
Clustering with the Levy Walk:
”Hunting” for Clusters

Benjamin Schelling
University of Vienna

benjamin.schelling@unvie.ac.at

Claudia Plant
University of Vienna

claudia.plant@univie.ac.at

Abstract—The Levy Walk (or Levy flight) is a concept from
Biomathematics to describe the hunting–behaviour of many
predatory species. It is a very efficient way to find prey in a
very short time frame. We now want to use this concept in
a clustering–context to – if you so will – ”hunt” for clusters.
We describe how we convert this concept into an efficient way
to find cluster centres by linking the data points through the
path the Levy Walk takes. The clusters are then created by
statistical analysis of the links between the data points. The result
is a Clustering algorithm that works on massive datasets with
extremely high level of noise. It is not dependent on any form of
cluster shape and is almost free of parameters. The only choice
one has to make is the precision of the Clustering, which in turn
determines the runtime.

I. INTRODUCTION

As the data we compile from real world and experiments
increases, so increases the need for algorithms to automatically
interpret these masses of data and reduce them to under-
standable and interpretable amounts. This should entail the
interesting aspects, which might otherwise remain hidden in a
sea of noise. The more data we have, the more complicated it
gets to understand what we are actually dealing with, hence,
we need a way to deal with large amounts of data, especially if
they contain lots of noise. This noise is usually not uniformly
distributed, but scattered over the complete space. Furthermore
there are local variations and noise is more prevalent in some
places than others. To handle these landscapes of noise we
introduce a novel algorithm. It is based on the Levy Walk,
the mathematical description of the hunting behaviour of
many predators ranging from simple protozoan to full-grown
mammalian hunters. We take the similarity in complexity
between a sufficiently extended and complicated dataset and
a Petri dish filled with nutrient solution as a starting point to
convert this model of behaviour from hunting for nourishment
to hunting for clusters.1

A. Contributions

We focus on clustering problems with extreme levels of
noise in massive data sets, where clusters might be the
exception rather than the norm. For this we have created an
algorithm based on the Levy Walk with the following features:

1) The algorithm is capable of finding clusters of arbitrary
shape in data even if the data contains enormous levels

1Additional Information: https://cs.univie.ac.at/dm/downloads/

of noise, and even if such noise is distributed in a quite
disadvantageous way. We show that the algorithm is, at
least on some datasets, superior to time-tested and state-
of-the-art techniques.

2) The algorithm can do this (almost) without parame-
ters. It does have a runtime/precision-parameter though,
which can be freely selected, considering certain con-
straints.

3) While the algorithm is non-deterministic, which is often
considered a disadvantage, we have found a way to make
use of this fact by combining multiple clusterings.

II. RELATED WORK

Because of the size of some data sets, algorithms have
been created to deal with them automatically. Automatically
may mean setting some parameters first in some algorithms,
which is not always an easy decision to make. Some of those
algorithms like SYNC [1] can handle the clustering process
fully automatic, while others, like DBSCAN [8] rely on
correctly chosen parameters. Commonly clustering algorithms
belong to one of two groups:

PDF-based Clustering: The common ground behind these
group of clusters is the idea that a Probability Density Function
(PDF) can describe the data. The drawback here of course
is that if the data does not adhere to the assumptions, the
clustering will most likely fail. Most prominent representative
for this group are k-Means [9] and EM [2].

Density-Based Clustering: Algorithms of this kind, like
SYNC, look for areas of high density in the data. This causes
them to be independent of any assumption on the distribution
of the data, which makes it possible to find clusters of various
shapes. Many methods of this group, like DBSCAN [8] have
the advantage that they are capable of dealing with noise.
Related to this group is the concept of Spectral Clustering.

The Levy Walk is – as far as we know – a completely new
concept in the context of clustering. Its only use (to the best
of our knowledge) in an area of computer science is its use
as part of a search algorithm known as Cuckoo Search (CS)
[7]. CS is a member of a family of animal-themed search
algorithms, based on swarm intelligence methods, like Ant
Colony Optimization [3] or Honey Bee Algorithm [6].

(a) The Levy Distribution.

(b) How the Levy Walk actually looks like.

Fig. 1. The Levy Distribution.

