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Abstract. The sizes of datasets available as RDF (e.g., as part of the
Linked Data cloud) are increasing continuously. For instance, the recent
DBpedia version consists of nearly 500 millions triples. A common strat-
egy to avoid problems that arise e.g., from limited network connectivity
or lack of bandwidth is to replicate data locally, therefore making them
accessible for applications without depending on a network connection.
For mobile devices with limited capabilities, however, the replication
and synchronization of billions of triples is not feasible. To overcome this
problem, we propose an approach to replicate parts of an RDF graph
to a client. Applications may then apply changes to this partial replica
while being offline; these changes are written back to the original data
source upon reconnection. Our approach does not require any kind of ad-
ditional logic (e.g., change logging) or data structures on the client side,
and hence is suitable to be applied on devices with limited computing
power and storage capacity.

1 Introduction

The RDF data model has been designed to facilitate the publication of semanti-
cally meaningful data about resources on the Web. It is innately intended to be
used in a decentralized, distributed, and uncontrolled manner. Because of these
requirements, RDF has been designed so that data from different sources can
be easily merged and integrated, its vocabulary is extensible, and it employs
an open world semantics, which essentially means that data consumers (appli-
cations or end users) can never be assured that they are aware of all relevant
information.

According to current estimates1, the Linked Data cloud consists of more than
13 billions RDF triples, which are distributed across hundreds of sources. They
can be accessed using a variety of means, ranging from directly de-referencing
HTTP URIs, over issuing selective queries via SPARQL, to downloading data
dumps and deploying them in local triple stores. It is a matter of the concrete
application which method is the appropriate one, since they expose different
characteristics w.r.t. efficiency and performance.
1 Linked Data Set Statistics: http://esw.w3.org/topic/TaskForces/

CommunityProjects/LinkingOpenData/DataSets/Statistics
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Especially in the mobile domain it is very unlikely that an application will
access all of them online, since mobile network connectivity is not always avail-
able for reasonable prices. To overcome this problem, and to decrease response
times, data from remote sources can be replicated locally, and applications can
operate on these local copies. However, it is not practical to duplicate several
billions RDF triples to a mobile device with limited computing power and mem-
ory capacity, and often this is not required at all for a specific application; e.g.,
because the application is only able to operate on resources of certain types.

The replication of data from external sources, which can be selected based on
the specific application context, is relatively straightforward for read-only data.
However, we expect the Semantic Web to evolve into a read-and-write system;
this claim is supported by the currently ongoing efforts towards a standardization
of update functionality for the SPARQL query language [1], or the specification
of write-back mechanisms for non-RDF data sources2.

When applications modify partially replicated data, the problem of synchro-
nization upon reconnection becomes apparent. The computation of a diff (i.e.,
sets of added and removed triples) involving partial RDF graphs is not straight-
forward, even if we leave aside the problems that blank nodes impose on compar-
ing RDF graphs [2, 3]. RDF is set-based and does not provide opaque identifiers
for single triples, therefore they can only be identified by explicitly and fully
naming their subject, predicate, and object. Hence it is difficult to compare
incomplete RDF graphs (which is required for merging changes from different
sources) without additional information.

One can overcome this problem by instantiating services that monitor and
track changes to RDF graphs and therefore make added and removed triples
explicit; e.g., by marking triples as deleted instead of physically removing them.
However this approach requires hooking into existing software infrastructure
used by applications (in particular, triple stores) and is therefore not applicable
in many scenarios. In this paper, we present an approach how parts of RDF
graphs can be replicated to clients for local modification, whereas the replicas
are enriched with triples that describe which parts of the (full) base graph are
missing. For this, binary strings are added to the partial replica; these strings
are mapped to an ordering of the triples in the base graph. Upon reconnection,
this additional information can be used to identify which triples have been added
and removed without the need for additional tracking infrastructure on the client
side.

In the following, we outline the requirements and the general design of our
approach (Section 2). We introduce the concept of triple bitmaps, with which
partial graphs are enriched in order to allow the computation of diffs (Section 3),
and we explain how changes to partial graphs can be merged with the original
data (Section 4). We present some implementation details (Section 5) and ad-
dress several known limitations of our approach, as well as general problems in
the context of replicating and merging RDF graphs (Section 6). We conclude
with a discussion of related work (Section 7).

