
1

Towards a Pattern Language for Construction and Maintenance
of Software Architecture Traceability Links

MUHAMMAD ATIF JAVED, SRDJAN STEVANETIC, UWE ZDUN

University of Vienna, Faculty of Computer Science, Software Architecture Research Group, Vienna,

Austria

The documentation of software architecture traceability links is the foundation for many important architecture management

activities, such as verification and validation, reuse evaluation and impact analysis. In practice, the construction and maintenance
of traceability links is mostly manual, which is labor-intensive and error prone. Although the costs of manual traceability in

terms of the time, effort and money required can be mitigated by automated construction, the completeness and correctness

of traceability links tends to be negatively affected by automation in their creation and maintenance. This paper presents
a pattern language for construction and maintenance of software architecture traceability links to requirements and source

code. As a foundation for deriving the pattern language, we have performed systematic literature reviews, investigations of
traceability links for multiple open-source software systems, and empirical studies. In particular, we studied the nature of the

software architecture traceability phenomenon and its driving factors and impacts, as well as the methods that provide the

means to control software architecture traceability. The derived pattern language provides support for addressing multiple
decision categories for construction and maintenance of software architecture traceability links. To illustrate the patterns, their

application is shown in the context of constructing and maintaining traceability links for an open source framework for mobile

games.

CCS Concepts: •Software and its engineering → Software architectures; Documentation;

Additional Key Words and Phrases: Software Architecture, Traceability Patterns, Grand Challenge 2 (Cost-Effective) and 4

(Trusted) of Traceability.

1. INTRODUCTION

The IEEE standard glossary of software engineering terminology defines traceability as “the degree to which
a relationship can be established between two or more products of the development process, especially
products having a predecessor-successor or master-subordinate relationship to one another” [IEEE 1990]. The
construction and maintenance of traceability links is mostly manual in practice, which is perceived as costly
in terms of the time, effort and money expended [Gotel et al. 2012]. Therefore, much of the current research
in software traceability aims at simplification of traceability construction and maintenance by reducing the
human effort required. The idea of semi-automatic traceability is to determine where manual intervention
is avoidable, reduce the required human involvement, and provide better guidance and tool support. In this

This work is supported by the Austrian Science Fund (FWF) under project P24345-N23.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
c© 2015 ACM. 1544-3558/2015/05-ART1 $15.00
DOI: 0000001.0000001

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:2 • M. A. Javed, S. Stevanetic, U. Zdun

context, model-driven support for eliciting and formalizing [Navarro and Cuesta 2008; Tran et al. 2011] as
well as capturing [Haitzer and Zdun 2012] software architecture traceability links can be achieved.

The constructed traceability links need to be maintained (continuously or on-demand) as a project evolves so
that up-to-date traceability links would be available when needed. The continuous maintenance of traceability
links can be triggered by changes to any of the software artefacts (e.g., architecture components) that, in
turn, can be triggered by changes to artefacts within a traceability chain (e.g., underlying requirements and
the code classes that implement the component). Semi-automatic support for such event-based maintenance
can also be achieved [Hammad et al. 2011; Buchgeher and Weinreich 2011; Mäder and Gotel 2012]. However,
the continuous maintenance of traceability links might not be a feasible solution in case of a substantial
evolution of a software system, such as a new major version in large real-world project, because the time
and effort required might be too high. In this particular case, on-demand reuse and evolution adaptation of
traceability links could be performed in the context of different versions of a software project.

Automated information retrieval and machine learning techniques, although helpful to a certain extent,
do not completely prevent from insufficient understanding and/or misunderstanding of traceability links,
resulting in the unconscious violations during the construction of traceability links. At present, the automated
approaches and tools can achieve a completeness of 90% at correctness levels of 5–30% [Antoniol et al. 2002;
Chen and Grundy 2011; Hayes et al. 2006; Lucia et al. 2007; Oliveto et al. ; Zou et al. 2010]. Note that the
completeness (recall) and correctness (precision) are well-known traceability measures, where recall is defined
as the percentage of correct links that are retrieved and precision is defined as the percentage of retrieved
links that are actually correct [Baeza-Yates and Ribeiro-Neto 1999; Harman 1992]. Further research has
shown that the problems with automated traceability cannot be completely eliminated after validation by a
human analyst [Cuddeback et al. 2010; Dekhtyar et al. 2011; Niu et al. 2013].

The architectural level is well suited for construction and maintenance of traceability links, as the software
architecture allows (early) reasoning on the quality attributes of the system [Clements et al. 2002] and the
software architecture not only describes the high-level structure and behaviour of the system, but also incor-
porates principles and decisions that determine the system’s development and its management [Bengtsson
et al. 2004]. To measure the quality attributes of the system, different software measures (metrics) are used.
Those metrics take into account the information contained in the architecture and other system artefacts as
well as in the corresponding traceability links (see below for details). Therefore, the way in which traceabil-
ity links are constructed can influence the quality attributes of the system. This paper presents a pattern
language for construction and maintenance of software architecture traceability links to requirements and
source code. The pattern language is mined from the following sources:

(1) Two systematic literature reviews on (1) software architecture traceability approaches, tools [Javed and
Zdun 2014] and (2) architecture level software metrics [Stevanetic and Zdun 2015] have been performed.
The results reveal that the research in software architecture traceability has been primarily directed
towards new approaches and tools; however, less research focuses on analysing and quantifying the points
at which the potential violations in automated traceability would be resolved [Javed and Zdun 2014].
Our systematic mapping study on software metrics for architectural structures provides an overview
of the metrics for measuring different quality aspects, such as size, complexity, coupling, cohesion, and
modularization of those structures together with the information on how those metrics are used to
evaluate external quality attributes like maintainability or understandability [Stevanetic and Zdun 2015].

(2) For identification of potential architectural violation points and their resolutions as well as for the
purpose of conducting multiple empirical studies, traceability links for multiple open-source software
systems have been constructed. The construction of traceability links was a very time-consuming task

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:3

that was completed over the course of three months by reviewing the available literature related to the
software systems and then we manually hunting for the features in the source code.

(3) Finally, a number of empirical investigations have been conducted. We have studied human analyst
performance in software architecture traceability as well as which software metrics can be used to predict
external software qualities with a special focus on understandability [Javed and Zdun a; b; c; Javed et al.
2015; Stevanetic et al. 2014; Stevanetic and Zdun 2014b].

The remainder of this paper is structured as follows: Section 2 introduces a motivating example for trace-
ability of software architecture to requirements and source code. Section 3 describes the pattern language
for construction and maintenance of software architecture traceability links. We discuss the related work in
Section 4, and conclude in Section 5.

2. MOTIVATING EXAMPLE

The Soomla Android store1 allows mobile game developers to easier implement virtual currencies (tokens,
coins, gems, etc.), virtual goods and in-app purchases. The high-level architecture design of the Soomla
Android store Version 2.0 comprises of five components, named as StoreAssets, StoreController, Databas-
eServices, GooglePlayBilling, and Security. In addition, two external components can be modeled: Google-
PlayServer, the REST Web Services running at Google, and SQLLiteDatabase, the used database accessed
over JDBC. Figure 1 illustrates the traceability links of a component in the Soomla Android store architecture
to its underlying requirements and the code classes that implement the component. The use of traceability
links is considered critical for rigorous software development. For example, in order to find out whether the
software architecture implements all of the specified software requirements, all aspects of the architecture
need to be traceable to software requirements. To enable further analysis and make dependencies more ex-
plicit, the artefacts from the other activities of the development process, such as the implementation, would
also need to be linked to the established specifications.

