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Abstract. It is crucial to ensure correct process model executions. How-
ever, existing process testing approaches struggle with the verification of
concurrent resource access patters that can lead to concurrency faults,
such as, deadlocks or data corruption during runtime. Thus, we provide
a concurrency verification approach that exploits recorded executions to
verify the most frequently occurring concurrent resource access patterns
with low test execution time. A prototypical implementation along with
real life and artificial process execution logs is utilized for an evaluation.

Keywords: Process Testing, Concurrency, Test Case Prioritization

1 Introduction

Ensuring fault free process executions is crucial [8]. However, this becomes chal-
lenging due to the increased complexity and interconnectivity of processes and
their invoked services and applications [7] (i.e., shared resources). Moreover, or-
ganizations utilize a huge amount of process models [6], where each model likely
spawns multiple concurrently executed process instances [13].

This can result in Hidden Concurrencies (HC). HCs are caused by concurrent
activity executions which invoke the same shared resources. Figure 1 depicts
an example HC. Two instances I1 and I2 are executed concurrently on two
process models P1 and P2 (abstract notation inspired by Petri Nets). I1 and I2
both access the same shared resources, i.e., services S1 and S2, through activity
execution. P2 also contains an obvious (modeled) concurrency based on a parallel
split. The HC is caused by the concurrent access to service S2 by I1 and I2, i.e.,
activities in I1 and I2 invoke S2 within an overlapping time span.

The hidden concurrent access to S2 by I1 and I2 does not become evident at
design time and might lead to a concurrency fault at runtime (i.e., a HC fault)
iff S2 struggles when dealing with the access patterns caused by I1 and I2 (i.e.,
each HC fault is related to a HC, however, a HC can but does not necessarily
lead to a HC fault). A HC fault occurs if multiple activities concurrently access
the same shared resource in a way that creates inconsistencies/deadlocks [14].
Note, that developers do not always employ synchronization [2], paving the way
for HC faults when a resource is concurrently accessed by multiple instances.

Process instances are isolated from each other. However, their access on po-
tentially faulty shared resources is not isolated which can result in HC faults.



Fig. 1. Hidden and obvious (modeled) concurrent executions - example

Moreover it is not obvious if/how multiple resources interact with each other.
These interactions can lead to HC faults even if two “different” resources are
accessed during concurrent executions. Moreover we found that current research
on process verification, cf. [4], has neglected the detection of HCs so far.

Overall this paper addresses the following research questions:
RQ1 How can HCs in process instance executions be detected?
RQ2 How can the most likely HCs be verified with low testing efforts?
RQ3 How can the efficiency of the presented approaches be evaluated?

In order to address above research questions, an automatic verification heuris-
tic for HCs is proposed. It exploits recorded process executions to determine the
most frequently occurring HCs 7→RQ1. Subsequently this information is utilized
to select process test cases which verify the most frequently ocurring concurrent
resource access patterns 7→ RQ2. The conducted evaluation shows the efficiency
and applicability of the presented approach 7→ RQ3.

This paper is organized as follows. Approaches to identify and prevent po-
tential process model execution HC faults are discussed in Section 2. Evaluation,
corresponding results, and their discussion are presented in Section 3. Section 4
discusses related work. Conclusions and future work is given in Section 5.

2 Preventing Hidden Concurrency Faults

Let U denote a process repository containing units u. Note that each unit u ∈ U
is unique and represents a single activity. Assume further that executions of
u ∈ U are logged. A unit’s execution is reflected by an execution event e :=
(u, ts, te), where ts and te denote time stamps which reflect the start and end of
u’s execution. Finally, let a bag O hold all execution events e for a given process
repository U . O can be interpreted as a simple execution log for process activities
and instances, i.e., a collection of execution events over a process repository.