2 pushback: http://esw.w3.org/topic/PushBackDataToLegacySources
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2 Approach and Model

2.1 Requirements

In this section, we introduce the requirements that have led to the specification
of our partial graph replication algorithm. As stated before, our general objective
is to allow Semantic Web-based applications (which we denote as clients in the
following) to replicate parts of base RDF graphs (which are stored in a remote
repository), to make changes to these local replicas, and to synchronize changes
back to the base graphs upon reconnection. In particular, the framework aims
to fulfill the following requirements:

– No additional client-side processing. Our approach should be applicable to
environments with limited processing and storage capacity, like mobile de-
vices and handhelds. Moreover, the approach should be compatible with any
RDF storage system on the client’s side and should therefore not require
modifications or hooks. It should also not rely on mechanisms that track
changes on the client side, e.g., by marking deleted triples.

– No additional data structures on the client side. For the same reasons (namely,
avoiding to interfere with client-side RDF storage and processing infrastruc-
ture), and to reduce client-side workload, it is desirable that the approach
does not require additional data structures beyond the RDF model on the
client side. For the server side, we do not impose this requirement since here
usually more resources are available, and server environments are more easy
to control and maintain than distributed client systems.

– Support for light-weight clients. Subsuming the previous two requirements,
our approach should be designed in a manner that allows it to be applied in
mobile environments.

– Stateless graph repositories. The repository (which holds the base graphs to
be replicated to clients) should not require to maintain status information
(e.g., information about partial graphs) about clients in order to keep a
separation of concerns between the repository and the clients.

– Flexibility w.r.t. subgraph selection. The approach should not assume a cer-
tain graph structure, or a specific ratio of the sizes of the base graph and the
partially replicated graph; it should be able to handle any such ratio with
acceptable performance and scalability.

2.2 Workflow

In the design of our approach we follow the naming convention of the popular
Subversion system3 (SVN) for file versioning. In SVN, a server (called repository)
hosts a set of versioned files, which are arranged in a hierarchical directory
structure. A client can transfer these files, or a subset thereof, to a local working
copy ; this step is called checkout. This working copy is enriched with metadata
containing information about its base revision, which are stored in additional
3 Subversion: http://subversion.tigris.org
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hidden files. Then, modifications are applied to the working copy. The client can
update its working copy with recent changes from the repository at any time.
During this step, modifications from other clients (which have been applied to the
repository) are merged with the client’s working copy. When concurrent changes
are merged, conflicts can occur, which have to be resolved on the client side.
The client’s modifications are then transferred to the repository in the course of
the commit action.

For the specification of our partial graph versioning system, we follow the
naming convention of SVN. While SVN treats files as atomic units of versioning,
we apply versioning to (named) RDF graphs. However, as described before our
approach additionally enables clients to checkout partial RDF graphs, which has
significant impact on the workflow of versioning:

– First of all, our approach should be applicable to devices with limited com-
puting power and memory, hence we operate with partial graphs on the client
side. However, the same restriction applies to updates that are transmitted
from the repository to the client: as these updates can as well become very
large we must ensure that clients are not overburdened with calculation of
diffs and merging operations.

– As we will see later, the lack of client-side infrastructure (as defined in the
requirements) leads to the problem that the client is not aware of its partial
RDF graph’s characteristics: for instance, after a partial checkout the client
cannot decide which fraction of the original graph was retrieved. Therefore,
partial graphs cannot be merged on the client.

– The detection of conflicting modifications (which can occur on the syntac-
tical or the semantic layer) requires domain knowledge and often involves
relatively expensive reasoning. The need for partial reasoning has already
been recognized [4], and there exist proposals how this can be accomplished
on mobile devices (e.g., [5]). However, complete underlying data is required
for this task, which in our scenario is the case only on the repository.

Because of these reasons we have specified a modified replication and ver-
sioning workflow for partial RDF graphs, as depicted in Figure 1. The most
significant change is the shift of merge operations from the client to the repos-
itory; this is due to the fact that only the repository has complete information
about graphs and modifications, while clients have only partial information.

A second significant change is that clients cannot receive updates from the
repository, because this would again require capabilities for merging and conflict
detection on the client side. Instead, clients must always commit their changes
to the repository and can then checkout a new partial graph. Consequently, the
lifetime of a working copy is limited to one checkout-commit cycle.

