ~ya. The absolute differ-

ence between ~ya and λa is denoted as ~da (~da = |~ya − λa1|),
and serves as the basis for our biased communication part-

ner selection. Motivated by the concept of ACO, ~da repre-
sents the intensity of the pheromone trail along the edges
between a and its neighbors. Node a will now choose edges
with higher pheromone values with higher probability. In
other words, it is more likely that node a selects a node
with a strongly different local estimate than a node whose
local estimate is very similar. The rationale behind this idea
is that more progress towards the true average will be made
if an information exchange brings more new information.
Clearly, since only local knowledge about neighboring nodes

is available, most elements in ~ya and therefore also ~da will
be outdated since a does not always know the true current
estimate of all of its neighbors. E.g., consider that in round
t nodes b and a exchange information, and that in round
t + 1 node a exchanges information only with node c while
b exchanges information with another node. At the end of
round t + 1 the information of node a about the estimate
of b is outdated and probably differs (at least slightly) from
b′s current estimate. However, as we will see later, even
partly outdated estimates are better than standard PushPull
without any information about the neighbors.
In ACO, the attractiveness of a pheromone trail is reduced as
the pheromones evaporate over time. We exploit this strat-
egy in the opposite direction and increase the attractiveness
of edges over time in order to increase the attractiveness of
nodes which have not been chosen for a long time. This is
especially important for PushSum, where this strategy also
ensures that no neighboring node is excluded (see next sec-
tion). Whenever node a communicates with a neighbor —
either as the active sender which sends pull-requests, or as
the receiver which returns pull-replies — it stores the num-
ber of the current round in the vector ~ta. The elements of
~ta are also ordered according to the IDs of the neighbors of
a. In our example, ~ta(1) contains the information in which
round the latest information exchange between a and b hap-
pened, independently of which of the two nodes initiated the
information exchange. For all gossip algorithms, ACO-based
acceleration can be implemented using a roulette-wheel se-
lection or a greedy selection strategy.

Roulette-wheel selection. The vectors ~da and ~ta are used
to calculate the vector ~pa (p for probability) according to

~pa = ~dαa ⊗ (t1− ~ta), (2)

where exponentiation is meant element-wise (the parameter
α can be used emphasize edges with high pheromone trails),
the symbol ⊗ represents element-wise multiplication, t refers
to the number of the current round, and 1 refers to the iden-
tity matrix. After normalization, ~pa contains probabilities
for selecting each neighboring node. Based on these prob-
abilities, the node selection is then performed as roulette-
wheel or fitness proportionate selection ([11]), as commonly
used in genetic algorithms, where a fitness level is used to
associate a probability of selection for each chromosome. If
fi is the fitness of individual i, its probability of being se-
lected is pi = fi

ΣN
j=1fj

, where N is the number of individuals.

In order to exploit this principle for our acceleration strate-
gies, we replace fi with the probabilities ~pi and N with the

number of i′s neighbors. In our example we replace fi with
the probabilities ~pa of a′s neighbors (i. e., nodes b, c, d, e)
and N with the number of a′s neighbors (i. e., 4).

Greedy selection. This strategy selects the node with the

most different estimate. All values of ~da which are smaller
than the maximum value of ~da are set to 0 before calculating
the vector ~pa in Equ. 2. If there is only one unique maximum

value in ~da, this node will be selected. If there are two nodes
with the same maximum difference, then the roulette wheel
selection is used. I. e., frequency of iteration (t1 − ~ta in
Equ. 2) is also an issue in this case. The influence of the
parameter α on the results of the greedy selection strategy
is negligible, thus in our experiments we set α = 1 whenever
we applied greedy selection (however, any fixed value for
α > 0 will work). Both, the roulette-wheel selection and the
greedy selection strategy can also be applied to PushSum.

