
A Framework for Interactive Multidimensional
Process Mining

Thomas Vogelgesang1, Stefanie Rinderle-Ma2, and H.-Jürgen Appelrath1

1 Department of Computer Science, University of Oldenburg, Germany
{thomas.vogelgesang | appelrath}@uni-oldenburg.de

2 Faculty of Computer Science, University of Vienna, Austria
stefanie.rinderle-ma@univie.ac.at

Abstract. The emerging concept of multidimensional process mining
adopts the ideas of data cubes and OLAP to analyze processes from
multiple views. Analysts can split the event log into a set of homogenous
sublogs according to its case and event attributes. Process mining tech-
niques are used to create an individual process model for each sublog
representing variants of the process. These models can be compared to
identify the differences between the variants. Due to the explorative char-
acter of the analysis, interactivity is crucial to successfully apply mul-
tidimensional process mining. However, current approaches lack inter-
activity, e.g., they require the analyst to re-perform the analysis steps
after changing the view on the data cube. In this paper, we introduce
a novel framework to improve the interactivity of multidimensional pro-
cess mining. As our main contribution, we provide a generic concept for
interactive process mining based on a stack of operations.

Keywords: Interactive Process Mining, Multidimensional Process Min-
ing, Process Cubes

1 Motivation

Process mining comprises a set of techniques for the automated analysis of pro-
cesses [2]. They are based on collections of events (event logs) which are recorded
during the execution of the process. Each event represents the execution of an
activity and refers to a case representing a particular instance of the process.
Typically, the events of an event log are grouped and chronologically ordered by
their case representing the trace of a process instance. Additionally, events and
cases may have arbitrary attributes to describe their specific properties.

Most process mining techniques focus on process discovery which aims to
generate a descriptive and representative process model from a given event log.
However, there are also other kinds of process mining techniques. Process en-
hancement maps the additional attributes of the event log onto a given process
model to add further perspectives (e.g. waiting times). Conformance checking
techniques compare process models to event logs, e.g. to measure its quality.

The notion of multidimensional process mining (MPM) [13,15,6] is an emerg-
ing concept to analyze variants of the same process. It adopts the idea of data

„The final publication is available at Springer via http://
dx.doi.org/10.1007/978-3-319-58457-7_2."



cubes and Online Analytical Processing (OLAP) [7] from the data warehouse do-
main to the field of process mining and organizes the event data by its attributes
which are considered as dimensions. While traditional process mining techniques
typically only consider a single event log resulting in one overall process model,
MPM extracts an individual subset of an event log (sublog) for each variant.
Analyzing these sublogs with process discovery returns a set of process models
which can be compared to each other in order to identify differences between
the process variants. Providing OLAP operators like drill-down and slice on the
event data, MPM enables the analyst to define arbitrary views on the event log
and to iteratively explore the processes.

In contrast to static reporting, OLAP aims to interactively explore the data.
The analysis typically consists of an individual sequence of queries where each
query results from the preceding ones. Therefore, OLAP requires flexible and
effective user interfaces which are easy-to-use [7]. Due to this explorative char-
acter, interactivity is also vital for MPM [13]: To get the desired insights, the
analysts need to refine the OLAP query for many times (e.g., filter or aggregate
events, change dimension granularity) and apply different process mining tech-
niques like process discovery, process enhancement and conformance checking.
Even though they provide interactive user interfaces, current tools for MPM lack
interactivity with regard to four aspects:

1. Interaction with process models: Process models as the major result of pro-
cess mining are typically visualized in a static way. Though they are complex
objects composed of nodes and edges, they are typically just drawn like an
image. Except for scrolling and zooming, there is often no way to interact
with the process models. Direct interaction like clicking on a node has the
potential, to improve the exploration of processes by making the analysis
faster and more intuitive.

2. Dynamic analysis workflow: Especially in MPM, analysts have to follow a
more or less restrictive workflow. For example, they first have to define an
OLAP query (selecting some dimensions to drill down the event data, adding
optional filters), select and configure a process discovery algorithm, enhance
the resulting process models with time information, and finally apply confor-
mance checking to measure the quality of the models. If a previous analysis
step has to be changed (e.g., adding another filter to the OLAP query), all
subsequent analysis steps have to be done again. Consequently, even minimal
changes may require a lot of effort for the analysts.

