
Rule-based Runtime Monitoring of
Instance-Spanning Constraints in Process-Aware

Information Systems

Conrad Indiono, Juergen Mangler, Walid Fdhila, Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science, Vienna, Austria
{firstname.lastname}@univie.ac.at

Abstract. Instance-spanning constraints (ISC) constitute a crucial in-
strument to establish coordination between multiple instances in Process-
Aware Information Systems. ISC need to be verified and monitored at
design as well as runtime. In this work we propose a rule-based approach
for runtime monitoring of ISC. We base our work on the well known Rete
algorithm and research ways structure the network in such a way that
improves matching speed for ISC. We show through a technical evalu-
ation that (1) a rule-based approach is feasible for performing runtime
monitoring of ISC and (2) that the heuristics we extract for structuring
the Rete network improve the rule matching speed.

Keywords: Business process compliance, Instance-spanning constraints,
Runtime Monitoring, Performance Optimization

1 Introduction

Monitoring compliance of processes with rules such as regulatory constraints or
security requirements during runtime constitutes a crucial job for many enter-
prises [8]. Examples comprise the logistics [9], manufacturing [15], and health
care [5] domains. The compliance monitoring architecture presented in [8] ad-
vocates the collection of events from process execution environments and mon-
itoring them based on compliance constraints by a monitoring engine. Figure
1 substantiates and extends this architecture by proposing the usage of a rule
engine as monitoring engine that returns actions to the process execution envi-
ronments such as process engine and worklists. The actions enable the enforce-
ment of compliance constraints. This is particularly important in the context of
instance-spanning constraints (ISC) [3]. ISC span multiple instances of one or
several process models and can be utilized to constrain the behavior of these
instances and to enforce certain properties. One example is the realization of
synchronization between tasks of different process instances [10].

In order to realize a monitoring system as suggested in Fig. 1 it has to be
ensured that events and actions are commonly understood between the event
sending system and the rule engine. Another important aspect is the language
to describe the compliance constraints that is then mapped onto rules. Event Cal-
culus (EC) has been evaluated as suitable for compliance monitoring in [11,8].

 Process Execution Engine E
ve

nt
s

co
lle

ct
io

n
an

d
Fi

lte
rin

g

ISC Editor

Process Editor

Process
Repository

ISC
 Rules

Execution
Log

ISC soundness
checker

Violations
 Log

Worklist

EC
 predicates

Events

Rete Based Rule Engine

✔

✔

✔

✔

Rule 1
Rule 2
Rule 1
Rule 3
Rule 2

✔

✔

✔
Rule 3 ✔

Actions/Alerts
Events

IS
C

 D
es

ig
n-

tim
e

 C
he

ck
in

g

ISC
 M

onitoring

Fig. 1. Event based compliance monitoring in PAIS – overview

Moreover, as shown in [3], Event Calculus (EC) is specifically suited to meet
the requirements of compliance monitoring applications and ISC. Hence, in the
following, the considerations are based on EC, but the transferability to other
formal constraint languages will be discussed. MobuConEC provides a compli-
ance monitoring approach based on EC together with DECLARE (see e.g., [12])
in [11]. As stated in [11], process data values such as resources can be modeled,
but the monitoring is not fully supported yet. It remains unclear whether and
how the approach can be used for monitoring ISC.

In summary, the following gaps for full support of ISC monitoring in PAIS
remain:

1. In the context of interaction between PAIS and rule engines, so far, simple
pattern matching techniques have been employed, e.g., by REMAR [10].

2. Existing approaches do only partly focus on runtime optimization. Bench-
marking is difficult as most of the tools are not publicly available [11].

3. Existing compliance monitoring approaches do not consider ISC [8].

This leads to the following research questions tackled by the work at hand:

RQ1 Given event data and conditions encoded in Event Calculus, how to execute
such rules efficiently?

RQ2 Does condition ordering have an effect on matching performance?
RQ3 Is there an optimal way to structure ISC-specific conditions?

In this paper, a novel approach for monitoring ISC through a rule engine
based on the Rete algorithm [4] is presented. This requires matching ISC with
Rete. We conduct benchmarks to observe various aspects that affect matching
performance and derive heuristics for better structuring the Rete network for

handling ISC. Altogether, the proposed concepts enable a) the monitoring of ISC
in PAIS and b) are geared towards increasing performance of the monitoring.
The latter is particularly important as possibly a multitude of ISC is to be
monitored during process runtime.

The remainder is structured as follows: Section 2 provides a motivating ex-
ample. In Section 3 it is shown how to match ISC with Rete. Section 4 deals
with improving the performance of the matching. Section 5 discusses related
work and Sect. 6 concludes the paper.

2 Motivating Example

As an illustrative example, we consider an energy provider that uses an in-
tegrated energy management solution to deliver end-to-end advanced metering
(cf. [3]). In particular, it provides services for the electricity metering; e.g., meter
reading, read-out analysis, and billing. In this example, we abstract the detailed
description of the energy provider process, and focus on a subset of tasks (cf.
Figure 2). The company provides energy to a set of clients, and for each of
these clients regular (daily) read-out measures are carried out. First, informa-
tion about the client, i.e., the client profile, is checked (e.g., ID, communication
protocol, meter type). Then a connection is established and instantaneous values
for voltage, power factor and frequency are measured. Additionally, a memory
test is performed, and operational irregularities are detected, stored, and trans-
mitted. After the read-out, an analysis of the sampled values is carried out, and
the profile analysis is updated and stored. It should be noted that this example
requires checks on measurements for the same meter, i.e., instances, in order to
detect irregularities in the values. The rule also is an ISC – it involves aggregated
events and measurements from several meter read outs.