2.3 Partial Graphs

The key concept in our approach is the enrichment of partial graphs with triple
bitmaps. A partial graph contains a subset of the triples of a given RDF graph
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Fig. 1: Partial Graph Versioning Workflow

(the base graph). Triple bitmaps encode which triples from the base graph are
missing in the partial graph. Partial graphs are enriched with the necessary triple
bitmaps and are transferred to the client, which applies changes to it. When the
modified partial graph is committed, the repository is able to analyze the sub-
mitted triple bitmaps and infer which triples from the base graph were missing in
the original partial graph, and consequently can infer which modifications were
applied to the partial graph. In the following we formally describe our approach.

We define an RDF graph G ∈ G as a set of tuples (s, p, o) ∈ UB×U×UBL,
called triples [6], where U is the set of all URIs, B the set of all blank nodes,
and L the set of all literals. We denote with SG the set of subjects in G, i.e., all
elements that appear at the subject (s) position of any triple in G (according
to the RDF specification, this can only be URIs and blank nodes); therefore
SG ⊂ UB.

For graph equivalence between two graphs G and G′ we reuse the definition
from [7], which requires a bijectionM that maps all elements (URIs, literals, and
blank nodes) from G to corresponding elements in G′, and vice versa [3]. While
this mapping is straightforward for URIs and literals, it may be problematic for
blank nodes, which must be grounded in order to ensure that two graphs can be
compared (cf. Section 6). With “grounding” we denote the process of assigning
unique identity to blank nodes.

A partial RDF graph G derived from its base graph G is an RDF graph that
consists of two groups of triples: (1 ) the set of base triples Gb, i.e., triples that are
also contained in G; and (2 ) the set of bitmap triples Gt of the form < s′, p, o >,
where each s′ is derived from an element s ∈ SG, p = tbt:bitmap4, and o is
a triple bitmap literal, related to s, G and G, which we denote with B(s,G,G).
Therefore, G = Gb ∪Gt, where Gb ⊆ G and Gt =

⋃
s∈SGb

B(s,G,Gb)
.

4 tbt:bitmap is the abbreviated notation of a specific property that represents a re-
source’s triple bitmap.



3 Triple Bitmaps

A triple bitmap B(s,G,G) is a binary bitmap that represents the presence (0) or
absence (1) of the triples of an RDF graph G within a partial RDF graph G. A
triple bitmap is determined by a tuple (s, G,G), where s is an RDF language
element that appears as the subject of at least one triple in both G and G;
i.e., s ∈ SG and s ∈ SG. The construction of such a triple bitmap is described
in Algorithm 1. It uses a monotonic sequential ordering O(G, s) over all triples
in G for which s is on the subject position (i.e., SG)5. This ordering must be
recoverable for each revision of G, since O(G, s) will change when triples are
added to, or removed from G.

Input: RDF element s, graph G, partial graph G
Output: Triple bitmap B(s,G,G)

bitmap ← empty bitmap with size |O(G, s)| ;
forall triples ti in O(G, s), 0 ≤ i ≤ |O(G, s)| do

if ti ∈ G then bitmap [i] ← 0 ;
else bitmap [i] ← 1 ;
i ← i + 1 ;

end
Algorithm 1: Construction of a Triple Bitmap

We have chosen to build bitmaps based on distinct subjects, instead of dis-
tinct predicates or objects. This design decision is based on an analysis of typical
RDF data found on the Web, which exhibit a certain ratio between the number of
distinct resources and the number of triples in which each resource participates.
For instance, in the 2009 Billion Triple Challenge dataset6 only 1.3 millions out
of more than 128 millions distinct subjects participate in more than 100 triples,
and only ≈25,000 subjects appear in more than 1,000 triples (cf. Table 1). The
vast majority of subjects occur in 2 to 10 statements. The distribution of distinct
objects is entirely different: two thirds of all distinct objects appear in only one
statement. Constructing bitmaps based on triple objects would therefore lead
to a large number of bitmaps consisting of only one bit. The number of distinct
predicates is far below the number of subjects or objects, which leads to a high
number of statements per distinct predicate; in this case triple bitmaps would
become very long.