3. Undo/redo of analysis steps: It is desirable to provide support to undo and
redo particular analysis steps. This enables analysts to try arbitrary analysis
steps without any risks. The chance to return to the previous view on the
process without any additional effort supports the explorative character of
MPM because it avoids to end up in an ”analysis dead end”.

4. Performance: Even though MPM is not a time-critical application, perfor-
mance is crucial for interactivity. Long processing times may disrupt the
workflow preventing analysts from defining views which they expect to be
less promising.



In this paper, we will present a novel framework which addresses the first
three aspects as discussed above regarding the interactivity of MPM. We will
identify different concepts and use cases to improve the interactivity of MPM.
As the main contribution of our paper, we will provide a generic concept for
interactive process mining based on a stack of operations relevant for MPM. We
have to point out that performance (4) is only considered with respect to the
workflow of MPM whereas the performance of particular analysis steps (e.g.,
executing OLAP queries or process discovery) is out of the scope of this paper.

The structure of the paper is as follows. Section 2 briefly discusses related
work. In Sec. 3, we first introduce the assumptions of our work, before we elab-
orate on the general ideas and concepts of our approach. The proof-of-concept
implementation of our approach is presented in Sec. 4. Finally, we conclude our
work in Sec. 5 and give an overview of future work.

2 Related Work

The process mining manifesto [4] gives an overview of the field of process min-
ing. For a comprehensive introduction to this topic, we refer to van der Aalst
[2]. Event Cubes [12] are an initial but very specific approach for MPM based
on a multidimensional adoption of the Flexible Heuristics Miner algorithm [16].
In contrast, Process Cubes [3,6] and PMCube [15] are generic frameworks that
are not limited to a particular mining algorithm or process model represen-
tation. Moreover, they are able to incorporate process enhancement and con-
formance checking. PMCube also introduces advanced concepts to MPM like
process model comparison using difference models and the process model con-
solidation which provides the automatic pre-selection of possibly more relevant
process models. Even though they enable the analysts to explore the processes
from a multidimensional perspective, Process Cubes as well as PMCube are lim-
ited in their interactivity. For example, they do not provide interactive process
representation. The lack of interactivity was also identified during the case study
presented in [15] and the systematic literature review provided in [13].

In the general context of process mining, interactivity has been initially ad-
dressed by the Fuzzy Miner algorithm [9] which adopts the basic idea of inter-
active maps to create so-called process maps. This representation enables the
analyst to dynamically abstract from less relevant parts of the process model by
clustering activities in order to focus on the major relationships of the process.
Similar interactivity is also implemented in commercial tools like Fluxicon Disco
[8] which considers process enhancement, too. However, we aim for a more com-
prehensive and generic approach which considers aspects of MPM (e.g., OLAP,
difference calculation for process models, process model consolidation) and sup-
ports arbitrary process discovery algorithms and process model notations. In [1],
van der Aalst extends the idea of process maps by the metaphor of navigation
systems to provide interactive recommendation and prediction, e.g. to estimate
the remaining execution time of a process instance. In contrast to that, we only
consider historical data as we aim to improve the interactivity of the overall



MPM workflow. The application of MPM to real-time event data has not been
investigated in research so far.

Interactivity is also considered in the intersection of process mining and visual
analytics. As stated in the process mining manifesto [4], the combination of
both fields has the potential ”to extract more insights from event data”. An
example for such a visual process mining is the EventExplorer [5] which allows
to browse an event log in order to visually explore and assess it. Visual analytics
techniques for process mining algorithms realized in ProM3 along the control
flow, organizational, case, and time perspective are evaluated in [10]. However,
the multidimensional perspective has not been considered yet.

RapidProM [11] allows analysts to interactively model scientific workflows
for process mining by connecting operators in order to define complex analysis
scenarios combining several techniques which should be repeated using different
parameter settings or data sets. In contrast, we focus on supporting explorative
ad-hoc analysis by interactivity instead of predefining an analysis workflow.