Establish
connection

Load Client
profile Read-Out Meter Analysis of

Sampled Values
Update profile

Data

Communication Protocol
&

Client Data

Measurements
&

test results

Legend: Data Object Data dependency Control dependencyStart End Task

Read-out Process of one Meter

Instance-Spanning Constraint
when starting the read-out operation at time t, 99% of all meter read-outs should be performed within 6
hours and the read-out value does not exceed X

Analysis report

Fig. 2. Process example from the Energy Domain (cf. [3])

Figure 3 describes the execution of the meter read-out process during run-
time. In particular, it shows the running instances of N meters’ read-outs. De-

pending on the communication protocol for communicating with the correspond-
ing distant meter and the meter type, the time for establishing the connection
as well as the time for making the measurements varies. We assume that there
is an internal global event GlobalReadoutStart() which launches all read-out
instances at the same time t (e.g., daily at 00:00 am). We also assume that for
each task of type read−out meter an event ReadoutEnd(meter, measurements)
is emitted, which refers to the completion of that task. All events required for
checking the ISC rules are transmitted to the ISC monitor, which checks for
any violations and produces alerts if required. In this example, note that the
read-out violation for client 3, which happened after 6 hours, can not be di-
rectly considered as an ISC violation, unless the aggregated number of read-out
violations (of this type) exceeds 1%. However, if the current total value of the
finished read-outs exceeds the threshold ”x”, then a violation alert is emitted
immediately (without waiting for the other running read-outs).

Establish connectionLoad Client
profile Read-Out Meter Analysis of Sampled

Values
Update profile

Data

Establish
connection

Load Client
profile Read-Out Meter Analysis of

Sampled Values
Update profile

Data

Establish connectionLoad Client
profile

Read-Out
Meter

Analysis of
Sampled Values Update profile Data

Timet
t+6

Establish
connection

Load Client
profile Read-Out Meter Analysis of

Sampled Values
Update profile

DataClient 1

Client 2

Client 3

Client N

✔

✔

Instance-Spanning Constraint

R1 Number of successful
readouts within 6 hours is

more than 99%

R2 Aggregated value of
the meter read-outs
does not exceed “x”

Running Instances of Meter read-outs

AND

 ReadoutEndEvent(meter_N, measurements)

 ReadoutEndEvent(meter_3, measurements)

 ReadoutEndEvent(meter_2, measurements)

 ReadoutEndEvent(meter_1, measurements)

 GlobalReadoutStartEvent(t)

ISC Monitor & Checker

Fig. 3. ISC monitoring example

3 Matching ISC with the Rete Algorithm

3.1 Pattern matching with Rete

A crucial step for evaluating and enforcing constraints during runtime is to
match the events emitted by the process execution environments onto the rules
and if required to invoke certain actions. In the context of PAIS, mostly simple
pattern matching techniques have been employed so far, e.g., [10]. Addressing
RQ1, a first step is to analyze whether using more advanced pattern matching
techniques is beneficial with respect to performance.

A commonly used pattern matching algorithm in rule engines is the Rete
algorithm. It was first proposed in [4]. Figure 4 shows the complete Rete structure
for the single rule that adds read-out meter values as they come in from ”read-
out meter end” events. These are filtered and classified as successful when the
timestamp and accumulated value condition evaluate to true. As the action,

(1, accumulated_values, 40530)T

(1, value, 346)T

Beta Network

(1, timestamp, “2016-06-23T04:32:00”)T

(1, type, “read-out meter end”)T

Alpha Network

A1

A2

A3

Knowledge Base

(1, type, “read-out meter end”)

(1, timestamp,
“2016-06-23T04:32:00”)

(1, value, 346)

(vars, accumulated_values,
40530)

(?event_id, type, “read-out meter
end”)

(?event_id, timestamp, ?timestamp)

“2016-06-23T00:00:00” <= ?
timestamp <= “2016-06-23T06:00:00”

(?event_id, value, ?value)

A4

R3

RB J1

B1

J2

B2

J3

J4

B3

(vars, accumulated_values, ?
acc_values)

(?acc_values + ?value) <
THRESHOLD

(1, type, “read-out meter
end”)T

(1, timestamp,
“2016-06-23T04:32:00”)T

(1, value, 346)T

(1, accumulated_values,
40530)T

(?acc_values + ?value) <
THRESHOLDJ

?event_id = ?
event_idJ

?event_id = ?
event_idJ

Legend:

A Alpha Node Join Node

Beta Node R Rule / Production Node

?event_id = ?
event_idJ

T Token J Join Test

(2, type, “read-out meter end”)

(2, timestamp,
“2016-06-23T04:32:00”)

(1, value, 455)

add fact
(vars, accumulated_values, ?acc_values + ?value)

Fig. 4. Basic Rete Network

which occurs on the right-hand side of the rule (RHS) in R3, the existing working
memory element (WME) representing the total accumulated read-out values
(?acc values) is updated in the knowledge base. Similarly, R3 could update
another fact increasing the total number of successful read-outs that occured. A
Rete network is generally comprised of three parts: the alpha network, the beta
network and the knowledge base.