In our previous work, we have shown that traceability links play an important role in better reasoning and
understanding of an architecture using Soomla as an object of study [Javed and Zdun b]. For the Store-
Controller component highlighted in the figure, for example, these links help developers and maintainers
to identify changes by determining the artefacts that are affected by change and thus estimating the effort
for applying a particular change [Javed and Zdun c]. The calculation procedure for reuse evaluation, with a
focus on software architecture traceability links, is also carried out in a similar manner to the calculation of
the evolution analysis. Traceability links also support the verification and validation of software systems. In
this context, they provide the means to check whether the StoreController component is complete and con-
sistent with the requirements and the source code. Note that the U.S. federal aviation administration (FAA)
and capability maturity model integration (CMMI) require similar traceability practices [Radio Technical
Commission for Aeronautics RTCA 1992; McClure 2011].

1Soomla is an open source framework that provides a software development kit for implementing every day virtual economy

operations in mobile games; see http://soom.la/.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:4 • M. A. Javed, S. Stevanetic, U. Zdun

Requirements The SOOMLA Android store supports consumable items. The user is

expected to consume virtual goods and repurchase them. Tokens, coins and gems are

some examples of virtual currencies. To purchase the virtual goods, the static and

balance driven price models should be implemented. After some time, when the virtual

currency is insufficient, the user would have to purchase a virtual currency pack, such as

10 coins pack or 20 coins pack. The pack holds the virtual currency and its

corresponding price, i.e., the cost of the pack. SOOMLA also supports non-consumable

items that are expected to last forever. This type of goods will be used to implement

additional levels, a remove ads feature, or upgrading to a premium version of the game.

The controller manages the important store functions such as, purchase products

from Google Play, buy virtual goods and get events on whatever happens. The

publish-subscribe pattern can be used for event handling. In order to be notified of

store-related events, the organizer can register for events, get notifications on

various events and create the game-specific behaviour to handle them, as an

addition to the behaviour already specified by SOOMLA. The android-store-google-

play can be selected as the default billing service plugin. It uses the default code given by

Google which was adapted to IabHelper and IIabService interfaces. Hence, it is useful to

SOOMLA s android-store. The virtual economy s metadata is saved on the encrypted

database of the user s devices. In this context, the key-value store would be implemented

on top of the SQLite. Besides that, the operations for a simple key-value store have to be

provided. An advanced encryption standard algorithm can be used to secure the user s

data on the device. The goal of the encryption algorithm is to encode a byte array into

Base64 notation, decode web safe Base64 content in byte array format and return the

decoded data.

com.soomla.billing

PurchaseObserver.java

BillingReceiver.java ResponseHandler.java Security.java

Consts.java BillingService.java

com.soomla.billing.util

AESObfuscator.java Base64.java

Base64DecoderException.java

com.soomla.store

SoomlaApp.java

AndroidBus.java BusProvider.java IStoreAssets.java StoreConfig.java

StoreController.javaStoreInventory.java

com.soomla.store.data

ObscuredSharedPreferences.java

JSONConsts.java KeyValDatabase.java KeyValueStorage.java

NonConsumableItemsStorage.java

StoreDatabase.java

StorageManager.java

StoreInfo.java

StorefrontInfo.java

VirtualCurrencyStorage.java

VirtualGoodsStorage.java

com.soomla.store.domain.data

AbstractPriceModel.java AbstractVirtualItem.java NonConsumableItem.java VirtualGood.java

VirtualCategory.java VirtualCurrency.javaGoogleMarketItem.java

StaticPriceModel.java

VirtualCurrencyPack.java

com.soomla.store.exceptions

InsufficientFundsException.java

NotEnoughGoodsException.java

VirtualItemNotFoundException.java

 «database»

SQLLiteDatabase

GooglePlayBilling

StoreController

StoreAssets

DatabaseServices

Security

Assets

AssetsInfo

 «RESTWebService»

GooglePlayServer

 «jdbc»

 «rest»

SecureCode

Obfuscator

Preferences

Storage

BillingAccess

Software Architecture

Source Code

com.soomla.store.events

MarketRefundEvent.java

UnexpectedStoreErrorEvent.javaCurrencyBalanceChangedEvent.java

BillingSupportedEvent.java

MarketPurchaseStartedEvent.java

GoodBalanceChangedEvent.java

MarketPurchaseEvent.java

BillingNotSupportedEvent.java

ClosingStoreEvent.javaGoodPurchasedEvent.java

OpeningStoreEvent.java VirtualGoodEquippedEvent.java

VirtualGoodUnEquippedEvent.java

GoodPurchaseStartedEvent.java

BalanceDrivenPriceModel.java

The controller manages the important store functions such as, purchase products
from Google Play, buy virtual goods and get events on whatever happens. The
publish-subscribe pattern can be used for event handling. In order to be notified
of store-related events, the organizer can register for events, get notifications on
various events and create the game-specific behaviour to handle them, as an add-
ition to the behaviour already specified by SOOMLA.

Fig. 1: Traceability Links of a Component in the Soomla Android Store Architecture to its Underlying Requirements and the
Code Classes that Implement the Component

3. PATTERN LANGUAGE FOR CONSTRUCTION AND MAINTENANCE OF SOFTWARE ARCHITECTURE
TRACEABILITY LINKS

3.1 Pattern Language Overview

In this section, we describe our pattern language by providing a short summary for each pattern and providing
a pattern language map. The identified pattern language consists of five patterns:

—Initial traceability construction resolves the problem of establishing clear and straightforward
links as a first step towards cost-effective and trusted traceability construction. The link construction
not only focusses on textual similarity, but also on the adaptation and reorganization of principle classes
based on their relationships, in order to achieve conformance with the architectural components and their
interconnections.

—Traceability completion resolves the construction of an entire set of traceability links utilizing an
initial set of traceability links. Accordingly, this process focuses on classification scores with an explicit
consideration of the architectural conformance.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:5

—Continuous traceability maintenance helps in maintaining traceability links in case of small evolu-
tionary changes captured as change events. The evolutionary changes that require traceability update are
recorded and used to find a match with performed maintenance activities.

—On-demand traceability maintenance is used to perform an overall update of previously established
traceability links to the new version of a software project. It focuses on component-to-component features
for identification and prioritization of previous traceability links constructed using the traceability
completion pattern, which are then used to perform reuse and adaptation of traceability links based on
the matches and mismatches, respectively.

—Traceability quality checks resolves the problem of reduced external system qualities affected by
the way in which the component architecture is partitioned and the traceability links are constructed. The
pattern aims at improving the quality of the component architecture partitioning so that desired external
system qualities are improved. External system qualities are estimated using software metrics that can be
calculated from the system itself taking into account the traceability information. Estimated qualities and
metrics are used as a guide to step by step improve the quality of the component model.

Figure 2 shows a pattern language overview diagram. The relationships among the elements of the diagram
are represented by the labelled arrows.

Structural Mapping

Probabilistic

Classification

Event-Based Monitoring

Reuse and Adaptation

Traceability Quality

Checks

Software Assets

(requirements, architecture, source

code)initial traceability

links construction

remaining

links

construction

quality

improvemen
ts

small
maintenance

changes

large

maintenance
changes

using

classification

rules

Software Assets

(requirements, architecture, source

code)

Initial Traceability

Construction
Traceability Completion

Continuous Traceability

Maintenance
Traceability Quality

Checks
On-Demand Traceability

Maintenance

uses

uses uses uses

uses

creates uses

creates

updates

Software Assets

(requirements,

architecutre, code)

Initial Traceability Links

Complete Traceability

Links

Artefacts

Patterns

Fig. 2: An Overview of the Pattern Language

3.2 Pattern: Initial Traceability Construction

You want to construct an initial set of traceability links between software architecture and other artefacts
produced in the requirements and implementation activities of the development process.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:6 • M. A. Javed, S. Stevanetic, U. Zdun

qqq

How can you identify an initial set of traceability links for each architectural component in
order to provide a basis for the traceability construction process?