III. THE LEVY WALK

The Levy Walk is a description for the behaviour of hunting
animals which often describes them very well. It is found
from tiny predators like e.coli, hunting for nutrient solution
in a petri dish, to sharks hunting for fishes. In this paper one
may imagine the predator closer to an e.coli bacterium than
to a shark, which has naturally a somewhat more complicated
hunting pattern than e.coli. Nevertheless, the basic aspects are
the same. The Levy Walk is distinguished by its characteristic
feature of roaming the whole of its realm and its ability to find
the areas with the highest densities of prey efficiently. After
all, billions of years of evolution have shaped these hunting
patterns.

The Levy Walk is based on the Levy–Distribution, about
which we need to present a few basic facts. The probability
density function of the Levy Distribution is given by

f(x; c) =

√
c

2π

e−
c
2x

x3/2
(1)

As we see in Fig. 1a the main mass of the distribution is close
to zero, but the Levy distribution is a heavy-tail distribution
and its expected value is infinite. If we draw a Levy-distributed
random number we mostly get small numbers, with a decent
chance of bigger numbers and sometimes enormous ones. If
we have a scaling parameter of 1, we get a number bigger
than 1000 in more than 2.5% of the cases.

This leads to the special characteristics of the Levy Walk.
Assume that we are in a two-dimensional area with a certain
amount of unevenly distributed ”prey”. The predator starts at
a random point in the area and assesses the current situation.
It can see a small bit of the surrounding area. A predator is

always on the hunt, which means that it will always ”jump”
from one place to another in the hope of finding more. If the
current amount of prey in its small surrounding area is high, it
is more likely to make only a small jump, but could still make
a giant leap. If the current amount is rather disappointing, it
will most likely take a big leap, but might still take a small
jump. As the predator can see a bit of its surrounding area, it
can guess in which direction there might be a higher amount
of prey and it will move in this direction. It can not stop or
change direction during the jump.

In this context this means the following: The amount of prey
– data points – in the small area we are currently in, determines
the scaling parameter c of the Levy distribution. We draw a
random number from it and this sets the distance the predator
will jump. The direction is set by the gradient of the prey-
concentration in the current area. If the gradient is zero, e.g.
there is no prey around, the direction is randomly chosen. We
land in a new place in the area and repeat the process. If we
land outside the domain, we just redo the jump. We remember
every place we ever landed on and from this information we
hope to construct the clusters. The basic idea is that the Levy
Walk will spend more time/jumps in areas where clusters are
and will jump inside a cluster significantly more often than
outside of it.

For now we will let all of this happen in a grid, to show that
the algorithm actually works and to enable comprehension.
While Levy Walk Clustering is not depending on a grid, it
is useful to get it started. This way we can easily show the
potential and efficiency of this new approach, but we are very
aware of the drawbacks of a grid and will get rid of it in future
works.

We created an artificial dataset with about 585.000 data
points in noise and 7.000 data points in various clusters on
a 150x150 grid and let the Levy Walk jump 1.000.000 times.
We see in Fig. 2b, how often the Levy Walk is in various
grid cells of the dataset. It becomes obvious that the Levy
Walk gravitates to the centre of a more pronounced cluster. We
can also show that the Levy Walk does not ignore the other
clusters. If we plot only those grid cells, where the Levy Walk
is five times as often as compared to the average, we get Fig.
2c. We see that the Levy Walk finds all the clusters and even
a bit of their shape.

One strength of the Levy Walk is that it stays rather unfazed
in the company of excessive noise. We have seen that a noise-
level of more than 95% does not pose too much of a problem
for it. Now let us add even more noise, but not just noise –
let us make it nasty noise. We take the same set of clusters
and noise and add another 870.000 noise points, but this time
in a gaussian shape. See Fig. 3a for a clearer picture. We
now have a noise level of more than 1.455.000 points with
the same 7.000 points in clusters. It is understandable that the
Levy Walk now has more difficulties than before. We let the
Levy Walk jump 1.000.000 times like before and plot the same
”distillate” as before—Fig. 3b. There are now a few black
spots left in areas where no clusters are in the data. We see
that a threshold of jumps five times above the average is too

(a) The dataset.

(b) The Levy Walk on the dataset. (c) The distillate of the Levy Walk.

Fig. 2. Dataset: 585.000 noise points, with a few clusters with sizes between
500 and 2500 points thrown in. Since the data set is so massive we can only
plot the grid cells and not the data points. The darker a grid cell is, the more
points are contained in it.

low in this case. We therefore raise it to 7 times the average
and get Fig. 3c. The ”noise” is gone. We see that the Levy
Walk Cluster algorithm is pretty good at finding clusters—or
rather cluster centres. We still need to find a way to know how
high we have to set the barrier to distinguish between noise
and cluster points though.