Knowledge Base The knowledge base is the total set of facts that the rule en-
gine is aware of. These facts are also called working memory elements (WMEs).
A WME is represented as a triple structure [2] (id, attr, value) on which more
complex data structures can be modeled. The first id part of the WME is gen-
erally a unique id that identifies the fact. The second attr part of the triple
represents a certain attribute. Having several WMEs with the common id one
can extract all available attributes and lookup the appropriate values. The final
value part holds the actual value which the fact represents. In our case we sup-
port a JSON -like data type excluding the object type. Thus we support values
of types number (integer or float), string, arrays and maps. The latter two types
are recursively defined.

Alpha Network The first contact point to the rule engine for rule activation is
the alpha network. As new facts are entered into the knowledge base, the same
WME will be sent to the alpha network. We follow [2] and implemented a hash-
table variant of the alpha network. Each element within this network is called an
alpha node. An alpha node represents a single rule condition and is responsible
for processing incoming facts that match the structure of the rule condition.
This is also the level where simple constant value checks can be performed to

discriminate relevant WMEs for further checking. As can be seen in A2 of Figure
4 the alpha node can directly check each incoming timestamp for matching the
condition (”2016-06-23T00:00:00” <=?timestamp <= ”2016-06-23T06:00:00”).

Rule conditions use the same triple structure applicable for defining WMEs.
The difference lies in the ability to set variables to each triple part. These are
marked with a preceeding question mark. Thus (?eventid, timestamp, ?timestamp)
represents the rule condition that matches any kind of eventid as long as the
attr part is equal to constant timestamp. All variables are stored and marked
for further processing within the beta network. The collection of alpha nodes or
rule conditions that lead to rule activation and are thus associated with a rule
is called the left hand side (LHS) of the rule.

Beta Network In order to check whether the WME, that has been sent by
the alpha node, leads to triggering of rules or not requires a process called
activation. A right-activation occurs when the join node that is associated by
the alpha node is passed a WME. An example would be A2 passing the WME
(1, timestamp, ”2016-06-23T04:32:00”) to J2 in Figure 4. The right-activation
of J2 results into a join test (also called consistency check) for outstanding
variables within the conditions defined in A2. In this instance only the ?eventid
id part is checked with tokens from the parent B1, since only ?eventid occurs in
the previous condition. Free-standing variables pass down without contest. Once
the join test succeeds, the resulting WME is stored as a token inside B2. A beta
node (B2) holds a set of tokens that have passed join tests. This essentially stores
partial rule condition match results. On storing the token, child join nodes are
left-activated (e.g. J3). This process happens repeatedly with child nodes as long
as join tests succeed until the point of rule triggering happens where for example
J4 adds the final token to the production node (R3). As can be seen from the
Token area of Figure 4, tokens build a chain backwards to map the variables with
the actual WMEs that lead to successfull activations. This allows the lookup on
the set of WMEs that lead to rule triggering. At rule trigger time the right-hand
side (RHS) of the rule is activated and actions are performed. In the case of R3
a fact inside the knowledge base is updated representing the total value for read
outs.

3.2 Mapping Event Calculus to Rete

[3] has shown that Event Calculus (EC) is a relevant formal language for repre-
senting ISC. Specifically, EC [6] is a logic programming approach to model time
and change. It uses first order predicate logic (FOL) as the basis and introduces
fluents for the ability to model time-varying state. Events are the occurence of
actions that might trigger changes to the valuation of fluents. Time is modeled
as a one-dimensional horizantal progression and events can occur at any point
on this timeline. Fluents change their state within this timeline as well. Both
fluents and events can have unlimited parameters giving the ability to repre-
sent a multitude of situations to model. EC defines a set of domain independent
predicates for dealing with events and fluents: HoldsAt(f, t) asserts that a fluent
f evaluates to true at time t. Happens(e, t) asserts that an event e occures at
time t. Initiates(e, f, t) first asserts Happens(e, t) then evaluates the fluent f

to true after time t. For setting a fluent f to false when Happens(e, t), then
Terminates(e, f, t) can be used.

Figure 5 shows the mapping of concepts available in EC to be executed on
top of Rete. In that Figure we distinguish between the LHS and RHS. The LHS
are checked for triggering an associated rule, whereas the RHS can be used for
either asserting facts and fluents or changing them.

First-Order Logic (FOL) The first four concepts are taken from FOL. The
first concept (conjunction) is the default way of defining rule conditions in rete.
A list of rule conditions are defined using the triple structure and submitted
for Rete network construction. A series of alpha node, join node and beta node
sequences are newly generated for each condition. If a given condition is equal to
another (e.g. shared by another rule) then that one would reuse the existing alpha
node (also reusing the subgraph from that point on). Disjunctions are handled by
splitting the condition list into a number of parts which can be conjunctive. These
are then individually created the same way as the conjunctive case. The notable
point is that the same RHS of the rule is then associated with the final production
nodes that are created for each disjunctive part. Quantifiers can split into three
cases (1) universal quantifiers, (2) universal quantifiers with logical filters, and
(3) existential quantifiers. Figure 5 maps the latter two cases. The first case is
identical to the conjunctive case, where each universally quantified condition
passes through uncontested to the beta network. Case (2) is more interesting: we
still need to let the WME matching the condition pass through the beta network
uncontested, but we need to know whether the WME really passes the filtering
logic. In the example, for the universal quantification ∀x : x > 5 to be considered
true at all times, we need to be notified by the rule engine when it observes the
case where this is not true. Thus the RHS action of assert can be utilized for
this purpose. For case (3) we only need to maintain a WME that indeed the
existential quantifier ∃y is true, which is added to the knowledge base when
such a WME is observed at least once.