The inability to achieve an initial set of correct traceability links leads towards reduced correctness and
proliferation of links in automated traceability approaches and tools. Hints for constructing the initial set
of traceability links can be detected for instance through the textual information, such as using the same or
similar names. However, the violations of architectural conformance (i.e., absences and divergences) need to
be identified and resolved.

qqq

An initial set of traceability links is established with a focus on constructing the clear and
straightforward links as a first step towards cost-effective and trusted traceability construction.
The initial traceability construction pattern not only focusses on the textual similarity, but
also on the adaptation and reorganization of main classes based on their relationships, in order
to achieve conformance with the architectural components and their interconnections.

The functionality required and provided by a component is often specified in the software architecture
models and source code classes as interface interactions. However, there is also the possibility that the
interfaces are not modelled and/or unavailable in the software implementation. If interfaces are available in
the software implementation, the probabilities can be propagated across implements-relationships and the
interface calls made through the instance references. The classes that implement an interface define their
own behaviour within the component (i.e., a provided interface) whereas the classes calling an interface
indicates the requiring connected component (i.e., a required interface). If interfaces are not available in the
project implementation, the classes with 2-3 times higher relationships than average should be taken into
consideration first. In this context, the software architecture needs to be preprocessed to capture constituent
elements and their interconnections; whereas the source code is preprocessed to extract the dependency,
association, generalization and realization relationships. Besides that, indicator terms in the requirements,
software architecture and source code classes are extracted. The initial traceability construction
pattern not only focuses on “textual similarity”, but also on “adaptation and reorganization of main classes
based on their relationships” in order to achieve “conformance with the architectural components and their
interconnections”. In this context, the possible causes of non-conformance (i.e., absences and divergences)
need to be detected and resolved. An absence is the violation that a relation is described in the architectural
model, but not reflected in the source code. A divergence is the violation that a relation is not modelled in
the architectural model, but exists in the source code. In the context of machine learning, a training dataset
can be developed to support the identification and analysis of the initial traceability links. An overview of
the initial traceability construction pattern is presented in Figure 3.

We have conducted a controlled experiment on human analyst performance for different kinds of traceability
links to find out whether an initial set of correct links for each architectural component is better than an
almost complete traceability links with a reduced correctness [Javed et al. 2015]. The participants with the
initial set of correct links reveal a focus on a traceability-based assessment process, which was mainly driven
by exploring the imports and source code packages of the main classes. However, the participants provided
with nearly complete but highly imprecise links generated using an information retrieval based tool focus
on finding out the correct traceability links. It was hard for them to further explore the remaining set of
relevant links. The evaluation of the experiment showed that the highest completeness and correctness of
elements can be achieved using an initial set of correct links compared to the nearly complete but highly
imprecise links.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:7

Phase 1: Preprocessing

Step 2.1: Perform information retrieval

analysis for matched indicator terms

Phase 2: Construction of initial traceability links between architectural models and the source code

Step 2.2: Adaptation and reorganization of principle classes based on

their relationships to achieve the architectural conformance

Phase 3: Construction of initial traceability links to the underlying requirements

Step 3.1: Construct the initial traceability links to the underlying requirements based on the analysis of indicator terms that are

extracted from the traced artefacts related to specific component

Step 1.1: The structural information is extracted from the software architecture models and the source code. Besides

that, the indicator terms in the requirements, software architecture and source code classes are extracted

Fig. 3: An overview of the initial traceability construction pattern

Let us consider the example of the Soomla Android store Version 2.0. The construction of an initial set of
traceability links between the Soomla Android store architecture and its underlying requirements and the
implementation classes can be reflected in three constituent steps:

Step 1: The software architecture is pre-processed to capture the StoreController, GooglePlayBilling, Se-
curity, DatabaseServices and StoreAssets components, and their interconnections; whereas the analysis of
relationships between source code classes leads to the selection of nine classes with ten or more relation-
ships: StoreController, StoreInfo, BillingService, Security, AESObfuscator, VirtualGoodsStorage, StorageM-
anager, VirtualCurrencyStorage and VirtualGood. Besides that, the indicator terms from the requirements,
software architecture and source code classes are extracted.

Step 2: The selected classes are mapped to the architectural components in a systematic manner to achieve
conformance with the architectural components and their interconnections as shown in Figure 4. The
information retrieval analysis indicates that the StoreController, BillingService and Security classes can
be mapped to the StoreController, GooglePlayBilling and Security components, respectively. The anal-
ysis of relationship paths further confirms that the StoreController class cannot be mapped to any of
the components easily. In this context, the class with highest relationships is mapped to the component
connected with all the extracted components. It is detected that the BillingService class has relationships
with the StoreController and Security classes, which confirms the mapping of this particular class to the
GooglePlayBilling component. The AESObfuscator class has relationships with the Security, StoreInfo,
StorageManager, VirtualGoodsStorage and VirtualCurrencyStorage classes. As the relationships between
classes reflect the architectural components and their interconnections, the StoreInfo class is mapped to
the StoreController component, while the Security and AESObfuscator classes are mapped to the Security
component. Furthermore, the StorageManager, VirtualGoodsStorage and VirtualCurrencyStorage classes
are mapped to the DatabaseServices component due to the mutual term ‘Storage’ and their relationships.
Similarly, the VirtualGood class is mapped to the StoreAssets component.

Step 3: The links to underlying requirement should be constructed based on the analysis of indicator terms
in the traced artefacts related to specific component. For example, the ‘Google’, ‘Play’, ‘Billing’ and
‘Service’ terms – extracted from the GooglePlayBilling component and BillingService class – provide the

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:8 • M. A. Javed, S. Stevanetic, U. Zdun

means for identification of the following corresponding text: “the android-store-google-play can be selected
as the default billing service plugin.”

VirtualGood

AESObfuscator

StoreInfo

VirtualGoods

Storage
StoreController StorageManager

Security

BillingService
0..1

0..*

0..1

0..1

0..1 VirtualCurrency

Storage
0..1

Component:

StoreController

Component:

StoreAssets

Component:

DatabaseServices

Component:

Security

Component:

GooglePlayBilling

Fig. 4: Alignment of source code classes in terms of the architectural conformance

Multiple traceability approaches and tools require initial traceability links from the developers to produce
better results [Nguyen et al. 2005; ?; ?]. In this context, the machine learning techniques require training
dataset from the developers, and therefore tends to provide better results than information retrieval tech-
niques. The inability to achieve the initial set of correct traceability links lead towards reduced correctness
and proliferation of links in automated traceability approaches and tools.

3.3 Pattern: Traceability completion

You want to construct the entire traceability links between a software architecture and other artefacts
produced in the requirements and implementation activities of the development process.

qqq

How can you transform a set of initial traceability links into an entire set of traceability links
by determining a preferred candidate solution?