3 Approach

In this section, we will present the basic ideas and the concept for an interactive
process mining. Section 3.1 introduces the underlying assumptions for this work.
In Sec. 3.2, we discuss direct interaction with process models and present an
operator framework for supporting interactivity in Sec. 3.3.

3.1 Assumptions

For this work, we assume that events are stored in a data cube which is accessible
by OLAP queries that are expressed by a query language or a graphical user
interface. This query is expected to return a set of sublogs in the usual event log
structure (e.g., as defined in [2]). We do not assume a limitation to particular
algorithms for process discovery, conformance checking, process enhancement,
and consolidation. For the process models, we assume an arbitrary graph-based
representation consisting of nodes and edges. However, there are different kinds
and styles of nodes possible. Furthermore, we only focus on postmortem analysis.
Process mining techniques combining historical data with real-time events like
recommendation and prediction are not in the scope of this work.

3.2 Direct Interaction with Process Models

To make the process analysis as intuitive as possible, it is desirable to allow for
a direct interaction with the process models (cf. first aspect Interaction with
process models introduced in Sec. 1). While modeling tools, for example, en-
able the user to directly interact with the presented model and its elements,
process mining tools (especially tools for MPM) usually only provide a static

3 www.promtools.org



representation. As the models form the central subject of the analysis, MPM
and process mining in general can also benefit from direct interactions with the
process models. Therefore, we aim for an approach that allows the analysts to
directly interact with the models. An example for such an interaction is to click
on a node to highlight all model elements that are part of a trace containing
the selected node. Which action to perform for a particular interaction can be
selected from a toolbox. Alternative actions may be the presentation of addi-
tional information in a dialog or a sidebar. Furthermore, it is possible to enrich
the process models’ nodes and edges with additional user controls like buttons
or context menus. This enables the model to provide different interactions for
the same object at the same time.

Nonetheless, the direct process model interaction can be complemented by
an interaction with external user controls, e.g. sliders, buttons etc. to perform
actions on the model. E.g., the Fuzzy Miner [9] provides sliders to adjust filter
thresholds and update the presented process model. The interaction with the
process model should also incorporate the selection of different perspectives to
dynamically add additional information to the model. To provide a generic solu-
tion, we define variation points of the process model elements that can be used
for the visualization of additional data. Examples are the edge labels, the border
and background colors of nodes, or the line thickness of arcs. Which information
(e.g. frequencies, waiting times) a variation point will visualize is determined by
the user selecting a particular perspective of the process model.

3.3 Operator Framework

In order to address the second and the third aspect (Dynamic analysis workflow
and Und/redo of analysis steps, cf. Sec. 1), our approach introduces an operator
framework. It maps the interactions with the software – especially each analysis
step – onto operators which are organized at different levels according to their
position in the analysis workflow and their data dependencies. Therefore, the
operators of a particular level only consume the results of lower levels as input
while their results are only available for the levels above. Fig. 1 shows the stack
of operators defined by the framework and the data items forming their input
and output. In the following, we will explain the operator levels in more detail.

OLAP An OLAP operation of the framework represents a query that extracts
data from the data cube and returns a set of sublogs as a result. Parame-
ters of the operation are the granularity of the considered dimensions, filter
predicates etc. Note that each of this operations comprises multiple low-level
OLAP operations on the data cube like roll-up, drill-down, slice, and dice.
As the extraction of event data from the cube is necessary to conduct a
process analysis, this operation level is mandatory.

Event Log Processing The optional event log processing enables the analysts
to manipulate the extracted sublogs, e.g., by filtering or aggregating events.
It is also possible to derive new attributes from other attributes (e.g., cal-
culating event durations from the events’ start and end time-stamps). The



Data Cube

Sublogs

Sublogs (processed)

Process Models

Process Models (enhanced)

Process Models
(enhanced, processed)

Log Abstraction (processed)

Process Models
(fitered, enhanced, processed)

View Model

Conformance Metrics

OLAP

Event Log Processing

Classifier

Process Discovery

Model Processing

Process Enhancement

Consolidation

Visualization

Conformance Checking

o

m

o

m

m

o

o

o

m

View Model (styled)

Styling o

Legend

Sublogs Data item

Data 
dependency

OLAP m
Operation 

(mandatory)

Operation 
(optional)

Consolidation o

Log Abstraction

Simple Event Log Processing o

Fig. 1. Stack of operator levels with data items and their dependencies

event log processing operations are functionally overlapping with the OLAP
operators. However, providing filters directly on the sublogs may significantly
reduce the waiting times as loading data from the data cube is the most ex-
pensive operation in MPM in matters of performance. Therefore, applying
these operations can be more efficient than changing OLAP queries.