Event Calculus Predicates Fluents are at the heart of EC and supplement
facts by adding a time dimension to them. As rete only deals with facts (WME,
tokens) in triple structure, we need to either model fluents on top of this triple
structure or consider adding native support to fluents inside values. Recall that
we support a JSON -like data structure for the value part of the triple. Support-
ing fluents can then mean using the map data type to hold timestamps as index
keys and have as values the boolean value representing the fluent’s state at that
timestamp t. A constant map entry for params can hold the list of parameters
that the fluent is associated with. Thus the triple structure:

(?fluentid, f, ?fluent) (1)

carries fluent f where the value part holds the aforementioned fluent in-
stance and represents complete state of f . HoldsAt(f, t) then takes such a condi-
tion and performs assertions on the fluent instance f ’s attributes. Happens(e, t)
is mapped for catching the case where a specific event e happens at time t.
This could be applied on the LHS for rule activation (as showin Figure 5 or on

Conditions:
(?event_id, type, e)

(?event_id, timestamp, ?t)
(?event_id, param1, ?

param1)
…

(?event_id, paramN, ?
paramN)

Actions:
add (fluent_id, fluent_name,

f)
Terminates(e, f, t)

Conditions:
(?event_id, type, e)

(?event_id, timestamp, ?t)
(?event_id, param1, ?

param1)
…

(?event_id, paramN, ?
paramN)

Initiates(e, f, t)
Actions:

add (fluent_id, fluent_name,
f)

Happens(e, t) -

Conditions:
(?event_id, type, e)

(?event_id, timestamp, ?t)
(?event_id, param1, ?

param1)
…

(?event_id, paramN, ?
paramN)

HoldsAt(f, t)
Conditions:

(?fluent_id, ?
fluent_name, ?f)

Actions:
assert ?f.value = true
assert ?f.timestamp =

“2016-06-23T08:00:00”

Actions (1):
assert ?x > 5

Actions (2):
add to shared fact: ?y exists

Quantifiers:

(1) ∀x: x > 5
(2) ∃y

Conditions (1):
(?event_id, value, ?x)

Conditions (2):
(?event_id, value, ?y)

-Conditions:
(?event_id, type, x)

Negation:

¬x

Network Structure

Conditions:

(?event_id, type, x)
(?event_id, type, y)

Conjunction:

x ∧ y
-

RHS Actions

-

Triple Form (LHS)

Conditions (1):
(?event_id, type, x)

Conditions (2):
(?event_id, type, y)

Disjunction:

x v y

Concept

A1

A2

(?event_id, type, x)

(?event_id, type, y)

RB

J1

B1
J2

R1

N1

RB

A1 (?event_id, type, x)

R1

A1

A2

(?event_id, type, x)

(?event_id, type, y)

RB J1

J2

R1

R1

same rule

A1

A2

(?event_id, value, ?x)

(?event_id, value, ?y)

RB J1

J2

R1

R2

assert ?x > 5

add (“exists”, “y”, ?y)

R

assert ?f.value = true

assert ?f.timestamp =
“2016-06-23T08:00:00”

A2 (?fluent_id, ?fluent_name, ?f)J2

R add (fluent_id, timestamp, f)
where f.value = true

f.timestamp = ?t

A1

…

(?event_id, type, e)

…

… J1

… …

R

AN (?event_id,
paramN, ?paramNBN JN

JN LHS equal to Happens(e, t)

R add (fluent_id, timestamp, f)
where f.value = false

f.timestamp = ?t

JN LHS equal to Happens(e, t)

Fig. 5. Transformation Table of Event Calculus into Rete Networks

the RHS, by adding appropriate assertions on the event instance e’s attributes.
Initiates(e, f, t) and Terminates(e, f, t) are mapped equally to Happens(e, t)
on the LHS for being semantically identical. Only on the RHS does the behaviour
differ. There we update the fluent to the appropriate boolean value for timestamp
t.

4 Improving pattern matching performance

The order of conditions are determined at rule construction time. In this sec-
tion we show that the order of these conditions (alpha nodes) within the alpha
network has an effect on the total rule matching time. In the context of ISC,
the number of instances of a process model directly influences how many WMEs
are going to be generated for each condition. This effect is especially apparent
when there is a big difference between the expected number of occurences for
two events which share some conditions from node sharing.

4.1 Effects of the RHS modifying shared condition nodes (IMP1)

First we will explore the question of shared condition node placement. These
shared nodes are spread among many rules and may represent a single fact
or variable. Shared condition nodes occur frequently such as when using quan-
tifiers and the EC predicates Happens(e, t), as well as Initiates(e, f, t) and
Terminates(e, f, t) (cf. Figure 5). It is imperative that we understand how to
structure these shared condition nodes allowing improved matching time. Specif-
ically in this section we question whether there is a difference in matching time
due to the placement of such shared condition nodes. There are two possible
placements that we will observe: top or bottom. As shown in Fig. 6(a) a top
placement is done by establishing the shared condition before any other condi-
tions of the same rule are defined. Rules defined in this way have the shared
condition placed in the beginning of the condition list. This list is taken and
during Rete network construction a top level alpha node is generated represent-
ing the shared condition. Subsequent conditions that are placed in conjunction
below the shared condition are linked through the same beta node. In contrast,
Fig.6(b) illustrates the inverse case where the shared condition is defined in the
bottom part of the network. In this case, rules place the shared condition in the
last part of the condition list, leading to the construction of an alpha node and
several join nodes equal to the number of rules that use the shared condition.