After constructing the initial traceability links, the hints for entire traceability links can be detected through
the classification scores and architectural violations. Therefore, the main reason of first constructing the prin-
cipal traceability links is that the probabilities for the least dependent artefacts could be later changed.

qqq

The initial set of traceability links can be used as an active countermeasure to arbitrarily
making traceability decisions and to maintain and preserve the trust in further traceability
construction. In particular, it helps in assignment of classification scores with an explicit con-
sideration of the architectural conformance.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:9

The construction of traceability links is not an essential part of project planning and management in gen-
eral, and therefore often tackled in isolation when needed in projects, rather than built into the software
development lifecycle. The exemptions are model-driven development and formal development processes in
which the transformations provide essential support for traceability. The initial set of identified links provide
a basis for analysing and evaluating the likelihood of unconstructured traceability links. A main reason of
first constructing the principal traceability links is that the probabilities for the least dependent artefacts
could be later changed.

In the traceability completion process, the classes that tend to be linked to the same components, for
example, related by «extends» relationships with the traced classes can be first handled. In the subsequent
step, the classes with similar indicator terms can be taken into consideration. Finally, the undetected classes
are mapped based on higher relationships with a class(es) in specific component. Most importantly, the
“classification scores” and “architectural violations” have to be considered for mapping to the corresponding
components. As with the initial traceability construction pattern, the indicator terms in the traced
artefacts related to specific component are used to identify the underlying requirements. An overview of the
traceability completion pattern is presented in Figure 5.

Phase 1: Initial Traceability links

Step 2.1: Identify the classes

that tend to be linked to the

same components

Phase 2: Complete the traceability links between architectural models and the source code

Step 2.2: Perform information

retrieval analysis for matched

indicator terms

Phase 3: Complete the traceability links to the underlying requirements

Step 3.1: Complete the traceability links to the underlying requirements based on the analysis of indicator terms that are

extracted from the traced artefacts related to specific component

Step 1.1: The initial set of traceability links can be used as an active countermeasure to arbitrarily making

traceability decisions and to maintain and preserve the trust in further traceability construction

Step 2.3: Compute the classification

scores and architectural violations with

a class(es) in specific component

Fig. 5: An overview of the traceability completion pattern

Two of the empirical investigations have shown that architecture-level software understanding [Javed and
Zdun b] and evolution analysis [Javed and Zdun c] tasks are significantly better performed when providing
traceability links, whereas no significant differences with regard to the experience of the participants are
observed [Javed and Zdun b]. Another study has shown that traceability is more important in larger software
systems [Javed and Zdun a]. In these particular studies, the completion of traceability links was based on
the analysis of initial traceability links.

Let us consider the initial set of traceability links constructed for the Soomla Android store Version 2.0.
The completion of traceability links is performed in a particular manner: The VirtualGood, VirtualCurrency,
VirtualCurrencyPack and NonConsumableItem classes «extends» AbstractVirtualItem class. Furthermore,
the StaticPriceModel and BalanceDrivenPriceModel classes «extends» AbstractPriceModel class. Based on

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:10 • M. A. Javed, S. Stevanetic, U. Zdun

the classification scores and no violation of the architectural model, they are mapped to the StoreAssets com-
ponent. The analysis of indicator terms identified fourteen candidate classes, in which the KeyValueDatabase
and StoreDatabase classes, detected based on the ‘Database’ term are mapped to the DatabaseServices
component due to the higher score and architectural conformance. In addition, the KeyValueStorage and
NonConsumeableItemStorage classes, detected based on the ‘Storage’ term are mapped to the DatabaseSer-
vices component. It is detected that the relationships of six remaining classes are covered with the mapped
classes. Besides that, another nine classes are mapped based on the analysis of classification scores and ar-
chitectural conformance. The identification of underlying requirements is based on the matched indicator
terms with the traced artefacts related to a specific component.

Asuncion et al. [Asuncion et al. 2010] propose an architecture-centric approach to support traceability be-
tween architecture models in the ArchStudio tool and other architecture artefacts, including Web Sites, PDF
files, Word files, Powerpoint presentations, and Excel spreadsheets. This traceability link recording approach
is combined with topic modelling, a widely-used machine learning technique for automatically inferring se-
mantic topics from a text corpus. Mirakhorli and Cleland-Huang [Mirakhorli et al. 2012] utilizes information
retrieval and machine learning methods to train a classifier (e.g., training with tactic descriptions and code
snippets), to detect the tactic-related classes. However, the probabilistic classifier computes the weight scores
to evaluate the likelihood of unconstructed traceability link.

3.4 Pattern: Continuous Traceability Maintenance

You want to perform continuous maintenance of software architecture traceability links in response to smaller
evolutionary changes in requirements, architecture design or source code.

qqq

How can you maintain software architecture traceability links for smaller evolutionary changes
by reducing the human effort required?

Traceability links need to be maintained as a project evolves so that up-to-date traceability links would
be available when needed. In this context, three types of change can be considered: (i) the changes that
have no impact on the related elements, (ii) the changes that have impact on the related elements, but do
not require structural changes and (iii) the change that have impact on the related element and, due to
changes in the structure, also on traceability links. On the one hand, the automated reconstruction of all
traceability links upon modifications in development artefacts lead towards problems caused by overwriting
manual changes. On the other hand, the manual maintenance of traceability links is labour-intensive and
error-prone; in particular, it comprises of recognizing the maintenance task, navigating the relevant software
artefacts and performing the required changes.

qqq

The evolutionary changes can be monitored to capture the change events. In particular, they
are matched with the predefined rules to direct the update of impacted traceability links. Each
rule contains a name, description and alternative ways to perform the particular activity.

The constructed traceability links need to be maintained as a project evolves; otherwise, they get lost or rep-
resent false links. A step by step degradation of traceability links lead towards traceability decay. The idea of
the continuous traceability maintenance pattern is to continuously monitor the evolutionary changes
in order to update the impacted traceability links immediately following changes of the traced artefacts.
The continuous maintenance of traceability links is triggered by changes to any of the software artefacts

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:11

(e.g., architecture component) that, in turn, can be triggered by changes to artefacts within a traceability
chain (e.g., underlying requirements and the code classes that implement the component). To update the
traceability links, the nature of change should be analysed to determine what updates are necessary. Six
types of changes require traceability update: (i) adding an element, (ii) deleting an element, (iii) replacing an
element, (iv) merging several elements into one whole, (v) splitting an element into parts, and (vi) modifying
an element by adding or removing parts.

This can be realized by observing these change events: In order to perform the continuous maintenance of
traceability links, an event generator recognizes the changes in software assets, whereas the rules are used to
retrieve the impacted links and define updates for links.

Event-based support for updating traceability links is for instance integrated in ARTiSAN Studio2 and Sparx
Enterprise Architect3 to handle the necessary elementary change events and permit for the manipulation of
traceability relations from outside the tool.

3.5 Pattern: On-Demand Traceability Maintenance

You want to perform on-demand maintenance of software architecture traceability links in the context of
different versions of a software project.

qqq

How can you perform an overall update of traceability links in response to substantial evolution
of a software system?

In case of a substantial evolution of a software system, such as a new major version, the traceability links
often need to be constructed again. Just consider the effort in large scale, maybe even highly distributed
software projects for such large changes: Redoing the complete work that went into the first construction
of an entire traceability link set should be avoided. For instance, in this context, the automated approaches
and tools re-generate all traceability links and require validation (assuring credibility) of final traceability
links from the developers.

qqq

The extracted features of a new component are used to detect the previous traceability links
related to the particular component, which are then used to perform reuse and adaptation of
traceability links based on the matches and mismatches, respectively.