3.1.2 ACO-based Acceleration for PushSum

A main difference to Section 3.1.1 is the vector ~t, which is
only updated at the sending node, but not at the receiving
node, i. e., ~ta is only updated if node a has pushed informa-
tion to a neighboring node, but not if it has received infor-
mation. Besides this, the mechanism for PushSum is similar
to PushPull. Again, for each node i the main goal is to se-
lect neighbors whose current estimate differs strongly from
the current local estimate at node i. However, in PushPull,
neighboring nodes can be asked “actively” (via pull-request)
to reply their current estimate to the node that initiates
the information exchange. In PushSum, this is not possible,
since information exchange is only unidirectional. We high-
light the potential complications in the PushSum communi-
cation partner selection compared to PushPull using the fol-
lowing representative scenario: Consider the situation that
in round t node a pushes its estimate λa(t)=2.00 to node b,
and that a and b do not communicate with each other in the
next two rounds, and that in round t + 3 node b pushes its
own estimate λb(t+ 3)=4.99 to node a. At the end of round
t+3, a′s own estimate has changed to λa(t+3)=5.01, due to
communication with other nodes. In the next round, there
is a very low probability that node a selects node b, since a′s
local knowledge about b′s estimate is 4.99, which is close to
a′s current estimate of 5.01. On the other hand, there is a
rather high probability that node b selects node a, since b′s
local knowledge about a′s estimate is 2.00, which strongly
differs from b′s current estimate 5.01. As a result, it may
happen that node b keeps on sending messages to node a
in the next round(s), although λa(t + 4) and λb(t + 4) are
rather similar, because b′s information about a′s estimate is
outdated. The negative effect is that node b pushes its infor-
mation only to node a but not to other neighboring nodes,
which may slow down the diffusion speed. We include two
mechanisms to avoid such situations: 1.) We ensure that
during early rounds all neighbors receive at least one mes-
sage, i. e., as long as there are neighboring nodes of node i
which have not received a message from i, other neighbors of
i which have already received a message will not be selected
repeatedly. 2.) Whenever node i has pushed a message to a
neighbor, it cannot select the same node as communication
partner for the next ddi/2e rounds, where di is the node de-
gree of node i. In our example from Section 3.1.1 this means
that if node a sends a push message to node b in round t, it
cannot select node b again before round t+ 3.

3.1.3 Overhead
Our acceleration entails only a small overhead compared to
standard gossip averaging. The most important feature is
that no additional communication is necessary. Only local
computation and the following local memory space is re-
quired: at each node i, two additional vectors ~yi and ~ti with
an average length of davg (the average node degree, cf. Sec-
tion 3.1.1) must be stored. Since our acceleration strategies
are designed to improve the diffusion speed of gossip-based
averaging algorithms on weakly connected networks, davg is
usually small, e. g. ld(n) for hypercubes, 4 (constant) for 2d
tori, and ≈ 10 for random geometric graphs.

3.2 Acceleration Using Global Knowledge
Reference algorithm: In order to demonstrate the best pos-
sible results that can be achieved with our ACO-based com-
munication partner selection strategy (“what is possible”),
we have simulated our algorithms based on the assumption
that perfect (global) knowledge of the current estimates of all
neighbors is available at all nodes. This obviously unrealis-
tic scenario provides a bound for the possible improvement
by the acceleration strategies presented in this paper. The
closer our algorithms get to this bound, the better. Tech-
nically, this global knowledge can be simulated by replacing
the possibly outdated values in vector ~yi (cf. Section 3.1.1)
with the current estimates of all neighboring nodes. In our
simulations, this is possible since our setup allows us to have
a global view of the state of the network at any time.

4. EVALUATION
The diffusion speed of gossip algorithms can be measured
in terms of message complexity (i. e., number of messages
per node) or in terms of time complexity (i. e., number
of rounds). We recall that PushPull sends two messages
per node per round, instead of one (as in PushSum). As
expected, PushPull averaging usually needs fewer rounds
than PushSum to converge to a desired approximation error,
while PushSum needs fewer messages in total. However, the
important aspect of this paper is the speedup achieved with
the proposed acceleration strategies, and not the comparison
of basic gossip algorithms. All algorithms are implemented
in Matlab in a simulation that allows for executing different
algorithmic variants of the gossip algorithms and the accel-
eration strategies, while being able to monitor the state of
the network at any time from a bird’s-eye-view perspective.
All results are given as mean values over 10 simulation runs.

4.1 Experimental Setup
We evaluate PushPull and PushSum schemes, implemented
as purely round-based (R) and round- and event-based (RE)
variants (cf. Section 2). All algorithm / implementation vari-
ants are tested with the acceleration strategies proposed in
Sections 3.1, 3.2 using local / global knowledge with roulette-
wheel and greedy selection strategies (cf. Section 3.1.1).
Moreover, for local knowledge variants we further compare
different values of α. In order to allow for a better compar-
ison between PushSum and PushPull variants, we measure
the diffusion speed in terms of message complexity (however,
the approximation error is calculated after each round). The
following abbreviations are used in Figures 1 to 3:
• “Orig” denotes the basic version with uniformly random

communication partner selection without acceleration, i.e.,
the basic gossip variants such as basic PushPull