The motivating example (cf. Figure 3) includes such a shared condition in
the form of the aggregated value of all meter read-outs. This variable can be
represented as the triple:

(”vars”, ”aggregated value”, ?aggregated value) (2)

The rule R2 of Figure 3 ensures that this aggregated value does not exceed a
certain threshold. There is also another variable required for tracking the number
of successful read-outs, which can also be implemented as a shared variable and
checked by R1. For both cases, there are other rules which actually modify the

A

A

A

(?event_id, type, "Read-Out Meter")

(?event_id, trigger, “positoin_after")

(?event_id, readout_value, ?
readout_value)

R1

Rule #1 RB

Legend:

A Alpha Node Join Node

Beta Node R Rule / Production Node

A7(“vars”, aggregated_values, ?aggregated_values)

A

A

R2

Rule #2

Shared Node (Top)

(a)

modifies

A

A

RN

Rule N

A

A

A

(?event_id, type, "Read-Out Meter")

(?event_id, trigger, “positoin_after")

(?event_id, readout_value, ?
readout_value)

R1

Rule #1 RB

A7

(“vars”, aggregated_values, ?aggregated_values)

A

A

R2

Rule #2

Shared Node (Bottom)

(b)

modifies

A

A

RN

Rule N

Fig. 6. IMP1 concept. RHS modifies shared variable. Positioning of this shared condi-
tion node.

shared variables (see Rule #1 in Figure 6). These rules wait for the correct
event type to occur and once activated will execute the RHS of the rule by
modifying the appropriate shared conditions. Note that for both variables there
is a difference in the expected number of checks required. For the 99% check,
we wait for R1 to be triggered by listening to the ”global readout end” event to
occur. The expected number in this example is once per day at 6AM. For the
shared condition representing ?aggregated value we expect R2 to be checked
every time a ”read-out meter end” event occurs, which scales with the number
of meters that finish the ”Read-Out Meter” activity. Thus we expect the R2 rule
to be more expensive in term of matching time.

IMP1 Benchmark and Analysis We conduct the following benchmark in or-
der to observe the effects of IMP1. First, our main goal is to identify the effects of
shared condition positioning towards matching time. We define two event types:
the main event is of the type ”read-out meter end” which represents the rule

RHS=Noop RHS=0% RHS=100%

Position: Top

[CN=1] Pre 373ms 383ms(+2.68%) 555ms(+48.79%)

[CN=1] Post 367ms 376ms(+2.45%) 387ms(+5.44%)

Position: Bottom

[CN=1] Pre 371ms 376ms(+1.34%) 392ms(+5.66%)

[CN=1] Post 367ms 387ms(+5.44%) 388ms(+5.72%)

Position: Top

[CN=100] Pre 395ms 407ms(+3.03%) 19406ms(+4812.91%)

[CN=100] Post 398ms 408ms(+2.51%) 459ms(+15.3%)

Position: Bottom

[CN=100] Pre 436ms 473ms(+8.48%) 1204ms(+176.14%)

[CN=100] Post 435ms 443ms(+1.83%) 446ms(+2.52%)

Position: Top

[CN=500] Pre 545ms 563ms(+3.30%) 158208ms(+28928.99%)

[CN=500] Post 556ms 572ms(+2.87%) 983ms(+76.79%)

Position: Bottom

[CN=500] Pre 788ms 962ms(+22.08%) 7545ms(+857.48%)

[CN=500] Post 789ms 803ms(+1.77%) 827ms(+4.81%)

Table 1. IMP1 Benchmark Results

that modifies the shared condition. The consequence event is the event that is
triggered as a consequence of the main event. In the motivating example (Figure
3) this could be the rule ensuring the aggregated meter read-out value does not
exceed a certain threshold (R2). Additionally it could be the rule that ensures
that 99% of the read-outs succeed (R1). The expected number of occurences for
the consequence event differ: once per day for R1 and equal to the number of
”read-out meter end” events for R2. In order to observe this scaling effect we
submit the consequence event with differing numbers CN ∈ {1, 100, 500}. Thus
R1 would be similar to the case CN = 1. The main event is submitted with
N = 1000. Another dimension to observe is the difference in the order of the
event streams. In pre-order we will submit all events of type consequence event
first followed by the main event instances. The inverse post-order would inverse
the event submission process: main event first, followed by the consequence event.
Additionally we will observe the effects of triggering the RHS of the main event
rule which can be the following three cases: RHS ∈ {NOOP, 0%, 100%}. The
NOOP case models the scenario where the RHS does not modify any shared
variables. The second RHS = 0% scenario illustrates the case where the RHS
modifies a shared condition, but does not result into further activations due to
failure of consistency checks. The last RHS = 100% would result in full activa-
tion up to rule triggering of the consequence event. Table 1 shows the benchmark
results for IMP1. The values therein are mean values in milliseconds (ms). The
bolded and underlined values represent the extremities (lowest and highest) for
each cluster. Each cluster of values is grouped by the dimensions: RHS type,
CN and position. Within each row relative percentage increase from the base
(RHS = Noop) measurement value is included in parenthesis for better com-
parison.