For now, we have found a way to get the most pronounced
points of a cluster. However, we have not yet discussed a way
to identify those points as belonging to a particular cluster and
finding other points that belong to the same cluster.

IV. MAKING CLUSTERS – THE CENTRES

Let us assume we have n data points on a grid G. They
make up the whole of the data D, |D| = n. The Grid is of the
form G = Id with I = {1, 2, . . . , k}, d the dimension of the
data, |G| = kd. There is no need for the Grid to have length
k in every dimension, but we lose unnecessary variables this
way and if G were of not identical length, we could easily
rescale. All the data points now fall into one of the grid cells.
On this grid we let the Levy Walk L loose. For all in all m
jumps it moves from one to cell to another, hence we get L =
{x1, x2, . . . , xm} with the xi, i ∈ {1, 2, . . . ,m} representing
one of the grid cells. We assume the data D to contain l
clusters Ci, i ∈ {1, 2, . . . , l}, of various shape and size. We

(a) The new dataset.

(b) The distillate of the Levy Walk. (c) The distillate of the Levy Walk
– cut 7.

Fig. 3. Dataset: More than 1.455.000 noise points and the same clusters as
before.

TABLE I
ABBREVIATIONS USED THROUGHOUT THE PAPER

Abbreviation Meaning
D data points
n number of data points
d dimension of data points
G d− dim. Grid containing the data points
k number of grid cells per dimension
L Levy Walk executed on G
m number of steps L takes
C cluster in D
l number of clusters in D

now want to find as many of those clusters as possible and
those grid cells xi that belong to them.

Definition 1 (Cluster centres): We will define those grid
cells as Cluster Centres which are hit by the Levy Walk
significantly more often as a grid cell – which is not part of
a cluster – can be expected to.

We will show in the next few paragraphs how ”significantly”
is understood here and derive Equation (2), which gives us the
threshold between cluster centres and regular grid cells. This
threshold t is dependant on the number of steps m, the grid
size k and the ”confidence interval” x · σ. We get to it in the
next few paragraphs.

t(m, k) = exp[log[
m

kd
] + x · σ] (2)

So, how do we get to this equation? L consists of a
succession of xis. When there is only noise, all grid cells
will be similarly often visited, because there is no area where
the Levy Walk finds a cluster/reason to stay. Of course one
grid cell will be by default the grid cell where the Levy Walk
hits most often, but because its environment is (approximately)
uniformly distributed, the gradient of its environment will not
necessarily point towards it. If, on the other hand, there are
clusters, then the most often visited grid cell will most likely
be the centre of one of the clusters and the gradient of its
environment will mostly point towards it. Therefore, the Levy
Walk will much earlier find it and when it deviates a bit
from the centre there is a decent chance that it will go back
there. From all this follows, that a cluster centre will have a
significantly higher visiting rate, than a data point in the barren
wasteland, that is a dataset without clusters.

Let us put this in mathematical writing: Assume the dataset
contains no clusters. We have m entries in L which will get
distributed through the Levy Walk over kd grid cells. We can
now expect for the average grid cell to contain roughly m

kd

entries. This is the expected value for a grid cell, if all grid
cells are the same. But it is not quite that simple. The grid
cells have a slightly different probability to be hit or rather if
they are hit in some cases the Levy Walk might be reluctant
to leave. Like we mentioned before the amount of data points
in a grid cell determines the scaling parameter of the Levy
Walk. The scaling parameter is somewhere between 0.01 and
1. We can not let the parameter be 0 or else the jump lengths
would be 0 too and the Levy Walk would not walk any more,
but decide to live the rest of his life wherever he currently is.
The Maximum of 1 on the other hand is somewhat randomly
chosen. We could just as well use any other number bigger
than our minimum, but the higher the maximum is, the more
often we have to redo the jump, because it would jump outside
of the grid. The maximum also determines – to a certain extent
– how ”local” the Levy Walk is. A smaller maximum would
mean that close cells are more often connected than they would
be otherwise and hence we should not choose it too small.