• “loc α = {1, 5, 10}” is the ACO-based acceleration strat-
egy using (possibly outdated) local knowledge and roulette-
wheel selection with the parameter α set to {1, 5, 10}.
The values of α were found empirically.
• “loc max” denotes the ACO-based acceleration strategy

using local knowledge and greedy (“max”) selection
• “glo α = 10”denotes the ACO-based acceleration strategy

using (perfect) global knowledge and roulette-wheel selec-
tion strategy with α set to 10 (reference algorithm # 1)
• “glo max” denotes ACO-based acceleration using global

knowledge and greedy selection (reference algorithm # 2)

Network topologies and sizes. We investigated fully
connected graphs, hypercubes, 2D-tori, and random geomet-
ric graphs. For all topologies, we considered network sizes
n = 2k with k ∈ {6, 8, 10, 12}. This ensures that hypercubes
as well as 2D-tori exist for all considered values of n. Ran-
dom geometric graphs were generated such that the average
node degree davg remains constant also for different network
sizes. This can be achieved by computing the transmission
radius r for each n based on the expected node degree dexp as

r(n) =
√

(dexp/(π × n)). Due to the random initialization
of locations, davg varies slightly for each network but is very
close to dexp. All presented results are based on dexp = 10
(for this setting, davg is always within [9.5, 10.2]). However,
we mention the results in the text if other values of dexp and
therefore davg have a significant impact on the results.

Initialization. Besides random initialization, we use three
initialization fields adapted from [6], a linearly varying field,
a smooth field modeling temperature, and a single spike field
that is zero everywhere except in a sharp spike. Such initial-
ization fields are typically used to simulate values monitored
by a sensor network (e. g., pressure or temperature) on pla-
nar graphs (typically random geometric graphs). Random
geometric and fully connected graphs were evaluated on all
four initializations fields, for 2D-torus and hypercubes we
restrict the experiments to random initialization.

Termination criterion. We compute the error of the es-
timated average after each round as (||~v(t)− v̄1||2)/||~v(0)||2
(same as [6]). Here, ~v(t) is the n-dimensional vector of all
estimates after round t and ~v(0) is a vector consisting of
the initial estimates. In our experiments, the algorithms are
terminated once the erroris less than 10−8 (single precision).

4.2 Discussion
Figure 1 shows the message complexity of different acceler-
ation strategies on different network topologies with 1 024
nodes. The plots on the left side show the results for round-
based gossip with immediate update (R-IMM), the plots
on the right side show the results for round-and-event-based
gossip with immediate update (RE-IMM). Since we observed
only very small variations among several runs of the same
algorithm, we show colored bars in Figure 1 instead of box-
plots for better visualization. The maximum variation be-
tween the fastest and the slowest run of the same algorithm
was less than 10% of the mean results for fully connected
graphs, less than 6% for hypercubes, and less than 3% for
2D torus and random geometric graphs. Figure 2 further
summarizes these results and shows the fraction of the num-
ber of messages relative to basic gossip algorithms without
acceleration. Figures 1 and 2 reveal the following insights:

Influence of network topology. On fully connected net-
works, the proposed ACO-based acceleration strategies can-

PushPull (R−IMM) PushSum (R−IMM) PushPull (RE−IMM) PushSum (RE−IMM)
0

20

40

60

80

100

m

es
sa

ge
s

pe
r

no
de

Orig. loc α=1 loc α=5 loc α=10 loc max glo α=10 glo max

(a) Fully connected

PushPull (R−IMM) PushSum (R−IMM) PushPull (RE−IMM) PushSum (RE−IMM)
0

50

100

150

m

es
sa

ge
s

pe
r

no
de

Orig. loc α=1 loc α=5 loc α=10 loc max glo α=10 glo max

(b) Hypercube

PushPull (R−IMM) PushSum (R−IMM) PushPull (RE−IMM) PushSum (RE−IMM)
0

500

1000

1500

2000

2500

3000

3500

m

es
sa

ge
s

pe
r

no
de

Orig. loc α=1 loc α=5 loc α=10 loc max glo α=10 glo max

(c) 2D torus

PushPull (R−IMM) PushSum (R−IMM) PushPull (RE−IMM) PushSum (RE−IMM)
0

5000

10000

15000

m

es
sa

ge
s

pe
r

no
de

Orig. loc α=1 loc α=5 loc α=10 loc max glo α=10 glo max

(d) Random geometric

Figure 1: Messages per node needed for target accu-
racy 10−8, network size 1 024 nodes, random init.