5 Such an ordering can be defined for all RDF graphs: either, the underlying storage
mechanism already provides a natural ordering ; if this it not the case a generic lexical
sorting as proposed e.g., in [8] can be employed.

6 2009 Billion Triple Challenge: http://vmlion25.deri.ie
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# of Partici- Distinct Subjects Distinct Predicates Distinct Objects
pating Triples

Total 128,079,322 (100.00%) 136,188 (100.00%) 279,710,101 (100.00%)

1 9,873,704 (7.71%) 23,222 (17.05%) 189,702,670 (67.82%)

2–10 99,168,416 (77.43%) 50,029 (36.74%) 82,011,684 (29.32%)

11–100 17,734,849 (13.85%) 38,812 (28.50%) 7,247,533 (2.59%)

100–1,000 1,276,612 (1.00%) 15,947 (11.71%) 704,735 (0.25%)

≥1,001 25,741 (0.02%) 8,178 (6.00%) 43,479 (0.02%)

Table 1: Billion Triple Challenge 2009 data set statistics: distribution of partici-
pating triples per distinct subject, predicate, and object

A similar distribution can be found in a highly important Linked Data source,
the DBpedia 3.3 dataset7. Of 25,455 randomly selected subjects, none appears
in only a single triple, while the vast majority (89.85%) appeared in 11 to 100
triples; 10.12% occur in 100 to 1,000 triples. Contrary, of 639,321 randomly
selected objects, 634,198 appear in 10 or less triples, therefore the number of
bitmap triples would be very high, which causes additional storage overhead.

3.1 Serialization of Triple Bitmaps

As we will see later, triple bitmaps are encoded as RDF literals in order to enrich
a partial graph. For this purpose, we can encode a triple bitmap b(s,G,G) as a
plain string consisting of a sequence of zero and one digits. Since this is quite
verbose, and to facilitate interoperability with RDF-related standards, we apply
base64 -encoding [9] to the bitmap. This encoding is supported by a designated
XML data type (xsd:base64Binary) and is recommended for representing arbi-
trary binary content in RDF [10]. To determine the precise length of the bitmap,
it is padded with a 1 before the most significant bit; then the bitmap is padded
with zeroes to fit the 6 bit pattern for base64-encoding. Figure 2 depicts the
subsequent steps in the encoding process. In this example, four out of 21 state-
ments from the original graph are not present in the partial graph; therefore the
triple bitmap contains four 1s (positions 4, 8, 11, and 12).

Bit # 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Original Bitmap 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

1-padded Bitmap 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

base64–padded Bitmap 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

base64-encoded Bitmap E A y I

Fig. 2: base64-Encoding of Triple Bitmaps

7 DBpedia: http://dbpedia.org
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3.2 Enriching Partial Graphs with Triple Bitmaps

We can now enrich the partial graph G with the set of bitmap triples Gt, which
contains one triple bitmap triple per distinct subject in Gb. For the subject we
do not directly use s but add a unique prefix8, forming a new URI s′9:

Gt = {< s′, tbt:bitmap, "B(s,G,G) "^^xsd:base64Binary > | s ∈ SG} (1)

Such an enrichment technique is in line with the RDF formal semantics [11]
and has been used in previous works, e.g., for non-deterministic labeling of RDF
nodes in order to facilitate signing of RDF graphs [8] (the author calls this
technique to “make meaningless changes to an RDF graph”). An example of
the construction of a triple bitmap and the enrichment of a partial graph is
depicted in Figure 3. Here, the base graph consists of four triples of which only
two (#1 and #3) are included in the partial graph (non-replicated triples are
depicted in grey). The resulting triple bitmap consisting of two zeroes and two
ones ("1010"), which yields the string "a" after padding and base64-encoding.

dbpedia:Berlin
dbpedia-owl:City

"Berlin"

3,431,700

freebase:Berlin

owl:sameAs

rdf:type

rdfs:label
dbprop:population

1

2

3

4

"a"^^xsd:base64Binarytbt:dbpedia:Berlin tbt:bitmap

Fig. 3: Graph, partial graph, and bitmap triple

Our approach requires the transmission and storage of one triple bitmap per
subject in G. Bitmaps are encoded as triples, which consist of the subject, a
(fixed) predicate, and the serialization of the triple bitmap, whereas each object
requires one bit. According to the data presented in Table 1, more than 80% of
8 Without loss of generality this prefix can be freely chosen, as long as it is guaranteed

that it does not conflict with other subject URIs used in G; this condition can
however be ensured by various means, e.g., by introducing a special URI schema (as
in our example), or by using HTTP URIs within a domain registered solely for this
purpose.