Classifier The classifier operations select a classifier which is a function that
defines how to map the event data onto a node label necessary for pro-
cess discovery. Using this classifier, these operations create a log abstraction
which consists of a number of classifier-dependent log metrics (e.g., rela-
tions between events and event counts). The log abstraction also comprises
a more abstract representation of the sublog (similar to simple event logs,
cf. [2]) which is derived using the selected classifier. It consists of a set of
(unique) traces and the frequency of their occurrence. Additionally, they
also maintain references to the original cases and events to be able to use
them for process enhancement. Classifier operations are mandatory, because
all process discovery algorithms require a classifier to select the node labels.
Additionally, many process discovery algorithms like the Fuzzy Miner [9] or
the Flexible Heuristics Miner [16] rely on these log metrics. Furthermore,
other techniques like conformance checking (e.g., token replay) can benefit
from the simple event log with respect to performance.



Simple Event Log Processing Similar to the sublogs, the simple event logs
contained by the log abstraction can be manipulated, e.g., traces can be fil-
tered by the number of occurrence. As the simple event logs provide a more
condensed representation of the data giving the frequency of each trace, they
can be processed more efficiently than normal sublogs (which may have du-
plicate traces), especially if they only contain few trace variations. However,
manipulations of simple event logs may effect the log metrics, so they have
to be recalculated after all simple event log operations were executed.

Process Discovery Based on the log abstractions, the process discovery op-
erations create a process model for each cell using an arbitrary algorithm.
Parameters of the operations are the selected algorithm and its individual
settings (e.g., algorithm-specific thresholds). Note that changing the settings
creates a new process discovery operation even if the selected algorithm re-
mains the same. This operation level is mandatory, because the resulting
process models are required for subsequent operation levels.

Process Enhancement These operations apply arbitrary process enhancement
algorithms to the previously discovered process models. As different algo-
rithms may add different perspectives (e.g., organizational or time perspec-
tive), this operation level is chainable.

Model Processing These optional operations manipulate process models, e.g.,
filtering nodes and edges or converting process models from one representa-
tion (e.g., petri nets) to another (e.g., BPMN). As multiple manipulations
of the models may be desired, these operations are chainable.

Conformance Checking Based on the log abstractions and the process mod-
els, these operations measure the quality of the discovered process models.
Examples for this operation are a token replay or a trace alignment in or-
der to measure the fitness of the process models. As the quality metric may
incorporate additional perspectives as well, the enhanced and possibly ma-
nipulated process models are used.

Consolidation The optional consolidation operations select a subset of poten-
tially interesting process models while hiding irrelevant models in order to
reduce the result complexity of MPM. An example for such an operation is
the clustering consolidation (cf. [15]) which creates clusters of similar process
models and selects a representative for each cluster.

Visualization The visualization operations translate the process model into a
corresponding view model to be displayed to the analysts. In contrast to the
previous operations, the visualization is not automatically executed for all
process models but only for the models currently presented to the user.

Styling These optional operations manipulate the view model by changing its
style (e.g., highlighting nodes by color) and linking the variation points of
the visual elements to additional information (e.g., mapping the frequency
of an edge onto its label). Like the visualization operations, they are only
executed for the currently shown models. Furthermore, they are chainable,
because multiple perspectives may be mapped to the view model.

Some levels are required to have at least one operation to be executed to be
able to execute the level above. We call these levels mandatory (marked with



m in Fig. 1). However, there are also optional levels (marked with o) that do
not need to have an operation to be executed. For example, process discovery
operations are mandatory because the resulting process model is required for
the execution of other levels like process enhancement or conformance checking.
In contrast, enhancing the process model is optional.