The first thing to notice is that for position = top and RHS = 100% we
have the worst matching time for each cluster. These degraded matching times
happen only in pre-order and are (1) due to the storing of tokens (partial results)
within the beta nodes of consequence event rules and (2) due to the number of
WMEs stored in the alpha node right below the shared condition node. For
each CN number of events the same amount of WMEs and tokens are stored
in the alpha node and beta nodes for the consequence event respectively. These
are all activated during the submission of the main event stream where each of
the tokens and facts are iterated for each main event instance. The matching
complexity for each instance of the main event becomes linear to the number of
stored WMEs and tokens from the existing consequence events, resulting in the
degraded matching performance. In the pre-order and position = bottom case
the degradation in matching time is softened due to the shorter path to rule
activation as the shared node is linked to the last join node. Only the previous
token (and not all condition facts) are considered for rule activation. But still
this single check is performed N times equal to the main event stream. In the
post-order case, the only WMEs that are activated are those that match the
single token stored in the shared variable. Essentially, the N times main event
activation is reduced as a single token stored in the shared condition’s beta nodes.
This helps when it is time to match the shared variable with the consequence
event stream. In real applications events cannot be expected to happen serially
blockwise but can come mixed together. In that case the single token stored
after RHS modification may not be realistic, but can be simulated by avoiding
consequent event instances for each N main event instances. One way to achieve
this is through triggering consequence events based on time intervals. Another
way to reduce the number of tokens and WMEs is to identify obsolete events
that are eligable for pruning.

Concerning the best matching times we can see that for CN = 1 there is not
much difference between the two possible positioning options. As CN scales, the
gap between top and bottom for the shared condition node widens. Generally
when we know that rules do not affect shared conditions (RHS = Noop) as well
as do not result into activations due to failure in consistency checks (RHS = 0%)
then a top position will fare better regardless of the order of the events being sub-
mitted. But once consequence event rules are fully activated (RHS = 100%) at
each event submission then a bottom position with strict adherence to post-order
is considerably more stable in terms of matching time. Thus, the probability of a
consequence event rule being triggered has a considerable affect in the position-
ing of the shared condition node. Of course, when the consequence event stream
is relatively small (e.g. CN = 1) then the position of the shared condition node
does not affect the matching time as long as post-order is maintained.

4.2 Effects of sharing event instance data nodes (IMP2)
When applying the triple structure for representing conditions as well as facts we
stumble on a drawback that can be illustrated in Fig. 7. One disadvantage is the
need to use several triples for representing a single event instance. These event
instances consist of the event type, timestamp for the point in time of occurence,

A1

A2

A3

(?event_id, type, "Read-Out Meter")

(?event_id, trigger, “positoin_after")

(?event_id, readout_value, ?
readout_value)

R1

Rule #1 RB

Legend:

A Alpha Node Join Node

Beta Node R Rule / Production Node

A4

(?event_id, timestamp, ?timestamp)

A5

A6

A7

(?event_id, event_type, "Global
Readout Stop")

(?event_id, trigger, "time")

(?event_id, time, 06:00)

A8 (?event_id, total_meters, ?
total_meters)

A9 ("vars", meter_readout_success, ?val)

R2 (count(?val) / ?total_meters) < 0.99J

Rule #2

Shared Node

RB

A1(?event_id, “Read-Out Meter”, ?event)

R1

Rule #1

A2 (?event_id, “Global Readout Stop”, ?
event)

A3 ("vars", meter_readout_success, ?val)

R2

(count(?val) / ?event[“total_meters”]) < 0.99J

Rule #2

(a)

(b)

Fig. 7. False sharing of Event Instance Data. (a) uses the triple condition representa-
tion which leads to false sharing for the timestamp condition. (b) uses the native event
representation, leading to less triples and no event instance data false sharing.

as well as a variable number of parameters that are tied to the event. Each of
these elements have to be represented as triples, tied together by a common
?eventid:

(?eventid, ”type”, ”readout meter”)

(?eventid, ”timestamp”, ?timestamp)

(?eventid, ”value1-N”, ?value1−N)

(3)

The drawback materializes in terms of prolonged matching time, as each
node activation has a non constant cost associated with it, amplified through
sharing of conditions. This cost is relative to the number of child nodes and the
therein stored number of tokens as well as WMEs. Unnecessary matching time
can be avoided by having the Rete structure identify opportunities to break off
activation for avoiding subgraph traversal. But this is not always possible. The
second disadvantage is related to the first: the usage of triples, specifically for
representing timestamps. Each timestamp consists of this triple:

(?eventid, ”timestamp”, ?timestamp) (4)

The requirements for representing a timestamp are the following: the value
part of the triple is a variable as each incoming fact representing a timestamp
is not constant. Each timestamp is associated with a ?eventid to map it to the
correct event instance. We need to include timestamp as attribute to properly
find the correct timestamp attribute for the event instance. But observe how
this fact representation results into false sharing in Fig 7. Due to the hash table
optimization for the alpha network [2], triples of this form are shared among
all other conditions. Thus for a set of event ids: {event1, event2, event3} only
a single alpha node is generated to hold all event instance timestamps. This
false sharing results in a number of activations and consistency checks among
all event instances: as a new fact (event4, ”timestamp”, ”2016-05-05T10:39:00”)
enters the rule engine, it will check consistency for eventid with all existing
tokens {event1, event2, event3}. Thus event instance additions become linear in
time relative to the number of existing event instances. These consistency checks
are unnecessary as we know all instance data are relevant solely to the current
event instance.