If we are at a grid cell with a small scaling parameter,
the Levy Walk has a rather high probability to stay in this
grid cell. This follows from the Levy-distribution-density (see
Fig. 1a). The Levy distribution has its peak before 0.5 and
decreases strictly monotonously from there on. Most of the
randomly drawn numbers will therefore be rather small and
the Levy Walk will not move by much and will most likely
not leave the grid cell it currently is in. From all this follows
that the Levy Walk will stay far more often in some cells than
in others. This is corroborated, when we look at Fig. 4a. Its
plotted there how often the Levy Walk stays in a grid cells
and it becomes clear that some are simply more favoured than
others.

We can not really do much with this density-histogram,
but if we take the logarithm of all these values we get Fig.

4b, which looks very much as if its normal-distributed. The
Kolmogorov-Smirnov-test gives a positive value for this hy-
pothesis and the relation between mean and variance between
the logarithmic version and the original one is as expected.
We can therefore see the original density-distribution as log-
normal distributed.

We can work with this: We know that the expected mean for
the density is m

kd
, and therefore Log[m

kd
] for the logarithm of

the densities. The variance is harder to calculate, but we do not
quite need to. We could simulate it, by letting the Levy Walk
jump for as long as we want it to in a grid of our choosing,
with a uniformly distributed dataset. From this we get σ2, the
variance we are looking for in the normal distribution.

With the mean µ and variance σ2 of the distribution found,
we could calculate the maximum/threshold we are looking for.
If we take a threshold of µ + x · σ, then we could assume
that 1

2 erfc(
µ−x√
2σ

)% of the grid cell values lie in the interval
[0, µ+ x · σ]. For x = 5 this would mean that 0.999999426%
of all grid cell values lie in this interval. This would be quite
enough for |G| = 1.000.000, but one might want to increase
it, if |G| were bigger. The grid cell values are LogNormal-
distributed, hence we get a threshold of Exp[Log[m

kd
]+x ·σ],

with x depending on |G| and σ not yet determined.
We have shown how we get to Equation (2) and we can

state:
Conclusion 2: Grid cells xi ∈ G, with G the grid over the

data D, are Cluster Centres, as defined in definition 1, if
the Levy Walk has been in xi more often as the threshold in
Equation (2) deems likely.

But basically, these calculations are not necessary. When we
look at Fig. 4c we see that the maximal grid cell values differ
wildly, depending on if there are cluster present in the data
or not. Therefore, we do not need very precise calculations to
compute the threshold between cluster-free data and data with
clusters. We have implemented in the code a simulation that
lets the Levy Walk jump on a grid on uniformly distributed
data without cluster a few times according to the chosen
setting. We look at the maximal values for grid cells and
create the threshold from that. This way we can compute the
threshold precisely enough for this prototype and do not have
to have the earlier considerations completed.

V. MAKING CLUSTERS – THE CLUSTERS THEMSELVES

We have now found a way to get a cluster centre. We
basically test if any grid cells are above the threshold stated
in Equation (2) and if there are we take the one with the most
hits. Now how do we get from a cluster centre to a real cluster?
We have some information that we have not used at all until
now. When we look at L it is basically a progression of links
between grid cells. Whenever it jumps from one to another the
Levy Walk says that they are close. If they are close enough
– the Levy Walk jumps very often from one to the other –
then they probably belong to each other/are part of the same
cluster.

(a) Histogram of the densities in the gridcells for the Levy Walk,
when we had it jump for 1.000.000 times.

(b) Logarithmic Histogram of Fig. 4a, with the Graph of the
Normal Distribution superimposed on it.

(c) Histogram of the maxima for the whole grid. Red are the
maxima if there are no cluster present, blue if there are. 1000
test-runs each. Red has a mean-value of 873, blue of 3712. m =
1.000.000.

Fig. 4. The behaviour of the Levy Walk and its maxima.

We have in L the sequences xi, xj whenever the Levy Walk
jumps from grid cell xi to grid cell xj . On a dataset without
clusters, which only contains noise, these sequences will have
a certain frequency depending on variables like k and m. Our
assumption is that in a dataset with clusters in it, these jumps
will occur with a much higher frequency, than without clusters.
This seems very likely considering Fig. 2 and 3. A cluster
centre functions as a sort of attractor. The gradient of close
cells often point to it and they therefore have a very high
chance of jumping to it. All these cells are then labelled part
of the cluster and we check which points now jumps towards

them (or other cluster cells) and add them too. We repeat this
step then as long as the cluster grows. When we have reached
its final size, stop, declare all the cells as a cluster and cut it
out of the dataset and the Levy Walk. The main question is
how many of these jumps have to happen for it to be close
enough?