For each level, the framework manages all executed operators in a separated
list to keep track of the analysis history. If the analyst performs an interaction,
an operation representing this interaction is added to the list of its corresponding
level. Then, the operations of this level and the levels above are consecutively
executed to propagate the changes to the final analysis results. The operations
of the levels below are not executed again as their results remain unchanged.
This avoids unnecessary data processing and results in shorter waiting times
and a faster system response. By managing the operations at different levels, it
is possible to undo or redo operations separately. This enables the analyst to,
for example, go back to the previous OLAP query without discarding the other
performed analysis steps like process enhancement or conformance checking.
The change propagation ensures that the perspective on the process remains the
same, while the underlying data is updated.

The framework keeps track of all performed interactions. Besides providing an
advanced undo/redo functionality, this also prevents the analysts from repeating
analysis steps when they change the underlying OLAP query. The operators also
form an intermediate layer decoupling user interaction and data processing which
makes it easier to link direct interactions (cf. Sec. 3.2) to particular analysis step.

The operations only store the parameters required for their execution, e.g.,
the selected process discovery algorithm and its settings. The data items that
should be processed are centrally managed by the framework and only passed
for execution, so the operators are always considering the current data. For each
level, the framework manages a reference to an operation marking the latest
operation to execute. We call this reference the latest active operation of the
level. There are two different kinds of operator levels:

Chainable levels All operations up to the latest active operation of this level
are consecutively executed in the respective order of their position in the
operation list. All other operations of that list are considered as inactive
and consequently not executed. Operation levels are only chainable if their
input and the output structure are similar so the results of an operation can
be passed to its successive operation as input. This can be useful, e.g., to
execute multiple filter operations on the sublogs, where each operation filters
by a different attribute.

Non-chainable levels For this kind of operation levels, only the latest active
operation is executed. This only applies to operator levels where the opera-
tors transform the input to a differently structured output. An example for
this kind of operator levels is process discovery which takes an event log as
input in order to create a process model as output.

The separation of styling and visualization operations makes it possible to
differentiate between the calculation and the visualization of enhanced perspec-



tives. This way, the analyst can show or hide specific information without any
expensive recalculations. The styling operations link the operator framework to
the direct interaction (cf. Sec. 3.2) by binding event handlers to particular visual
elements. This way, it is possible to provide different reactions, e.g., when the
user clicks on a node, depending on the selected styling operation.

As a view model should provide an integrated view onto to the process which
incorporates multiple perspectives, it is necessary that the styling operations are
chainable. However, it may happen that the user selects two operations that af-
fect the same visual element, e.g., that map different values to the same label.
To avoid confusion and misinterpretations by overriding the result of previous
styling operations, such conflicts need to be resolved. Therefore, each operation
provides a list of all properties of the visual elements it affects. Before adding a
new styling operation, all existing operations are checked if their affected prop-
erties overlap with the affected properties of the new operation. Each operation
that is in conflict with the new operation, will be discarded.

The described concepts contribute to the four aspects introduced in Sec. 1.
The first aspect (Interaction with process models) is directly addressed by the
concept for direct interaction introduced in Sec. 3.2. The operator framework
contributes to the second aspect (dynamic analysis workflow). It allows the user
to dynamically add and execute operations on an arbitrary operation level. Con-
sequently, the users are less restriced during the workflow, because they do not
have to follow a step-by-step configuration of the analysis. The change propa-
gation also ensures that the users do not have to repeat previously performed
analysis steps (like process enhancement) when applying changes to the under-
lying analysis steps (e.g., by adding filters to the OLAP query).

The operator framework also directly contributes to the third aspect (Undo/
redo of analysis steps; cf. Sec. 1): Changing the reference to the latest active op-
eration to the previous operation will revert it, because all operations following
the reference will be ignored. However, as the undone operation is kept in the
list, a redo can be easily achieved by setting the latest active operation reference
to the subsequent operation. Finally, the operator framework also contributes
to aspect four (performance). It ensures that changes to the analysis by adding,
undoing or redoing an operation will only affect the subsequent operations. Op-
erations on lower operation levels do not have to be repeated. This significantly
reduces the waiting times for the user because the extraction of data from the
cube is typically the most expensive task in MPM in matters of processing time.