Let a test case, in short test, t ∈ T , consist of a set of process model elements
which are verified/covered by t [3]. Testing units u ∈ U is assumed sufficient,
hence, t :⊆ U . Complete test definitions include additional information (e.g.,
expected variables values) which enable to detect concurrency faults.
Identifying Hidden Concurrencies HCs are identified by analyzing the ex-
ecutions of each process unit. Those executions can be extracted from process
execution logs which are generated by process execution engines. The presented
approach identifies HCs based on unit pairs, (u, u′), u, u′ ∈ U , i.e., a pair of activ-
ities. Unit pairs are utilized because a) a unit pair is the smallest entity that can
provoke a HC; and is b) concentrating on a minimal amount of interactions at



once to simplify the interpretation of the findings; and c) complex concurrency
fault conditions can be represented by grouping units and unit pairs.

Basically, HCs can be observed in four flavors, cf. [1], depending on how the
concurrent execution of two units u, u′ ∈ U overlaps, cf. Def. 1:

Definition 1 (Overlapping Flavors). Let U be a set of units and O be the bag
of associated unit executions. Let further e1 = (u, ts1 , te1), e2 = (u′, ts2 , te2) ∈ O
be two executions for a unit pair u, u′ ∈ U and let ov ∈ [0; 1] be an overlapping
factor. e1, e2 can be related under the following overlapping flavors:

OvlpF := O ×O × [0; 1] 7→ {start/end, complete, almost, no}
OvlpF (e1, e2, ov) =

:=


start/end iff (ts2 ≤ ts1 ∧ te2 ≥ ts1 ∧ te2 < te1) ∨ (ts2 ≥ ts1 ∧ ts2 ≤ te1 ∧ te2 > te1)
complete iff (ts1 ≤ ts2 ∧ te1 ≥ te2) ∨ (ts2 ≤ ts1 ∧ te2 ≥ te1)
almost iff (te2 < ts1 ∨ te1 < ts2) ∧ (t′e2 > t′s1 ∨ t′e1 > t′s2)

no otherwise

where
d1 := te1 − ts1 , d2 := te2 − ts2 ,
t′s1 := ts1 − d1 · ov, t′e1 := te1 + d1 · ov,
t′s2 := ts2 − d2 · ov, t′e2 := te2 + d2 · ov

Definition 1 is used to identify HCs for unit pairs in an execution log O. For
this Eq. 1 compares the executions of all unit pairs u, u′ ∈ U and determines the
respective overlapping flavors and, hereby, the associated HC risk. The HC risk
expresses how likely a HC can be observed for a given unit pair. Note, if a HC
is observed frequently (high HC risk), then a related concurrency fault can have
a high impact on process execution correctness, cf. [14].

Ovlp(O, ov) = {(e.u, e′, f)|e, e′ ∈ O∧e.u 6= e′.u∧f := OvlpF(e, e′, ov)∧f 6= no}
(1)

Def. 2 calculates the HC risk of two units u, u′ ∈ U . Note, that the the min
function limits the concurrent execution likelihood of u and u′ (i.e., the HC risk)
to an interval of [0, 1]. Otherwise the HC risk could exceed > 1 if u′ would be
concurrently executed more than once for each execution of u.

Definition 2 (Concurrency Risk). Let U be a set of units and O be the bag of
associated unit executions. Let further Ovlp(O, ov) be a set of overlapping units,
cf. Eq. 1. Then the HC risk for two units u, u′ ∈ U is calculated as

ConRisk(u, u′) = min( co·ct+seo·set+ao·at
te , 1)

where

– te := |{e ∈ O|e.u = u}|;
– ovrlppngExectns := {o := (u, e, f) ∈ Ovlp(O, ov)|o.u = u ∧ o.e.u = u′};
– ce := |ovrlppngExectns|;
– co := |{(u, e, f) ∈ ovrlppngExectns|f = complete}|;
– ao := |{(u, e, f) ∈ ovrlppngExectns|f = almost}|;
– seo := |{(u, e, f) ∈ ovrlppngExectns|f = start/end}|;



– ct, set, at ∈ [0, 1] weigh the different overlapping flavors (tuning variables)

Def. 2 considers the number of executions of u (te), the number of executions
of u that overlap with an execution of u′ (ce), as well as the number of almost
(ao), start/end (seo), and completely overlapping (co) executions of u with u′.
Moreover, the executions can be weighed along the overlapping flavors using
tuning variables (ct, set, at). This enables to model, for example, that an almost
overlapping execution only represents a likely HC, i.e., it should not have the
same impact on the calculated HC risk as, for example, a complete overlapping.