One way to avoid this false sharing can be achieved by defining the timestamp
condition to be the following triple:

(?eventid, ”timestamp ”+?eventid, ?timestamp) (5)

This solution appends the event id to the attribute, which would create a
seperate alpha node for each event instance. Unfortunately this solution won’t
work, as the Rete structure is compiled in advance before submitting an event
stream. Most applications of the rule engine won’t know in advance which event
ids will be submitted to the engine, unless a statically set total number of events
is defined which may limit the rule engine’s applicability for different domains.
Thus another solution would natively implement event objects inside the value
part of the triple. In section 3 we define the value part of the triple to be a
JSON compatible data structure. Due to false sharing of event instances, we
add support for event objects as well. As such, a condition holding such an
event instance for the event types readout meter is mapped with the following
triple:

(?eventid, ”readout meter”, ?event) (6)

Each condition listening to event conditions is represented as a single triple
with the ?eventid representing the event instance’s unique id, the second pa-
rameter representing the event’s type and the value part a variable holding the
actual event instance. An example event object can be seen in Listing 1.1.

Listing 1.1. Event Object Instance

event_t event = event_t();

event.type = "readout meter";

event.trigger = POSITION_AFTER;

event.timestamp = "2016-05-05T10:39:00";

event.data["value1"] = 147;

In this way, unique alpha nodes are created for each event type and each
?event variable inside the value part of the triple holds the actual event instance.
Constant as well as consistency checks are performed among the attributes of
these event instances.

IMP2 Benchmark and Analysis To observe the effects of IMP2 we have
setup the following benchmark, for which the results can be seen in Fig. 8. We
implement both versions of representing events. First the triple-based method
is used where each event’s attribute is realized as a triple for both defining con-
ditions as well as submitting facts as WMEs. Secondly, the native method is
used where we add support for event objects as possible values inside triples.
Therefore, event attributes are aggregated inside this object. We setup an event
stream (size N = 1000) appropriate for both methods and submit them to the
rule engine incrementally. Additionally, we scale the number of existing events
{0, 10, 100, 200, 250, 500, 750, 1000} allowing us to observe the change in match-
ing time as tokens are added to the Rete structure before the event stream is
actually submitted.

We define two rules which follow Equation 3 with conditions for event type,
timestamp and an arbitrary value value1. The first rule listens for the type ”read-
out meter” and the second rule is triggered for the type ”global readout end”. As
can be seen in Fig. 8(a) the linear matching time for the triple-based method is
indeed a problem. This is especially apparent once more tokens come into play,
each representing an attribute for an event. The linear matching time occurs due
to the join node’s requirement to check for consistency among the tokens (e.g.
that the eventid is equal between tokens). The effect can be seen in the amount
of activations being performed as well, where the join node is leading in number
(cf. Fig. 8(c)). At one extreme where N = 1000 and existing events = 0 we
can observe 7000 join node activations. For each incoming event there are 7 join
node activations for the following reason: 1 right-activation for each incoming
event type fact and 2 right-activations for each incoming timestamp as well as
2 right-activations for each incoming value1 facts. The latter two attributes are
shared conditions among the rules and are thus submitted once for each rule. The
remaining two left-activations occur when the eventid consistency check passes
between the type and timestamp tokens as well as between the timestamp and
value1 tokens. When a secondary event of type ”global readout end” is submit-
ted, the equal amount of 7 join node activations are triggered. This explains the
14000 join node activations for the case N = 1000 and existing events = 1000. In
contrast to the triple-based method, the native method stays nearly constant in
matching time as no consistency checks are required among the event attributes.
With the native method the number of join node activations are equal to the
total number of events being submitted.

4.3 Heuristics for performant ISC event matching

In this section we summarize the analysis for the benchmarks performed for
IMP1 and IMP2 (cf. Figure 9). We categorize these heuristics by their origin
(IMP1 or IMP2) as well as the type of the heuristic. Static heuristics are those

●

●

●

●

●

●

●

●

●

●

●

●

●

●0

1000

2000

0 250 500 750 1000
of existing eventsav

g.
 m

at
ch

in
g

tim
e

(m
s) Event condition method ● ●native non−native

(a) native event type vs triple−based conditions (events N=1000)

●

●

●●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

0

500

1000

1500

2000

0 250 500 750 1000
of existing events

of

 a
ct

iv
at

io
ns

Node activated ● ● ●alpha node beta node join node

(b) node activations (events N=1000, native event method)

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

5000

10000

0 250 500 750 1000
of existing events

of

 a
ct

iv
at

io
ns

Node activated ● ● ●alpha node beta node join node

(c) node activations (events N=1000, non−native event method)

Fig. 8. IMP2 Benchmark Result

that are applicable at Rete network construction time. Dynamic heuristics are
those that are only applicable during runtime of the rule engine and may require
information that are only available then. Some heuristics can be applied in both
states and are marked static/dynamic. The condition column states the precon-
dition that need to be met before applying the heuristic. IMP1 deals with the
positioning of shared condition nodes, the timing for emitting consequence event
instances, as well as the purging of obsolete events which store partial results in
the form of tokens as well as WMEs in the shared condition node.

5 Related Work

Checking the compliance of business process with constraints has been researched
well. Monitoring constraints over process executions constitutes one task next

Place shared condition nodes to position = bottomIF probability of consequence event rule
being triggered is high (RHS near 100%) IMP1-4 Static / Dynamic

IF CN > 1 and scales further

IF # of tokens and WMEs in shared condition
nodes increases beyond threshold

IF post-order of consequence event is
ensured

IF order of main and consequence events are
mixed

Condition

IF need to represent concepts that do not
require matching between their attributes.