9 Blank nodes must be grounded beforehand so that they are uniquely identifiable and
hence a prefixed URI s′ can be determined.



all triple bitmaps are shorter than 16 bits and can thus be represented using two
bytes. In the Virtuoso triple store, for instance, each triple requires a storage
capacity of around 35 bytes [12], which means that the cost of transmitting and
storing additional bits in a triple bitmap is much lower than storing additional
triples. Therefore we decided to attach triple bitmaps to subjects rather than to
objects.

During a partial checkout the repository sends the partial graph G (i.e., a
subset of the triples of the base graph G plus one bitmap triple for each distinct
subject in G) to the client, where it is buffered in a local triple store. The
revision number of the graph is maintained on the client side as part of the
graph URI. Applications can now access and modify these data independent
from the network connection.

4 Merging Partial Graphs

The triple bitmap for each subject s in the partial graph G allows us to determine
whether triples have been added or, more importantly, removed from the partial
graph without requiring to explicitly track these change operations. The only
condition to be fulfilled by the client is that the triple bitmaps may not be mod-
ified or deleted; in this case it would become impossible to retrace which triples
from the base graph were missing in the unmodified partial graph. However,
since the set of bitmap triples Gt does not interfere with the rest of the contents
of the partial graph Gb, and an RDF graph entails all of its subgraphs [11] (in
our case, G |= Gb), this condition can usually be maintained.

G

G G'

G' G''

partial checkout

client-side
modifications

modifications by
other clients

commit 
+ merge

Repository

Client

Fig. 4: Evolvement of modified partial graphs

It is unlikely that applications (which are not aware of the special semantics
of the bitmap triples) modify or delete these triples “by accident”. The typical
update operations on RDF graphs as defined e.g., in [1] (i.e., insertion and dele-
tion of triples) have no effects on other triples in the graph. The only exception
are resource deletions: since in RDF resources can occur only within triples, to
“remove a resource” means effectively to remove all triples in which the resource
appears. To avoid this, our proposed method to enrich graphs with triple bitmaps
is to add a prefix to the actual resource’s URI (cf. Figure 3). Thus we create a
separate resource for the bitmap triple and therefore reduce the probability of



its accidental removal, while this separate resource is still implicitly connected
to its base resource through their URI. For the merge operation this implies that
if a committed partial graph G

′
contains a bitmap triple with subject s′ but no

triples with the corresponding subject s, the repository can apply one of two
strategies:

1. Partial resource removal : the repository removes only triples that were present
in the partial graph, according to the triple bitmap for s; or

2. Complete resource removal : the repository removes all triples where s occurs
in the subject position, regardless of the contents of the triple bitmap.

These strategies represent two different assumptions on the client’s intention
that the repository can take: in the first case, it assumes that the client intended
to remove a set of triples with subject s that is exactly the set of triples that
have been checked out in the partial graph G; in the second case the repository
assumes that the client’s intention was to remove all triples with subject s.

The decision which strategy to take can be supported by checking whether
s is the object of other triples in G

′
. If such triples exist, it is unlikely that

the client’s intention was to remove the resource s entirely since in this case
the triples where s stands in the object position would have been removed, too.
Therefore, in this case a partial resource removal should be chosen.

Another situation in which bitmap triples may be accidentally removed are
bulk deletions that affect multiple subject resources. Let us assume that a com-
mitted partial graph G

′
contains triples with a subject resource s without a

corresponding triple bitmap statement. Let us further assume that s was al-
ready present in the base graph G, but G

′
contains statements with subject s

that were not present in G. In this case, the repository cannot decide whether
the original partial graph G contained statements that have been removed and
are therefore not present in G

′
. Again, one of two strategies can be applied:

1. Optimistic resource removal : the repository removes all triples with subject
s that are not present in G

′
; or

2. Pessimistic resource removal : the repository removes only those triples for
which a triple bitmap is present in G

′
, and leaves all other triples untouched,

including triples with subject s that are not present in G.