Eq. 2 calculates the HC risk for all unit pairs u, u′ ∈ U ⊆ U :

OvlpRisk(U) = {(u, u′, r)|u, u′ ∈ U ∧ u 6= u′ ∧ r := ConRisk(u, u′)} (2)

Calculating the HC risk for all unit pairs u, u′ ∈ U ⊆ U enables the identi-
fication of units that frequently experience hidden concurrent executions. This
is exploited to select a set of test cases which reaches a high amount of verified
hidden concurrencies with a low amount of test cases and testing effort.
Test Group Selection Groups of test cases are applied to identify HC faults.
This is because the verification of HCs requires that multiple instances are exe-
cuted concurrently. However, each test only spawns and verifies the execution of
a single instance. Hence, for each unit u multiple test cases must be combined to
a test group which verifies the HCs of u. So, it is necessary to identify which test
cases should be selected from the existing set of test cases T and combined to
test groups tg :⊆ T . As concurrent executions are the precondition for HC faults,
the proposed approach relies on the HC risk during test group construction.

Intuitively, for unit u all units u′ that have a non-zero HC risk with u,
i.e., ∃(u, u′, risk) ∈ OvlpRisk(U), could be considered. However, this can re-
sult in large testing efforts or the non-verification of resource access patters
which require the interaction of several units/instances. Alg. 1 addresses these
considerations by restricting the number of considered u′ with ∃(u, u′, risk) ∈
OvlpRisk(U) to the top gDist ones (gDist ∈ N) with respect to HC risk. Def.
3 provides a function for determining units with maximum HC risk.

Definition 3 (Projection on unit with maximum risk). Let OvlpRisk(U)
be the set of overlapping units for the set of all units U . For a given unit u ∈ U ,
function maxRisk determines unit u′ ∈ U which is the unit with the maximum
HC risk in OvlpRisk(U). Formally:

maxRisk : U × 2OvlpRisk(U) 7→ U
maxRisk(u,OvlpRisk(U)) = u′

with ∃(u, u′, r) ∈ OvlpRisk(U) ∧r = max{r′ | ∃o ∈ RelU with o.r = r′}
where RelU := {o ∈ OvlpRisk(U) | o.u = u)}

Alg. 1 creates an independent unit group for each unit u ∈ U considering
its HC risk with concurrently executed u′ ∈ U and the HC risks of transitively
related units u′′ ∈ U , i.e., units that are executed concurrently with u′.

We can illustrate a unit group, as determined by Alg. 1, as a tree structure
which uses u as its root note. Fig. 2 depicts the construction of a unit group for



Algorithm DetUGrp(u, OvlpRisk(U), gDist, gLvl)
Data: u ∈ U , OvlpRisk(U), gDist, gLvl
Result: set UGroup(u) for u
UGroup(u):={u}
for i=0;i < gDist ∧ gLvl ≥ 0;i++ do

maxR:=maxRisk(u,OvlpRisk(U)) acc. to Def. 3

OvlpRisk(U):=OvlpRisk(U) \ {o ∈ OvlpRisk(U) | o.u = u, o.u′ = maxR}
UGroup(u):=UGroup(u) ∪ DetUGrp(maxR, OvlpRisk(U), gDist, gLvl− 1)

return UGroup(u)

Algorithm 1: Construct unit group for unit u based on the HC risk

Fig. 2. Construction of a unit group, starting from unit S

unit S. By analyzing the HC risk of S it is detected that unit ¬ and ­ have
the highest risk to be executed concurrently with S. Hence, in a first step the
unit group of S collects these two units (gDist = 2). Analogously, the search
for related units with the highest HC risk is expanded to ¬. The search stops
at unit ® and ¯ as the maximum unit group level (gLvl = 2) is reached. Note,
the same expansion is applied on unit ­ (not depicted).