After a substantial evolution of a software system, such as a new major version, the previous traceability
links become outdated. The on-demand traceability maintenance pattern concerns overall update of
traceability links in the context of different versions of a software project. In order to reuse and adapt the
traceability links in the context of different versions of a software project, the pre-existing traceability links
need to be organized as cases. Each traceability case consists of two parts: problem description and solution.
The former describes the components as software architecture elements and their interconnections, while the
later contains the traceability links to artefacts produced in the other activities of the development process,
such as requirements and implementation. Afterwards, the extracted features of a new component are used
to identify and prioritize the similar cases, i.e., a set of candidate components whose characteristics/features
match with the new architectural component. For reuse and adaptation of traceability links, three aspects

2http://www.atego.com/de/download-center/products/category/artisan-studio/
3http://www.sparxsystems.de/sitemap/

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:12 • M. A. Javed, S. Stevanetic, U. Zdun

are considered: exactly matched traceability links, partially matched traceability links and unmatched trace-
ability links. The already verified traceability links from the past (i.e., reused links) in both matched and
partially matched cases might be omitted from validation. That is, only newly constructed traceability links
for evolutionary changes would be made available to human analyst for validation. The unchanged traceabil-
ity links, if available, should be used as an active countermeasure to arbitrarily making traceability decisions,
and to maintain and preserve the trust in further traceability construction. The reuse and adaptation is per-
formed in four steps: (i) reuse the traceability links for matched component requirements and code classes,
(ii) an information retrieval analysis is performed based on the indicator terms for variations in architectural
components, requirements and undetected classes, (iii) the ‘function name’ and ‘global variable’ dependencies
of reused classes are computed, and (iv) the mutual and tightly coupled links are adapted. The adapted (i.e.,
newly constructed) traceability links can be verified by a human analyst and stored in the dedicated case
base for future problem solving situation. An overview of the on-demand traceability maintenance
pattern is presented in Figure 6.

Phase 1: Case-based representation of software traceability

Step 2.1: Extraction of component features

from a new architecture version

Phase 2: Similarity assessment and retrieval of stored traceability cases

Step 2.2: Comparative analysis of component-to-component features

for identification and prioritization of stored traceability cases

Step 3.2: Compute function name and

global variable dependencies of reused

classes for evolutionary changes

Phase 3: Reuse and adaptation of traceability links at the architectural level

Step 3.3: Perform information

retrieval analysis for variation

in all indicator terms

Step 3.4: Adapt the

mutual and tightly

coupled links

Step 4.1: Validate the adapted

traceability links

Phase 4: Revision and retention of traceability links

Step 4.2: Store the traceability links

for future problem solving situation

Step 3.1: Reuse of traceability

links for the matched component

requirements and code classes

Step 1.1: Organizing the components as software architecture elements and their interconnections (problem description)

and traceability links to requirements and the source code (solution)

Fig. 6: An overview of the on-demand traceability maintenance pattern

Let us consider the reuse and adaptation of StoreAssets traceability links of the Soomla Android store Version
2.0 to the Version 3.6.17: The extracted features of the StoreAssets component are used to measure the
component-to-component similarities with the previous components located in the case-base. Consequently,
a traceability case related to the particular component in Version 2.0 is selected because of the highest
similarity score (S im = 9.5) compared to other components. In order to reuse the previous traceability
links, the solution part of retrieved case is matched against the textual requirements and the code classes
of the Version 3.6.17. Afterwards, for adaptation of traceability links, the function name and global variable
dependencies of the reused classes, as well as the information retrieval analysis based on the variation in
architectural components, requirements and undetected classes is performed.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:13

The first underlying requirement of the retrieved StoreAssets component is partially matched with the listed
textual requirement in Version 3.6.17, the price models are no longer supported; however, a reward feature
is introduced. Accordingly, three classes (AbstractPriceModel, StaticPriceModel and BalanceDrivenPrice-
Model) are not detected and four source code classes (VirtualCurrency, VirtualCurrencyPack, VirtualItem-
NotFoundException and JSONConsts) are reused. In the partially matched case, both reuse and adaptation
needs to be performed. The adaptation of traceability links for a particular requirement is performed in
three steps. First, the function name and global variable dependencies of reused classes are computed, which
leads to the identification of eleven classes. Second, the information retrieval analysis based on the indicator
terms in new requirement text is performed, which leads to the identification of nine classes. This covers the
variation in new component description. Besides that, the undetected classes are not used for adaptation as
the indicator terms in excluded requirement text are matched with the deleted classes. Finally, the mutual
and tightly coupled classes (BadgeReward, RandomReward, Reward, SequenceReward, VirtualItemReward,
Schedule, SoomlaEntity and JSONFactory) are linked with the requirement in Version 3.6.17. Note that the
adaptation process correctly identified all the classes realizing the particular requirement within a StoreAssets
component.

The second requirement of the retrieved StoreAssets component is exactly matched with the listed textual
requirement of the Version 3.6.17; whereas two source code classes (VirtualCategory and VirtualGood) are
reused and three classes (AbstractVirtualItem, GoogleMarketItem and NonConsumeableItem) are not de-
tected. In the adaptation process, the function name and global variable dependencies of the reused classes
are first computed. This led to the identification of five classes, in which four of the classes are strongly
linked as means of «extends» relationship. The information retrieval-based analysis for indicator terms of
undetected classes is later performed, which leads to the identification of twelve classes. To perform rather
targeted adaptation, the mutual terms in all undetected classes, if available, would be used for the recovery.
Finally, the mutual and tightly coupled classes are linked with the second requirement of the StoreAssets
component. This process identified all the classes realizing the particular requirement of the StoreAssets
component.

3.6 Pattern: Traceability Quality Checks

You want to improve external system qualities (e.g. analysability, maintainability) that are affected by the
way the component architecture is partitioned and the traceability links are constructed. You have already
created the complete traceability links between the given system’s architecture and its source code.

qqq

How can you improve the quality of the component architecture partitioning using traceability
links so that desired external system qualities are improved?

The above given traceability construction techniques do not take into account the impact of generated
traceability links on external software qualities. Therefore, they cannot foresee how external system qualities
are affected by created traceability links. Furthermore, the rules used in the given traceability construction
techniques often negatively affect external system qualities. For example, a rule that uses the dependencies
among the source code classes might assign too many classes to one component and not enough to another
one that would poorly affect the architecture level system analysability4.

qqq

4The system should be decomposed into a limited number of components of roughly the same size in order to improve its

analysability [Bouwers et al. 2011a].

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:14 • M. A. Javed, S. Stevanetic, U. Zdun

Estimate external system qualities using appropriate software metrics that can be extracted
from the system itself. Use the quality estimations as a guide to step by step improve the
quality of the component architecture partitioning based on traceability links.

To find relationships between external system qualities and software metrics used to describe the system
itself, various techniques can be used. Some of the examples include empirical studies where the subjects
performances or ratings are used to measure external qualities that are further correlated with software
metrics, careful manual examinations of qualities that are then linked with the metrics values, etc. For an
overview please have a look at a mapping study provided by Stevanetic et al. [Stevanetic and Zdun 2015].
This mapping study provides a systematic review of software metrics that can be used to estimate or predict
external qualities of higher level architectural structures. Several external qualities like maintainability, bug
severity, modularization, integrability, reusability, etc. have been studied (see [Stevanetic and Zdun 2015] for
more details). In addition to the given studies there exist several empirical studies on software metrics that
can be used to measure the understandability of architectural components [Stevanetic et al. 2014; Stevanetic
and Zdun 2014b].

Based on the calculated software metrics, we can estimate a desired external quality. The calculations of
metrics as well as external qualities can be fully automated, based on the traceability information. Estimating
an external quality implies that a quality can be evaluated by assigning it an absolute or relative value. An
example for the absolute value of a quality would be that the analysability level of the system is 0.23 while an
example for the relative value would be the distribution of the values of some metric among the components
in the architecture so that an analyst can highlight the components with very high or very low metric values
that poorly affect a desired external quality.