An extreme case of this class of operations is the removal of all triples in the
graph; i.e., G

′
is empty. Such a situation cannot be handled using any kind of the

heuristics mentioned before; in this case the repository has to decide whether to
ignore the commit and leave G in its previous state, or to interpret the commit
as total delete and remove all triples from G.

As an alternative to the a-priori selection of a certain removal strategy, the
repository can reject the modification and return it to the client. This is a similar
behavior as in SVN, where certain types of conflicting concurrent modifications
must be resolved manually by the user.

The merge procedure (cf. Figure 4) considers three graphs as input: the
modified partial graph G

′
as received from the client, the base graph G from



which the original partial graph G was extracted, and the current revision of G,
denoted as G′. Since the contents of the original partial graph (i.e., G) can be
computed using the triple bitmaps contained in G

′
, we can apply a standard RDF

diff algorithm [2] to detect and compare changes. Its result is a merged graph
G′′ which reflects all changes applied to G. In case of unresolved conflicts, the
algorithm terminates without returning a merged graph, and the commit must be
revised by the client (e.g., through an appropriate user interface). Conflicts can
be detected by comparing either the two changesets CG,G

′ and CG,G′ (whereas a
changeset C consists of one set of added triples Ca and one set of removed triples
Cr [7, 13, 14]), or by comparing G′ with the full graph that can be reconstructed
from G

′
. Algorithms for conflict detection on various levels of semantics have

already been presented (e.g., [15]) and are out of the scope of this paper.

5 Implementation

We have implemented the presented approach as part of the MobiSem Replica-
tion Framework10. The prototype is based on the Jena Semantic Web library and
provides the necessary methods to extract parts of an RDF graph, to compute
and serialize triple bitmaps, and to reconstruct graphs based on partial commits.
Modules for blank node grounding and conflict detection can be plugged into
the framework since these tasks are highly depending on the schema that is used
in the data; our implementation does not impose restrictions on these aspects.

6 Limitations and Discussion

Our proposed algorithm is able to cope with changes to partial RDF graphs, as
long as the triple bitmaps that are attached to the partial graph remain intact.
Even in situations where subjects without corresponding triple bitmap exist (or
vice versa) the algorithm is able to terminate; however in this case assumptions
on the client’s intentions must be made. If this is not desirable, the repository
can revoke changes which are not clearly resolvable.

As shown in Section 3, the computation, transmission, and storage of triple
bitmaps is feasible under consideration of the structure of real RDF data sets. In
extreme cases, however, this approach may become inefficient. First, if the base
graph contains a large number of subject resources but only very few triples per
subject, a large number of short triple bitmaps is added to the partial graph.
On the other hand, if the base graph contains only few subjects while each
subject is described by a large number of statements, triple bitmaps become
very large and may become unmanageable. In these cases a modified variant of
our approach can be applied where triple bitmaps are not attached to subjects,
but to predicates or objects, depending on the structure of the data. This can
be done without loss of functionality as long as the repository’s interpretation
of bitmap triples for each graph remains consistent over time.
10 MobiSem Project: http://www.mobisem.org
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A general problem in the context of RDF versioning and replication is the
treatment of blank nodes. The comparison of two graphs requires blank nodes
in the graphs to be matched, so that changes in the triples where these nodes
occur can be detected. A number of solutions for blank node grounding have
been discussed in the literature (including node renaming [7], usage of exist-
ing or artificial inverse-functional properties [16], explicit identity assertions like
owl:sameAs and owl:equivalentClass, or feature vector comparison [17]). Our
approach does not consider blank nodes differently from named nodes, therefore
it requires an additional strategy to ground blank nodes as part of the calculation
of diffs between the base graph and a committed partial graph.

A second problem in this context is the detection of conflicts that occur due
to concurrent modifications to the same graph. Various approaches to tackle
conflicts on the structural or semantic layer have been presented in the litera-
ture (e.g., [7, 15, 18]). However, this issue is out of the scope of our algorithm;
instead we provide a hook for a conflict detection function as part of our merge
algorithm.