not improve the basic gossip algorithms since the number
of rounds required for convergence is much lower than the
node degree. The algorithms converge before the accel-
eration strategies are able to influence the communication
partner selection, as the information of the estimates of the
neighboring nodes cannot spread fast enough for such a large
davg. However, it is important to note that the results are in
general not worse than those for the basic gossip algorithms.
The results for the reference algorithms with global knowl-
edge show that the number of rounds could be reduced sig-
nificantly, however, only if all estimates of other nodes are
known at all nodes. On hypercube graphs, all ACO-based
acceleration strategies always improve upon the basic algo-
rithms, which can be accelerated by a factor of up to 1.4.
Moreover, the difference to the reference algorithms with
global knowledge is reduced. On 2D-torus graphs, an even
higher acceleration factor of almost 2 can be achieved, and
the reference algorithms are only slightly faster than the pro-

R-IMM Fully conn. Hypercube 2D torus Rand. geo RE-IMM Fully conn. Hypercube 2D torus Rand. geo

PP PS PP PS PP PS PP PS PP PS PP PS PP PS PP PS PS = PushSum
Orig. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Orig. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PP = PushPull
loc α=1 1.00 0.99 0.78 0.92 0.64 0.89 0.64 0.75 loc α=1 0.99 0.98 0.74 0.80 0.65 0.87 0.61 0.71
loc α=5 1.00 0.99 0.72 0.90 0.57 0.81 0.46 0.62 loc α=5 1.01 0.98 0.70 0.74 0.70 0.78 0.53 0.57
loc α=10 1.00 0.99 0.71 0.91 0.55 0.81 0.41 0.61 loc α=10 1.00 1.00 0.69 0.75 0.69 0.77 0.50 0.55
loc max 1.00 0.99 0.71 0.85 0.54 0.79 0.37 0.58 loc max 0.99 1.01 0.70 0.74 0.65 0.78 0.40 0.56
glo α=10 0.30 0.38 0.41 0.65 0.48 0.50 0.31 0.22 glo α=10 0.22 0.27 0.37 0.57 0.45 0.58 0.21 0.25
glo max 0.30 0.36 0.41 0.68 0.47 0.46 0.27 0.18 glo max 0.22 0.25 0.39 0.57 0.46 0.54 0.17 0.23

Figure 2: Relative message counts of ACO-based accelerated gossip algorithms in terms of message counts of
the original algorithms needed for a target accuracy 10−8, network size 1 024 nodes, random initialization.

posed acceleration strategies. On random geometric graphs,
an acceleration factor of even up to 2.7 can be observed
for some settings, e. g. the loc max variant of PushPull re-
quires only 37% of the messages of basic PushPull. For ran-
dom geometric networks with larger davg, the acceleration
is slightly lower. Changing the transmission radius r to the
same setting as in [6] (i. e., r(n) =

√
log n /n, which leads to

davg ≈ 20 for n = 1024), the results are similar to 2D torus
results. We conclude that not only the average node degree
significantly influences the amount of acceleration, but also
the irregularity of the topology. Our acceleration strategy
works best for weakly connected, irregular networks.

Comparison of acceleration strategies. An evaluation
of the different acceleration strategies reveals that for the
roulette-wheel selection, larger values of α lead to a stronger
reduction of the number of messages per node, as compared
to small values of α. In most of the cases the greedy strat-
egy loc max achieves an even larger reduction of messages
than the more conservative roulette-wheel selection. How-
ever, we note that for greedy selection it is important to in-
clude frequency of iteration if there are two nodes with same
maximum difference (cf. Section 3.1.1). Otherwise greedy
selection would not be faster than roulette-wheel selection.

Reduction of communication cost. Compared to the
basic gossip variants, the reduction of messages observed
for PushPull is stronger than for PushSum. This is not
surprising since in PushPull the neighboring nodes can be
“actively” queried for their current estimate, which is not
possible in the PushSum algorithm (cf. the discussion at
the beginning of Section 3.1.2). Nevertheless, PushSum can
still be accelerated by a factor of up to 1.9.