4 Implementation

We implemented our approach in a prototype called Interactive PMCube Ex-
plorer4 using C# and the .NET framework. It is based on the PMCube Explorer
tool [14] and replaces its orginal user interface. The operator framework (cf. Sec.
3.3) is managed by a central operation manager component while the operators

4 Screencast and tool download available at http://www.uol.de/pmcubeexplorer

http://www.uol.de/pmcubeexplorer


Fig. 2. Screenshot of the Interactive PMCube Explorer tool

are (mainly) integrated as plug-ins. Only the visualization and styling operations
are managed by a separated visualization manager component due to their asyn-
chronous execution (triggered by events) and specific challenges like the conflict
resolution.

Figure 2 shows a screenshot of the Interactive PMCube Explorer tool. As they
form the main subject of the analysis, the process mining results are presented at
the center of the screen using tabs. Tool boxes, options, and additional settings
are flexibly arranged around them to keep the focus on the analysis results. In
this example, one can see the options for defining the OLAP operation (1) and
the available styling operations for the presented process model (2). The styling
operations for annotating the process model with the frequencies of nodes and
edges (left highlighted button) and adding direct interaction to show additional
information (right highlighted button) are activated. The effect of these style
operations on the visualization can be seen in the process model (3), where
additional labels are attached to nodes and edges indicating their frequencies.
The event handlers for direct interaction are linked to the activity nodes and to
additional buttons of the edges, because clicking on thin edges might be difficult
and hindering. Clicking on a node or the edge’s button opens the additional
information in a separated view aside of the process model (4). Above that, the
history view separately shows all performed operations for each level (5). In this
example, one can see the history of process discovery operations highlighting the
latest active operation while the discarded operation is toned down.

The history view allows the user to undo or redo any operation separately for
each level. This enables the user, e.g., to safely try a different parameter setting of
the process discovery algorithm and to return to the previous settings without
repeating the configuration of other analysis steps like process enhancement.



The only exception are the styling operations, which can be directly activated
or deactivated without following the order that they were performed.

To show the feasibility of the approach, the prototype provides several opera-
tors for most levels. A plug-in system allows for the easy integration of additional
operators. The direct interaction is demonstrated by a number of styling oper-
ations, e.g., attaching different information like frequencies and metrics to the
model, color-coding of difference models, and adding event handlers to show time
differences and the additional information view. Besides, it is possible to bind
event handlers to visual elements in order to trigger operations on other levels.
For example, one interaction filters the simple event log to all traces having a
certain activity just by clicking the respective activity node in the process model.

The implementation shows that the operator framework (cf. Sec. 3.3) can be
directly applied to the PMCube approach. However, the operator framework is a
generic concept. Except for the assumptions from Sec. 3.1, it is not restricted to a
particular approach for MPM. In principle, it can be also applied to other MPM
approaches like Process Cubes [3,6] which meets our assumptions for MPM. For
instance, Process Cubes uses OLAP queries to extract sublogs from the cube
and is able to apply different process mining techniques like process discovery,
process enhancement and conformance checking. However, some special analysis
steps (e.g., consolidation of process models) are not considered in Process Cubes.
However, our concepts can still be applied to it if the correspondent operation
levels will be removed. On the contrary, the operator framework cannot be ap-
plied to the Event Cube because it defines MPM in a very different way and does
not meet our assumptions, e.g., it does not create sublogs and defines the OLAP
operations like roll-up and drill-down as manipulations of the process model.

The concept for direct interaction is generally applicable to other MPM ap-
proaches (like Process Cubes) as well as to non-multidimensional process mining.
The basic idea of the operator framework can also be adopted for process mining
tools in general because MPM can be considered as a generalization of tradi-
tional process mining. The differences of non-multidimensional process mining
approaches are mainly related to the number of data items (typically one log
and process model is processed at a time) and some operation levels have to be
skipped (e.g., OLAP) as they are only meaningful in MPM context. Therefore,
also the process mining community in general may benefit from this concept.