Subsequently, each unit group UGroup(u) is transformed into a new test
group TGroup(t). For each unit u in the analyzed unit group a test case t ∈ T ,
were u is covered by t, is chosen and added to a test group, cf. Alg. 2. This step
is repeated until for each u ∈ UGroup(u) a t ∈ T was added to TGroup(t) that
verifies the correctness of u. In Alg. 2 randSelect(u, T ) = t with t covers u.

Algorithm DetTestGroup(T , UGroup(u))
Data: all tests T and a unit group UGroup(u)
Result: a test group TGroup(t)
TGroup(t):=∅
foreach u ∈ UGroup(u) do

test:=randSelect({ t ∈ T | u is covered by t})
TGroup(t):=TGroup(t) ∪ {test}

return TGroup(t)

Algorithm 2: Transforming a unit group into a test group

Test Group Prioritization As an individual test group is created for each
unit, executing each test group can take a substantial amount of time. Typically
this problem is tackled by test case prioritization, cf. [9]. However, existing test
case prioritization techniques are not applicable for the presented approach, cf.
[4], because they a) only rank single test cases (i.e., test case groups are not
supported); and b) are not specifically tailored for hidden concurrency testing.

Hence, this paper proposes a novel prioritization approach which uses seven
metrics that focus on hidden concurrency fault detection. The primary pri-
oritization metrics P are: test group execution time, test diversity, and HC
risk. In addition, the secondary prioritization metrics S are: amount of test
cases, covered back-end systems, additional coverage, and multi unit coverage.



The PrioV alue(tg, P, S) of a test group tg is determined based on Eq. 3:

PrioV alue(tg, P, S) :=

|P |∑
i=0

1

|P |
· PrioPi (tg) +

|S|∑
j=0

1

2 · |S|
· PrioSj (tg) (3)

PrioPi (tg)/PrioSi (tg), cf. Eq. 3, denote functions that determine the normal-
ized primary/secondary metrics from P/S as described above. Note, that the
division by 2 for secondary metrics decreases their influence. Eq. 3 enables to re-
peatedly identify and subsequently execute the tg with the maximum identified
PrioV alue(tg, P, S) until all test groups are executed.

3 Evaluation

The evaluation test data consists of real life process execution logs (BPIC) from
the BPI Challenge 20151 and artificial logs (TeleClaim) which describe the han-
dling of insurance claims in call centers (source: [12]2).

The real life log data consists of 262,628 events, 5,649 process instance execu-
tion paths, and 398 activities – recorded from 2010 to 2015 and provided by five
Dutch municipalities (BPIC15 1 to BPIC15 5). The artificial log data consists of
46,138 events, 3,512 process instance execution paths, and 11 unique activities.
All evaluated logs contain the start and end time of each activity execution.
Metrics and Evaluation The evaluation was designed to assess if HCs occur
during process model executions. Subsequently, it was checked if existing load
testing approach are sufficient to test identified HCs. Finally, the efficiency of the
proposed test prioritization approach is evaluated. For this multiple prioritiza-
tion approaches are compared using the Average Percentage of Faults Detected
(APFD) metric, cf. [9]. A high APFD ensures a high fault detection rate with a
minimal amount of test group executions and test group execution time.

The APFD ∈ [0, 1] is calculated using Eq. 4. Hereby, n is the number of test
groups TG, m is the number of known faults F to search for, and Pos(tg, Fi)
identifies the rank/position of the test group tg ∈ TG that identifies fault Fi ∈ F .