To apply the traceability quality checks pattern, an analyst should examine the metrics values af-
fecting an unacceptably high or low value for the measured quality (e.g. response time for assessing the
understandability) and change the component architecture partitioning (e.g. by assigning some classes to a
new component or tweaking traceability links by removing unnecessary links, introducing new links or mod-
ifying them) in order to improve the situation. Changing the component architecture partitioning cannot
be done arbitrarily. For example, moving classes that directly implement the functionalities provided by a
certain component to some other component does not make sense. By gradually performing the changes,
an analyst can observe the changes in an observed quality and therefore pursue the improvements, until a
desired quality level is achieved. Performing the changes involves a manual effort, i.e. the participation of
an analyst who should consider which changes would make sense. For example, an analyst can change the
component model by dividing a given component into two or pursue some source code changes in order to
enable the appropriate creation of traceability links that would improve an observed external quality. Based
on what we explained above, this pattern can be semi-automated, i.e. the calculations of the metrics and
external qualities can be fully automated while performing the changes and improvements requires a manual
effort. An overview of the traceability quality checks pattern is presented in Figure 7.

Here we provide an example of how the traceability quality checks pattern can be used in case of
Soomla Android store Version 2.0. Assume that the initial component view of the system is the one shown in
the left side of Figure 9. In applying the traceability quality checks pattern, we focus on improving the
analysability quality characteristic. Namely, Bouwers et al. found that the components should be balanced
in size in order to facilitate the system’s analysability (location of possible failures/bugs in the system)
[Bouwers et al. 2011b]. In our case, instead of components’ size we consider the effort required to understand
a component (i.e. the understandability effort) which provides better analysability estimation. For more
information on how to calculate the understandability effort for a component, please have a look at the
following empirical studies [Stevanetic and Zdun 2014a; 2014b; 2016].

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:15

Phase 1: Estimation of external quality(ies)

Step 2.1: Identification of unacceptably high and/or low quality values and their influential factors, i.e. the metrics

indicators that affected those unacceptable quality values

Phase 2: Identification of improvement points

Phase 3: Changing the component model and/or traceability links

Step 3.1: Adaptation of the component model and/or traceability links by an analyst who should consider which

changes would make sense

Step 1.1: Calculation of software metrics

required to estimate desired external qualities

Step 1.2: Estimation of desired external qualities, based on the

calculated metrics, using the corresponding techniques

Fig. 7: An Overview of the traceability quality checks Pattern

0

5

10

15

20

25

30

Understandability Effort
(initial component view)

0

5

10

15

20

25

30

Understandability Effort
(adapted component view)

Fig. 8: Understandability Effort for the Initial and Adapted Component Views

To improve the analysability of the initial component view, we have performed the steps described in Figure
7 with respect to the studied example:

Step 1: Using the automatically generated complete traceability links for the initial component view, we
calculate the analysability of the system, using the metric proposed by Bouwers et al. [Bouwers et al.
2011b]. As mentioned above, instead of components’ size, we calculate the understandability effort required
to understand a component, using the metric proposed in [Stevanetic and Zdun 2014b]. The distribution of
the understandability effort among the components is shown in Figure 8. The corresponding analysability
metric is 0.33.

Step 2: As we can see from Figure 8, in the initial component view the understandability effort is unevenly
distributed over the components which decreases the analysability of the system. For instance, Component
DatabaseServices requires very high effort to be understood compared to Component StoreAssets. After
examining the traceability links, we find that 18 classes are assigned to Component DatabaseServices

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:16 • M. A. Javed, S. Stevanetic, U. Zdun

compared to 10 classes that are assigned to Component StoreAssets. Therefore, possible improvement
points would be to reassign the classes from Component DatabaseServices to some other components or
to divide it into several smaller components.

Step 3: After careful examination of the traceability links, we find that the following changes can be ap-
plied in order to improve the analysability: 5 classes from Component DatabaseServices (AESObfuscator,
Base64DecoderExeption, Base64, ObscuredSharedPreferences, and Editor) can be regrouped into a new
component CryptDecrypt and Class Security can be moved from Component GooglePlayBilling to new
Component CryptDecrypt. After the given changes, the analyzability of the system is improved to 0.5. The
distribution of the understandability effort for the adapted component view is shown in the right side of
Figure 8, while the adapted component view is shown in the right side of Figure 9.

EncriptDecrypt

BillingAccess

Storage

Assets

AssetsInfo

StoreControler

GooglePlayBilling
«RESTWebService»

GooglePlayServer

«database»

SQLLiteDatabase

DatabaseServices

«rest»

«jdbc»

StoreAssets

Initial Component View Adapted Component View

BillingAccess

Storage

Assets

AssetsInfo

StoreControler

GooglePlayBilling

«database»

SQLLiteDatabase

DatabaseServices

Security

«jdbc»

StoreAssets

CryptDecrypt

Preferences

Obfuscator

«RESTWebService»

GooglePlayServer

«rest»

Fig. 9: Initial and Adapted Component Views

In terms of known uses, there exist several approaches and software tools that provide support for the es-
timation of external system qualities, based on software metrics calculations that utilize the traceability
information among architectural structures and system implementation (for an overview please refer to [Ste-
vanetic and Zdun 2015]). For example, Bhattacharya et al. [Bhattacharya et al. 2012] showed how graph-based
metrics can be used to predict bug severity, maintenance effort and defect-prone releases. Gupta et al. [Gupta
and Chhabra 2009] presented package coupling metrics that show strong correlation with the package under-
standability. Hwa et al. [Hwa et al. 2009] proposed a hierarchical metrics model to assess understandability
of modularization in large-scale object-oriented software. Ma et al. [Ma et al. 2010] proposed a hierarchical
set of metrics in terms of coupling and cohesion for measuring the complexity at various levels of granu-
larity, i.e. graph, class (and object) and source code. Empirical evaluations of these metrics indicated that
they complement well traditional software metrics and provide more useful information about fault-prone
classes. Sarkar et al. [Sarkar et al. 2008] discussed a set of metrics that can be used to characterize large
object-oriented software systems with regard to the quality of modularization. The modularization quality

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:17

is assessed with respect to the APIs of the modules as well as with respect to the object-oriented intermod-
ule dependencies caused by inheritance, associational relationships, state access violations, fragile base-class
design, etc. In a broader context, metrics based quality improvement is very often used to improve different
business objectives (e.g. sales, marketing, or production). In that context, business dashboards are today
used as the most important part of Business Performance Management (BPM) [Few 2006]. They capture an
organization’s key performance indicators (KPIs) and enable informed decisions for quality improvements to
be made, based on those KPIs [Few 2006].

4. RELATED WORK

There are a few studies that consider patterns for software traceability. The research in [Delgoshaei and Austin
2012] focuses on understanding the role of software patterns (e.g., model-view-controller) and mixtures of
graph and tree visualization for ontology-enabled traceability of requirements to elements of finite-state
machine behaviour (e.g., actions, states, transitions and guard conditions). The patterns for solving the
requirement to component tractability problems in agile development processes are proposed [Ghazarian
2008]. In particular, traceability is achieved as a result of the source code conformance to a set of traceability
patterns.

The proposed softgoal traceability patterns can be used during the goal analysis phase in order to support
the generation of architectural design elements [Fletcher and Cleland-Huang 2006]. The architect can select a
predefined pattern to transform it into a UML class diagram. The generated diagram can be later modified by
changing the visual layout, adding additional classes, and even changing existing ones; however, the architect
will be warned of the potential modification conflicts that impact the goals of the system. In this context,
these patterns provide bidirectional traceability for monitoring the compliance of an architectural design to
its stated goals.