7 Related Work

The problems of versioning RDF graphs and tracking changes in the context of
Semantic Web-based information systems have been acknowledged early. Kirya-
kov and Ognyanov [13] have introduced the basic foundations of versioning w.r.t.
the semantics of the RDF model; based on their work models and ontologies for
RDF deltas have been specified [2]. The characteristics of such deltas under the
conditions of RDF Schema semantics have been analyzed [14]. Efficient storage
structures [19] and aggregation algorithms [7] for versioned triple data were de-
signed, and the semantics of graph merge operations have been studied in detail
[20]. This research has lead to a number of concrete systems and frameworks,
including SemVersion [16], the discontinued Graph Versioning System (GVS)11,
and the Talis Platform12.

On a higher level, versioning can also be applied to knowledge bases under
consideration of the semantics imposed by the underlying ontology language; an
example of a complete framework for such high-level changes is presented by
Plessers et al. [21]. Papavassiliou et al. [18] introduce the notion of higher-level
changes to RDF graphs that are validated against preconditions. Similar to [7]
they propose to aggregate atomic changes to higher-level composite changes and
provide a reasoning-based algorithm to detect them.

The need for replication of RDF data has likewise been addressed in previous
works: for instance, the Boca Semantic Web framework [22] provides support for
graph replication and synchronization, both in real-time and in batch mode.
This is accomplished on the named graph level, therefore it does not allow for
the replication of arbitrary sub-graphs. Moreover, it requires that modifications
are tracked on the client side, which requires special client-side software. In the
11 Graph Versioning System: http://gvs.hpl.hp.com
12 Talis Platform: http://www.talis.com/platform/
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relational database world, algorithms for replication and synchronization are
already well-established; through the usage of hybrid databases such mechanisms
can also be applied to RDF data (as implemented, e.g., within the Virtuoso
integration middleware [23]). Replication of RDF data has also been proposed
on a peer-to-peer basis [24]. Our approach differs from these works in that it
does not require any kind of special infrastructure on the client side; instead,
partial graphs are (re)constructed by the repository only.

None of these approaches have explicitly considered the special conditions of
management of subsets of RDF graphs in a distributed situation. There exist
various approaches for the specification of graph subsets; e.g., Concise Bounded
Descriptions [25], RDF Molecules [26], and Minimum Self-contained Graphs [27];
mostly they have been specified to overcome problems in conjunction with blank
nodes. Some of these approaches have been applied in the context of versioning
(e.g., GVS uses RDF Molecules as versioning subject), but none of them al-
lows for unrestricted selective replication and synchronization of graph subsets.
Therefore we consider previous works on modification tracking and versioning
of RDF graphs as complementary to our work.

8 Summary and Conclusions

It is reasonable to replicate data sets from remote sources (e.g., the Linked
Data Cloud) to mobile devices. This allows users to operate in offline mode,
which is helpful in situations with limited connectivity or in situations where
data transmission over a network is too expensive or too slow. However, under
consideration of the limited resources available on mobile devices it is impractical
to replicate large data sets. In this paper we have presented an approach that
provides the possibility to replicate subsets of RDF graphs to clients, which can
be processed and modified locally, and later written back to the base graph.
Subsets of RDF graphs are enriched with triple bitmaps, which indicate the
missing triples in the partial replica. Upon reconnection, these triple bitmaps
can be utilized to determine which modifications have been made by the client.
Hence, our algorithm does not require to set up special infrastructure on the
client side, which increases its applicability for a wide range of situations.

The presented algorithm is based on the characteristic of RDF that triples
can be added to a graph without interfering with the graph’s original semantics.
For the algorithm to work correctly it is important to ensure that the injected
triple bitmaps are not accidentally modified or deleted. To decrease the probabil-
ity of this case, triple bitmaps use a dedicated vocabulary and are not explicitly
connected to the resources they describe. The algorithm is able to intercept cer-
tain error situations; however, in several cases a definite decision cannot be made.
In such situations, the repository can either assume certain client intentions and
perform corresponding actions, or refuse the modification; in this case the client
must solve the ambiguity.

Our algorithm has been designed especially for mobile applications, where
one cannot rely on a stable network connection, and because of limited resources



the full replication of large data sets is not feasible. In the future we plan to
extend the possible application fields, e.g., to collaborative ontology and data
authoring, and to integrate the proposed method with further algorithms for
conflict detection.
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