APFD(n,m, TG, F ) = 1−
∑m

i=0 Pos(tg, Fi)

n ·m
+

1

2 · n
(4)

Note, the random aspects of the evaluation were evened out by executing it
100 times and taking the average result. The HC faults, which are “searched”,
in the following, were generated by randomly selecting pairs of activities that
are executed concurrently, i.e., a HC. These randomly chosen activities are then
marked as faulty and the analyzed testing approaches strive to construct test
groups which cover those faulty HCs (11/3 HCs were marked as faulty for BPIC/
TeleClaim). Each recorded execution path is covered by at least one test.

1 http://www.win.tue.nl/bpi/2015/challenge—DOI: 10.4121/uuid:31a308ef-c844-
48da-948c-305d167a0ec1

2 http://www.processmining.org/event_logs_and_models_used_in_book

http://www.win.tue.nl/bpi/2015/challenge
http://www.processmining.org/event_logs_and_models_used_in_book


Fig. 3. Efficiency of the presented test group prioritization approach

Results The results were generated by analyzing the BPIC and TeleClaim ex-
ecution log files with a proof-of-concept implementation of the presented ap-
proach. The JAVA 7 source code/documentation of the implementation can be
found on GitHub at https://github.com/KristofGit/Hidden_Concurrency.

The evaluation utilized an overlapping factor ov of 0.1 while the HC risk
tuning variables were set to at = 0.1, set = 0.8, and ct = 1. The BPIC (gDist =
5/gLvl = 3) and TeleClaim (gDist = 2/gLvl = 2) data was analyzed with
different values for gDist/gLvl because the TeleClaim processes are simpler than
the BPIC processes so that smaller test groups are sufficient.

We found that the analyzed execution logs contained tens of thousands HCs
for each overlapping flavor. Hence, we checked if existing load testing based
approaches are sufficient to test each HC in a reasonable amount of test execution
time. Unfortunately, we found that load testing would require about 27 days test
execution time to identify all HC faults in the TeleClaim processes. Note, the
BPIC processes are more complex and would require even more test execution
time. Hence, test prioritization techniques are a necessity.

The evaluation shows (cf., Eq. 4 and Fig. 3) that the proposed approach cre-
ates the fastest test group ranking/execution order which identifies all artificial
HC faults in the least amount of time. Note, that the proposed approach not only
creates a better result than the baseline random approach but also as the addi-
tional coverage based approach which is a standard approach in existing work,
cf. Fig. 3. When applying test group prioritization the amount of test group
executions, required to identify all faults, is reduced to 127 (BPIC) and 2 (Tele-
Claim) because only minimal set of all available test groups must be executed to
identify all faults. This significantly reduces the test group execution time, i.e.,
about 52 minutes would be required to identify all TeleClaim HC faults.

4 Related Work

Support for concurrency fault detection in the business process domain is limited,
cf. [4]. For example, existing process testing approaches (cf. [11,15,10,5]) ignore
concurrency or only consider a single process so that HCs will, most likely, not
be identified. The last drawback applies to all the found work, cf. [4].

The most advanced approach, [5], reduces the concurrency testing workload
by incorporating back-end services during test case selection by focusing on
activities which could concurrently access the same back-end service. However,

https://github.com/KristofGit/Hidden_Concurrency


this work still ignores hidden concurrency faults generated by the concurrent
execution of multiple processes and process instances (i.e., it only concentrates
on a single process model and obvious modeled concurrent control flow paths).

5 Conclusions

The proposed test prioritization heuristic reduces the testing effort to process
model execution scenarios and units which most likely trigger concurrency faults
7→ RQ1 and RQ2. Moreover, the proposed algorithms were designed in a con-
figurable fashion so that also very rarely occurring concurrency faults can be
identified. The evaluation results show the efficiency/applicability of the pre-
sented approach for real life and artificial processes 7→ RQ3.
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