5. CONCLUDING REMARKS

This paper presents a pattern language for construction and maintenance of software architecture traceability
links to requirements and source code. It was mined from the following resources: First, systematic literature
reviews on software architecture traceability approaches, tools and architecture level software metrics have
been performed. Second, for identification of potential architectural violation points and their resolutions,
software architecture traceability links for multiple open-source software systems have been constructed.
The construction of traceability links was a very time-consuming task that was completed over the course
of three months. Third, the empirical investigations on human analyst performance in software architecture
traceability and metrics have been performed. We have then actively searched for more known uses for each
pattern in the literature and tool landscape. That is, our five patterns have been mined from a broader set
of sources than only software tools, as many of the existing traceability practices are still a research topic.
It was our goal to find those practices in the field that are mature and can be recommended for practical
adoption or have been adopted in practices already. For future work we plan to build a catalogue of guidelines
as best practices for traceability reuse and adaptation across projects, organizations, domains, product lines
and supporting tools.

6. ACKNOWLEDGEMENTS

The authors would like to thank the shepherd Martin Filipczyk for his valuable comments. This work is
supported by the Austrian Science Fund (FWF), under project P24345-N23.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:18 • M. A. Javed, S. Stevanetic, U. Zdun

REFERENCES

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore Merlo. 2002. Recovering

Traceability Links Between Code and Documentation. IEEE Trans. Softw. Eng. 28, 10 (Oct. 2002), 970–983.
DOI:http://dx.doi.org/10.1109/TSE.2002.1041053

Hazeline U. Asuncion, Arthur U. Asuncion, and Richard N. Taylor. 2010. Software Traceability with Topic Modeling. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10). ACM, New

York, NY, USA, 95–104. DOI:http://dx.doi.org/10.1145/1806799.1806817

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. 2004. Architecture-level Modifiability Analysis (ALMA). J.
Syst. Softw. 69, 1-2 (Jan. 2004), 129–147. DOI:http://dx.doi.org/10.1016/S0164-1212(03)00080-3

Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Faloutsos. 2012. Graph-based analysis and prediction for
software evolution. In ICSE’12. 419–429.

Eric Bouwers, Jose P. Correia, Arie Deursen, and Joost Visser. 2011a. Quantifying the Analyzability of Soft-
ware Architectures. In 2011 Ninth Working IEEE/IFIP Conference on Software Architecture. IEEE, 83–92.

DOI:http://dx.doi.org/10.1109/wicsa.2011.20

E. Bouwers, J. P. Correia, A. v. Deursen, and J. Visser. 2011b. Quantifying the Analyzability of Soft-

ware Architectures. In Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on. 83–92.
DOI:http://dx.doi.org/10.1109/WICSA.2011.20

Georg Buchgeher and Rainer Weinreich. 2011. Automatic Tracing of Decisions to Architecture and Implementation. In Proceed-

ings of the 2011 Ninth Working IEEE/IFIP Conference on Software Architecture (WICSA ’11). IEEE Computer Society,

Washington, DC, USA, 46–55. DOI:http://dx.doi.org/10.1109/WICSA.2011.16

Xiaofan Chen and John Grundy. 2011. Improving Automated Documentation to Code Traceability by Combining Retrieval

Techniques. In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE
’11). IEEE Computer Society, Washington, DC, USA, 223–232. DOI:http://dx.doi.org/10.1109/ASE.2011.6100057

Paul Clements, Rick Kazman, and Mark Klein. 2002. Evaluating Software Architectures: Methods and Case Studies. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

David Cuddeback, Alex Dekhtyar, and Jane Hayes. 2010. Automated Requirements Traceability: The Study of Human Analysts.

In Proceedings of the 2010 18th IEEE International Requirements Engineering Conference (RE ’10). IEEE Computer Society,
231–240. DOI:http://dx.doi.org/10.1109/RE.2010.35

A. Dekhtyar, O. Dekhtyar, J. Holden, J.H. Hayes, D. Cuddeback, and Wei-Keat Kong. 2011. On human analyst performance
in assisted requirements tracing: Statistical analysis. In Proceedings of the 2011 19th IEEE International Requirements

Engineering Conference (RE ’11). IEEE Computer Society, 111–120. DOI:http://dx.doi.org/10.1109/RE.2011.6051649

Parastoo Delgoshaei and Mark Austin. 2012. Software Patterns for Traceability of Requirements to Finite State Machine

Behavior. In Proceedings of the Conference on Systems Engineering Research, CSER 2012, St. Louis, MO, USA, March
19-22, 2012. 214–219. DOI:http://dx.doi.org/10.1016/j.procs.2012.01.045

Stephen Few. 2006. Information Dashboard Design: The Effective Visual Communication of Data. O’Reilly Media, Inc.

Jesse Fletcher and Jane Cleland-Huang. 2006. Softgoal Traceability Patterns. In Proceedings of the 17th International
Symposium on Software Reliability Engineering (ISSRE ’06). IEEE Computer Society, Washington, DC, USA, 363–374.

DOI:http://dx.doi.org/10.1109/ISSRE.2006.42

Arbi Ghazarian. 2008. Traceability Patterns: An Approach to Requirement-component Traceability in Agile Software Develop-

ment. In Proceedings of the 8th Conference on Applied Computer Scince (ACS’08). World Scientific and Engineering Academy
and Society (WSEAS), Stevens Point, Wisconsin, USA, 236–241. http://dl.acm.org/citation.cfm?id=1504034.1504078

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman, Alexander Egyed, Paul Grünbacher, Alex Dekhtyar,
Giuliano Antoniol, and Jonathan I. Maletic. 2012. The Grand Challenge of Traceability (v1.0). Springer-Verlag London
Limited. 343–409 pages.

Varun Gupta and Jitender Kumar Chhabra. 2009. Package coupling measurement in object-oriented software. J. Comput. Sci.
Technol. 24, 2 (March 2009), 273–283. DOI:http://dx.doi.org/10.1007/s11390-009-9223-6

Thomas Haitzer and Uwe Zdun. 2012. DSL-based support for semi-automated architectural component model abstraction

throughout the software lifecycle. In Proceedings of the 8th international ACM SIGSOFT conference on Quality of Software
Architectures (QoSA ’12). ACM, New York, NY, USA, 61–70. DOI:http://dx.doi.org/10.1145/2304696.2304709

Maen Hammad, Michael L. Collard, and Jonathan I. Maletic. 2011. Automatically identifying changes that
impact code-to-design traceability during evolution. Software Quality Control 19, 1 (March 2011), 35–64.
DOI:http://dx.doi.org/10.1007/s11219-010-9103-x

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

Towards a Pattern Language for Construction and Maintenance of Software Architecture Traceability Links • 1:19

Donna Harman. 1992. Ranking algorithms. In Information Retrieval: Data Structures & Algorithms, William B. Frakes and
Ricardo Baeza-Yates (Eds.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 363–392.

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. 2006. Advancing Candidate Link Gen-
eration for Requirements Tracing: The Study of Methods. IEEE Trans. Softw. Eng. 32, 1 (Jan. 2006), 4–19.

DOI:http://dx.doi.org/10.1109/TSE.2006.3

Jimin Hwa, Sukhee Lee, and Yong Rae Kwon. 2009. Hierarchical Understandability Assessment Model for Large-Scale OO
System. In Proceedings of the 2009 16th Asia-Pacific Software Engineering Conference (APSEC ’09). IEEE Computer

Society, Washington, DC, USA, 11–18. DOI:http://dx.doi.org/10.1109/APSEC.2009.60

IEEE. 1990. IEEE Standard Std 610.12, Glossary of Software Engineering Terminology. (Dec 1990), 1–84.