5 Conclusions and Future Work

In this paper, we presented a novel research towards interactive process mining.
Its key points are the direct interaction with the process models and the operator
framework which aims to avoid the unnecessary repetition of analysis steps. We
implemented our approach based on the PMCube Explorer tool [14] as a proof-
of-concept prototype which showed the feasibility of the approach. We plan to
evaluate our approach by a user study to investigate the contribution of our
approach to the interactivity of process mining.



References

1. van der Aalst, W.M.P.: Using process mining to generate accurate and interactive
business process maps. In: Abramowicz, W., Flejter, D. (eds.) Business Information
Systems Workshops, BIS 2009 International Workshops. Lecture Notes in Business
Information Processing, vol. 37, pp. 1–14. Springer (2009)

2. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

3. van der Aalst, W.M.P.: Process Cubes: Slicing, Dicing, Rolling Up and Drilling
Down Event Data for Process Mining. In: Song, M., et al. (eds.) Asia Pacific
Business Process Management. LNBIP, vol. 159, pp. 1–22. Springer (2013)

4. van der Aalst et al., W.M.P.: Process mining manifesto. In: Daniel, F., et al. (eds.)
BPM Workshops. LNBIP, vol. 99, pp. 169–194. Springer (2011)

5. Bodesinsky, P., Alsallakh, B., Gschwandtner, T., Miksch, S.: Exploration and As-
sessment of Event Data. In: Bertini, E., Roberts, J.C. (eds.) EuroVis Workshop on
Visual Analytics (EuroVA). The Eurographics Association (2015)

6. Bolt, A., van der Aalst, W.M.P.: Multidimensional Process Mining Using Process
Cubes. In: Gaaloul, K., et al. (eds.) Enterprise, Business-Process and Information
Systems Modeling. LNBIP, vol. 214, pp. 102–116. Springer (2015)

7. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies. McGraw-Hill, Inc., New York, NY, USA, 1 edn. (2009)

8. Günther, C.W., Rozinat, A.: Disco: Discover your processes. In: Lohmann, N.,
Moser, S. (eds.) Proceedings of the BPM 2012 Demonstration Track. CEUR Work-
shop Proceedings, vol. 940, pp. 40–44. CEUR-WS.org (2012)

9. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining: adaptive process simplifica-
tion based on multi-perspective metrics. In: Proceedings of the 5th international
conference on Business process management. pp. 328–343. BPM’07, Springer-
Verlag, Berlin, Heidelberg (2007)

10. Kriglstein, S., Pohl, M., Rinderle-Ma, S., Stallinger, M.: Visual analytics in process
mining: Classification of process mining techniques. In: 7th International Eurovis
Workshop on Visual Analytics. Groningen (2016), (accepted for publication)

11. Mans, R., van der Aalst, W.M.P., Verbeek, H.M.W.E.: Supporting process mining
workflows with rapidprom. In: Limonad, L., Weber, B. (eds.) Proceedings of the
BPM Demo Sessions 2014. CEUR Workshop Proceedings, vol. 1295, p. 56. CEUR-
WS.org (2014)

12. Ribeiro, J.T.S., Weijters, A.J.M.M.: Event Cube: Another Perspective on Business
Processes. In: Robert Meersman et al. (ed.) On the Move to Meaningful Internet
Systems: OTM 2011. LNCS, vol. 7044, pp. 274–283. Springer (2011)

13. Vogelgesang, T., Kaes, G., Rinderle-Ma, S., Appelrath, H.: Multidimensional pro-
cess mining: Questions, requirements, and limitations. In: Proceedings of the
CAiSE’16 Forum. pp. 169–176 (2016)

14. Vogelgesang, T., et al.: Multidimensional process mining with pmcube explorer.
In: Daniel, F., Zugal, S. (eds.) Proceedings of the BPM Demo Session 2015. CEUR
Workshop Proceedings, vol. 1418, pp. 90–94. CEUR-WS.org (2015)

15. Vogelgesang, T., et al.: PMCube: A Data-Warehouse-based Approach for Multidi-
mensional Process Mining. In: Business Process Management Workshops (2015)

16. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). Tech. rep.,
Technische Universiteit Eindhoven (2011)


	A Framework for Interactive Multidimensional Process Mining