Which is the fastest algorithm ? When characterizing
the speed of a gossip algorithm by the number of messages
needed for achieving a certain accuracy, PushSum is the win-
ner when no acceleration is used. It needs fewer messages
than PushPull for R-IMM as well as for RE-IMM (see the
bars “Orig.” in Figure 1). Using the proposed ACO-based
acceleration, the round-based variant (R-IMM) of PushPull
is significantly faster than PushSum on 2D-torus and ran-
dom geometric graphs, and comparable to PushSum on hy-
percube graphs. It is interesting to note that for the same
problem settings the reference algorithms with global knowl-
edge achieve the best results with PushSum (see the results
for glo max in Figure 1 (g)). This indicates that PushSum
has an even higher acceleration potential than PushPull, but
suffers from the fact that the current estimate cannot be
pulled from neighboring nodes (cf. last paragraph). Over-
all, for RE-IMM accelerated PushSum is the winner, and for
R-IMM accelerated PushPull is the fastest algorithm.

Influence of initialization. Initial values may have a
significant impact on the diffusion speed of basic gossip al-
gorithm and therefore also on the diffusion speed of the ac-
celerated gossip variants. However, different initialization
fields do not influence the impact of the acceleration strat-
egy as compared to the based gossip algorithm, i. e., we
observed very similar relative message counts as in Figure 2
also for all non-random initialization fields.

Influence of network size. Figure 3 illustrates that
the network size n has almost no influence on the accelera-
tion strategies. For n ranging from 64 to 4 096, the message
reduction compared to the basic gossip algorithms is very
similar for all topologies, all gossip algorithms, and both
update strategies (R-IMM and RE-IMM). Only for hyper-
cube graphs, the reduction tends to decrease with increasing
network size, which is due to the increasing node degree of
hypercubes with increasing n. For clarity and ease of visi-
bility we show only the curves for loc max and glo max, the
results for the other acceleration variants are very similar.

5. CONCLUSIONS
We have proposed ACO-based acceleration strategies for
gossip-based averaging algorithms. The pheromone concept
of ACO is adapted such that each node in the network main-
tains a pheromone deposit for each outgoing link, which in-
fluences the probability of selecting a neighboring node as
communication partner. Moreover, the (inverse) concept of
pheromone evaporation is included in our approach in order
to increase the attractiveness of nodes which have not been
chosen for a long time. Like the original gossip algorithms,
our accelerated versions are based on single-hop communi-
cation, where every node only communicates with its direct
neighbors without any overlay network. Although the accel-
eration strategies cause a small overhead in terms of local
computation, they significantly reduce the communication
cost of standard gossip-based averaging. The message and
time complexity can be reduced by factors up to 2.7 for ran-
dom geometric graphs as compared to standard PushPull
averaging. In general, our approach works best for PushPull
schemes on weakly connected, non-regular networks. How-
ever, our evaluation has revealed that all different variants
of PushSum and PushPull can be accelerated significantly
on non-fully connected topologies for all tested sizes. An in-
teresting next step is a concrete implementation of the pro-
posed accelerations. We are currently working on concrete
distributed implementations which allow not only for testing
completely asynchronous and purely event-based variants of
our acceleration strategies, but also for evaluating the influ-
ence of network congestion and node/message failures.

64 256 1024 4096
0

0,2

0,4

0,6

0,8

1

Network Size

C
om

m
un

ic
at

io
n

co
st

 r
el

. t
o

or
ig

in
al

L R PP
L R PS
G R PP
G R PS
L RE PP
L RE PS
G RE PP
G RE PS

(a) Fully connected

64 256 1024 4096
0

0,2

0,4

0,6

0,8

1

Network Size

C
om

m
un

ic
at

io
n

co
st

 r
el

. t
o

or
ig

in
al

L R PP
L R PS
G R PP
G R PS
L RE PP
L RE PS
G RE PP
G RE PS

(b) Hypercube

64 256 1024 4096
0

0,2

0,4

0,6

0,8

1

Network Size

C
om

m
un

ic
at

io
n

co
st

 r
el

. t
o

or
ig

in
al

L R PP
L R PS
G R PP
G R PS
L RE PP
L RE PS
G RE PP
G RE PS

(c) 2D-torus

64 256 1024 4096
0

0,2

0,4

0,6

0,8

1

Network Size

C
om

m
un

ic
at

io
n

co
st

 r
el

. t
o

or
ig

in
al

L R PP
L R PS
G R PP
G R PS
L RE PP
L RE PS
G RE PP
G RE PS

(d) Random Geometric

Figure 3: Influence of network size. For each topology, the reduction as computed in Figure 2 is plotted for
different network sizes. Legend: ’L’ = loc max, ’G’ = glo max, ’R’ = R-IMM, ’RE’ = RE-IMM.