DOI:http://dx.doi.org/10.1109/IEEESTD.1990.101064

Muhammad Atif Javed, Srdjan Stevanetic, and Uwe Zdun. 2015. Cost-Effective Traceability Links for Architecture-Level

Software Understanding: A Controlled Experiment. In Proceedings of the 24th Australasian Software Engineering Conference

(ASWEC). ACM, 5. DOI:http://dx.doi.org/10.1145/2811681.2811695

Muhammad Atif Javed and Uwe Zdun. On the Effects of Traceability Links in Differently Sized Software Systems. In Proceedings

of the 19th International Conference on Evaluation and Assessment in Software Engineering (EASE 2015). ACM.

Muhammad Atif Javed and Uwe Zdun. The Supportive Effect of Traceability Links in Architecture-Level Software Under-

standing: Two Controlled Experiments. In Proceedings of the 11th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2014). IEEE, 215–224. DOI:http://dx.doi.org/10.1109/WICSA.2014.43

Muhammad Atif Javed and Uwe Zdun. The Supportive Effect of Traceability Links in Change Impact Analysis for Evolving
Architectures – Two Controlled Experiments. In 14th International Conference on Software Reuse (ICSR 2015). Springer

link.

Muhammad Atif Javed and Uwe Zdun. 2014. A Systematic Literature Review of Traceability Approaches Between Software
Architecture and Source Code. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software

Engineering (EASE ’14). ACM, New York, NY, USA, Article 16, 10 pages. DOI:http://dx.doi.org/10.1145/2601248.2601278

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2007. Recovering Traceability Links in Software

Artifact Management Systems Using Information Retrieval Methods. ACM Trans. Softw. Eng. Methodol. 16, 4, Article 13

(Sept. 2007). DOI:http://dx.doi.org/10.1145/1276933.1276934

Yutao Ma, Keqing He, Bing Li, Jing Liu, and Xiao-Yan Zhou. 2010. A Hybrid Set of Complexity Metrics for Large-Scale

Object-Oriented Software Systems. J. Comput. Sci. Technol. 25, 6 (2010), 1184–1201. http://dblp.uni-trier.de/db/journals/
jcst/jcst25.html#MaHLLZ10

Patrick Mäder and Orlena Gotel. 2012. Towards Automated Traceability Maintenance. J. Syst. Softw. 85, 10 (Oct. 2012),
2205–2227. DOI:http://dx.doi.org/10.1016/j.jss.2011.10.023

Julie McClure. 2011. CMMI for Development V 1.3 by Mary Beth Chrissis, Mike Konrad and Sandy Shrum. SIGSOFT Softw.
Eng. Notes 36, 4 (Aug. 2011), 34–35. DOI:http://dx.doi.org/10.1145/1988997.1989007

Mehdi Mirakhorli, Yonghee Shin, Jane Cleland-Huang, and Murat Cinar. 2012. A tactic-centric approach for automating
traceability of quality concerns. In Proceedings of the 2012 International Conference on Software Engineering (ICSE 2012).
IEEE Press, Piscataway, NJ, USA, 639–649. http://dl.acm.org/citation.cfm?id=2337223.2337298

Elena Navarro and Carlos E. Cuesta. 2008. Automating the Trace of Architectural Design Decisions and Rationales Using
a MDD Approach. In Proceedings of the 2nd European conference on Software Architecture (ECSA ’08). Springer-Verlag,

Berlin, Heidelberg, 114–130. DOI:http://dx.doi.org/10.1007/978-3-540-88030-1 10

Tien N. Nguyen, Ethan V. Munson, and Cheng Thao. 2005. Object-oriented Configuration Management Technology can

Improve Software Architectural Traceability. In Proceedings of the Third ACIS Int’l Conference on Software Engineering
Research, Management and Applications (SERA ’05). IEEE Computer Society, Washington, DC, USA, 86–93. http://dl.
acm.org/citation.cfm?id=1105925.1106170

Nan Niu, Anas Mahmoud, Zhangji Chen, and Gary Bradshaw. 2013. Departures from Optimality: Understanding Human
Analyst’s Information Foraging in Assisted Requirements Tracing. In Proceedings of the 2013 International Conference on

Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 572–581.

Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. On the Equivalence of Information Retrieval Methods

for Automated Traceability Link Recovery. In Proceedings of the 18th International Conference on Program Comprehension

(ICPC ’10). IEEE, 68–71. DOI:http://dx.doi.org/10.1109/ICPC.2010.20

European O. Radio Technical Commission for Aeronautics RTCA. 1992. RTCA: Software Considerations in Airbone Systems

and Equipment Certification Standard Document no. DO-178B/ED-12B. Technical Report.

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

1:20 • M. A. Javed, S. Stevanetic, U. Zdun

Santonu Sarkar, Avinash C. Kak, and Girish Maskeri Rama. 2008. Metrics for Measuring the Quality of Mod-
ularization of Large-Scale Object-Oriented Software. IEEE Trans. Softw. Eng. 34, 5 (Sept. 2008), 700–720.

DOI:http://dx.doi.org/10.1109/TSE.2008.43

Srdjan Stevanetic, Muhammad Atif Javed, and Uwe Zdun. 2014. Empirical Evaluation of the Understandability of Architectural

Component Diagrams. In Companion Proceedings of the 11th Working IEEE/IFIP Conference on Software Architecture
(WICSA) (WICSA 2014). IEEE Computer Society, Sydney, Australia.

S. Stevanetic and U. Zdun. 2014a. Exploring the Relationships between the Understandability of Architectural Compo-

nents and Graph-Based Component Level Metrics. In 2014 14th International Conference on Quality Software. 353–358.
DOI:http://dx.doi.org/10.1109/QSIC.2014.21

Srdjan Stevanetic and Uwe Zdun. 2014b. Exploring the Relationships between the Understandability of Components in Archi-

tectural Component Models and Component Level Metrics. In Proceedings of the 18th International Conference on Evaluation

and Assessment in Software Engineering (EASE) (EASE 2014). ACM Computer Society, London, UK.

Srdjan Stevanetic and Uwe Zdun. 2015. Software Metrics for Measuring the Understandability of Architectural Structures –

A Systematic Mapping Study. In EASE 2015 - 19th International Conference on Evaluation and Assessment in Software

Engineering. http://eprints.cs.univie.ac.at/4321/

Srdjan Stevanetic and Uwe Zdun. 2016. Exploring the Understandability of Components in Architectural Component Mod-
els using Component Level Metrics and Participants? Experience. In The 19th International ACM Sigsoft Symposium on

Component-Based Software Engineering (CBSE 2016). http://eprints.cs.univie.ac.at/4632/

Huy Tran, Uwe Zdun, and Schahram Dustdar. 2011. VbTrace: using view-based and model-driven development to support trace-

ability in process-driven SOAs. Softw. Syst. Model. 10, 1 (Feb. 2011), 5–29. DOI:http://dx.doi.org/10.1007/s10270-009-0137-0

Xuchang Zou, Raffaella Settimi, and Jane Cleland-Huang. 2010. Improving Automated Requirements Trace Re-

trieval: A Study of Term-based Enhancement Methods. Empirical Softw. Engg. 15, 2 (April 2010), 119–146.

DOI:http://dx.doi.org/10.1007/s10664-009-9114-z

21st European Conference on Pattern Languages of Programs (EuroPLoP’ 16), July 6 – 10, 2016, Bavaria, Germany.