IF # of tokens and WMEs in shared condition
nodes increases beyond threshold

IF probability of consequence event rule
being triggered is low (RHS near 0%)

IMP1-2 Dynamic Emit consequence events at specific time intervals to avoid frequent matching

IMP2-1 Aggregate these concepts as single value instances (e.g. Events and Fluents)Static

Dynamic Restructure to position = bottomIMP1-7

Dynamic Identify and purge obsolete events to reduce number of partial results (tokens inside
beta nodes)IMP1-6

Prefer position = topIMP1-5 Static / Dynamic

IMP1-3 Static / Dynamic Place shared condition nodes to position = top

IMP1-1 Static / Dynamic

TypeHeuristic

Place shared condition nodes to position = top

Description

Fig. 9. Summary of heuristics extracted from IMP1 and IMP2

to design time or post mortem compliance checking [14,1] and guaranteeing
compliance-by-design [7]. For compliance monitoring the survey [8] provides an
overview on existing approaches and compares them based on Compliance Mon-
itoring Functionalities (CMFs). When it comes to compliance monitoring mostly
ISC have been neglected yet [8]. Hence, the approach at hand tackles an open
gap. It is related to MobuConEC [11] as both approaches use EC. However,
MobuConEC is stated of not being fully data-aware and operable yet [11]. More-
over, it is not evident whether and how MobuConEC supports ISC.

This work employs and extends the Rete algorithm proposed in [4]. Several
extensions for Rete have been suggested. [2] introduces Rete/UL which extends
Rete with an unlinking strategy for avoiding null activations. These are acti-
vations where it is known that either the beta node does not hold tokens or
the alpha node contains no WMEs. In such cases, it is possible to unlink the
connection between the alpha network and the beta network to avoid unnec-
essary activations. The benchmarks we have shown through IMP1 handles the
cases where too many tokens and WMEs cause degradation in matching time
and show heuristics to avoid the worst cases. As such, we can still augment the
unlinking strategy to further improve the case where RHS = 0% (where the
activation of a shared condition node does not lead to actviations).

6 Conclusion and Outlook

In this work we have tackled the problem of realizing a monitoring engine specif-
ically for matching Instance-spanning constraints (ISCs). We base our work on
Event Calculus (EC) and show the feasability of mapping EC to Rete Networks
(RQ1) (cf. Section 3.2). Further we conducted experiments in regards to the
Rete Structure to identify aspects to improve matching performance and ex-
tracted these insights as heuristics (RQ2, RQ3) (cf. Section 4). As future work
we would like to implement further ISC examples collected in [13] with the
hopes of extracting more heuristics. Based on the heuristics IMP1-2, IMP1-6,
and IMP1-7 (cf. Figure 9) we can tackle more dynamic runtime data aspects to

identify more ways for improving pattern matching performance. Furthermore,
we will show the applicability of the heuristics on complex rule definitions.

References

1. Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

2. Doorenbos, R.B.: Production Matching for Large Learning Systems. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1995), uMI Order No. GAX95-
22942

3. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
formalization of instance-spanning constraints in process-driven applications. In:
International Conference on Business Process Management 2016 (2016)

4. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects
match problem. Artif. Intell. 19(1), 17–37 (1982), http://dx.doi.org/10.1016/
0004-3702(82)90020-0

5. Garbe, C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Spatz, A., Grob, J.,
Malvehy, J., Newton-Bishop, J., Stratigos, A., et al.: Diagnosis and treatment of
melanoma: European consensus-based interdisciplinary guideline. European Jour-
nal of Cancer 46(2), 270–283 (2010)

6. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–95 (1986)

7. Lohmann, N.: Compliance by design for artifact-centric business processes. Inf.
Syst. 38(4), 606–618 (2013)

8. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015), http://dx.doi.org/10.1016/j.is.2015.
02.007

9. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: Analyzing vessel behavior using
process mining. In: Situation Awareness with Systems of Systems, pp. 133–148.
Springer (2013)

10. Mangler, J., Rinderle-Ma, S.: Rule-based synchronization of process activities.
In: 13th IEEE Conference on Commerce and Enterprise Computing, CEC 2011,
Luxembourg-Kirchberg, Luxembourg, September 5-7, 2011. pp. 121–128 (2011)

11. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring business constraints with the event calculus. ACM TIST 5(1), 17 (2013),
http://doi.acm.org/10.1145/2542182.2542199

12. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), 15-19 October 2007, Annapolis,
Maryland, USA. pp. 287–300 (2007)

13. Rinderle-Ma, S., Gall, M., Fdhila, W., Mangler, J., Indiono, C.: Collecting exam-
ples for instance-spanning constraints. Technical report, arXiv.org (2016), http:
//eprints.cs.univie.ac.at/4634/

14. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: International conference on business process management.
pp. 149–164 (2007)

15. Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-play virtual factories.
IEEE Internet Computing 16(5), 78–82 (2012)

http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1016/j.is.2015.02.007
http://dx.doi.org/10.1016/j.is.2015.02.007
http://doi.acm.org/10.1145/2542182.2542199
http://eprints.cs.univie.ac.at/4634/
http://eprints.cs.univie.ac.at/4634/

	Rule-based Runtime Monitoring of Instance-Spanning Constraints in Process-Aware Information Systems