6. REFERENCES
[1] F. Benezit, A. Dimakis, P. Thiran, and M. Vetterli.

Order-Optimal Consensus Through Randomized Path
Averaging. IEEE T. Inf. Theory, 56:5150–5167, 2010.

[2] C. Blum and X. Li. Swarm intelligence in
optimization. In Swarm Intelligence, pages 43–85.
Springer, 2008.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford Univ. Press, 1999.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Randomized Gossip Algorithms. IEEE T. Inform.
Theory, 52:2508–2530, 2006.

[5] F. F. De Vega and E. Cantú-Paz. Parallel and
Distributed Computational Intelligence, volume 269.
Springer, 2010.

[6] A. Dimakis, A. Sarwate, and M. Wainwright.
Geographic gossip: Efficient averaging for sensor
networks. IEEE T. Signal Proces., 56:1205–1216, 2008.

[7] M. Dorigo and L. M. Gambardella. Ant colony system:
a cooperative learning approach to the traveling
salesman problem. Evolutionary Computation, IEEE
Transactions on, 1(1):53–66, 1997.

[8] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system:
optimization by a colony of cooperating agents. IEEE
T. Syst. Man Cy. B, 26:29–41, 1996.

[9] M. Dorigo and T. Stuetzle. Ant colony optimization:
Overview & recent advances. In Handbook of Meta-
heuristics, volume 146, pages 227–263. Springer, 2010.

[10] F. Ducatelle, G. Di Caro, and L. Gambardella.
Principles and applications of swarm intelligence for
adaptive routing in telecommunications networks.
Swarm Intelligence, 4:173–198, 2010.

[11] D. E. Goldberg and K. Deb. A comparative analysis of
selection schemes used in genetic algorithms. In
Foundations of Genetic Algorithms, pages 69–93.
Morgan Kaufmann, 1991.

[12] G. H. Golub and R. S. Varga. Chebyshev
semi-iterative methods, successive overrelaxation
iterative methods, and second order richardson
iterative methods. Numer. Math., 3:157–168, 1961.

[13] C. Guéret, N. Monmarché, and M. Slimane.
Autonomous gossiping of information in a P2P
network with artificial ants. In Proc. of Ant Colony
Optimization & SI, pages 388–395. Springer, 2006.

[14] C. Guéret, N. Monmarché, and M. Slimane.
Self-organizing ant-based information gossiping
algorithm for P2P networks. In 10th Int. Conf. on
Innovative Internet Community Services, pages
450–461, 2010.

[15] M. Jelasity. Gossip. In Self-organising Software, pages
139–162. Springer, 2011.

[16] P. Jesus, C. Baquero, and P. S. Almeida.
Dependability in aggregation by averaging. CoRR,
abs/1011.6596, 2010.

[17] S. Kar and J. M. F. Moura. Sensor Networks With
Random Links: Topology Design for Distributed
Consensus. IEEE T. Sig. Proces., 56:3315–3326, 2008.

[18] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vocking. Randomized rumor spreading. In Proc.
41st Annual Symposium on Foundations of Computer
Science, pages 565–574. IEEE Computer Society, 2000.

[19] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proc. 44th
Symposium on Foundations of Computer Science,
pages 482–491. IEEE, 2003.

[20] J. Kennedy and R. C. Eberhart. Swarm Intelligence.
Morgan Kaufmann, 2001.

[21] A. Montresor. Intelligent gossip. In Intelligent
Distributed Computing, Systems and Applications,
volume 162 of Studies in Computational Intelligence,
pages 3–10. Springer, 2008.

[22] A. Montresor. Designing extreme distributed systems:
challenges and opportunities. In Proc. 8th ACM
SIGSOFT Conf., pages 1–2. ACM, 2012.

[23] S. Muthukrishnan, B. Ghosh, and M. H. Schultz.
First- and second-order diffusive methods for rapid,
coarse, distributed load balancing. Theor. Comput.
Syst., 31:331–354, 1998.

[24] E. Ridge and E. Curry. A roadmap of nature-inspired
systems research and development. Multiagent Grid
Syst., 3:3–8, 2007.

[25] E. Ridge, D. Kudenko, D. Kazakov, and E. Curry.
Moving nature-inspired algorithms to parallel,
asynchronous and decentralised environments. In
Proc. 2005 Conf. on Self-Organization and Autonomic
Informatics, pages 35–49. IOS Press, 2005.

[26] C.-C. Shen and S. Rajagopalan. Protocol-independent
multicast packet delivery improvement service for mo-
bile ad hoc networks. Ad Hoc Netw., 5:210–227, 2007.