If we were to assume the jumps as random, then the jump
xi, xj would have probability 1

k2d
and hence a frequency of

m
k2d

. But it is far more likely for a jump to happen when
the grid cells are close and it is absolutely necessary for the
gradient to point in its direction. If they are directly next to
each other, then the probability would be highest when the
gradient points into the middle of it. Depending on the scaling
parameter of the Levy Walk it would be somewhere in the
range [0.0473882, 0.256917]. So up to 25% of the possible
jumps would hit its ”target”. We can expect m

kd
jumps to start

in the first cell and m
4kd

to hit its direct neighbour, at least if the
scaling parameter is very close to 1. If the scaling parameter
is smaller than that, it will lie below m

4kd
. The trouble is that

we do not know how often the scaling parameters appear in
the dataset without looking at it, so we have to assume that
all of them are equally likely. If we do that and integrate
over all the possible scaling parameters between [0, 1] to get
the average value we get ≈ 0.2187. This means that we can
expect ≈ 21.87% of the jumps to reach its neighbouring cell.

One problem though lies in the fact that, when the cluster
grows, we will have to raise this threshold. After all it is far
more likely to hit 5 cells, than 1. The most accurate solution to
this problem would be to calculate the probability for each cell
to hit the cluster. This probability would depend on the cells
scaling parameter, its size, the position of the cluster relative
to the cell at hand, the amount of jumps and the number of
grid cells. But this would be quite tedious, so to shorten this
we will take the threshold of m·0.2187

kd
as a starting point and

increase it depending solely on the size of the cluster. We have
decided to use a threshold of

t(m, k, p) =
m · 0.2187

kd
· (2− 1000

1000 + p
) (3)

where p stands for the size of the cluster. If p = 0 we would
have m·0.2187

kd
as the threshold and it would eventually rise up

to 2·m·0.2187
kd

, if the cluster were to grow on and on.

VI. RUNTIME AND PSEUDOCODE

Reminder: We have n data points on a grid G = Id =
{1, 2, . . . , k}d. On this grid we have the Levy Walk L =
{x1, x2, . . . , xm} with xi, i ∈ {1, 2, . . . ,m} and l clusters
Ci, i ∈ {1, 2, . . . , l}.

Now how do we proceed exactly? First we fit the data into
the grid G, then we let the Levy Walk jump around on the grid,
following the strategy we explained earlier. We then check if
there are any cluster centres (see Section IV) and if there are,
we find the grid cells that are part of the cluster (see Section
V). When we have found the whole of the extension of the
cluster we cut it out. This means that we delete the data points
that are part of the cluster from the grid and save them in a

Algorithm 1 Levy Walk Clustering
Require: Data D, Gridsize k

1: procedure LEVY(D, k)
2: Initialize: Id ← D . O(n)
3: Levy Walk: Let L on Id . ≈ O(n)
4: while Ci ∈ G do . l times
5: while Ci grows do . |Ci| times
6: if (xi, y) ∈ L > threshold, y ∈ Ci then
7: Ci ← xi . O(n)
8: end if
9: end while

10: Cut Cluster out . O(n)
11: Redo Levy Walk . O(n)
12: end while
13: return C1, . . . , Cl
14: end procedure

separate structure. We then redo the Levy Walk. After that we
check if we find another cluster centre and repeat the process
if necessary. If not we return our clusters, if any were found,
and terminate.

Following the pseudo-code we get a runtime expectancy
of roughly O(n) + O(n) + l · [|Ci| · O(n) + O(n) + O(n)]
≈

∑l
i=1 |Ci|O(n).

It is not immediately obvious, but the runtime depends
heavily on the chosen k. We can explain it this way: After we
took a look at the data points and fit the grid with size kd over
it, we have to let the Levy Walk jump. Now, the number of
jumps the Levy Walk should take depends directly on k. When
we have a grid, it is not relevant how many data points are
present (see Section VII for details), only that the Levy Walk
jumps often enough on it, so that the connections between grid
cells become significant enough to create clusters from them.
Therefore, |L| has to exceed a certain level depending on |G|
and therefore on k. k can be (mostly) chosen freely, but there
is something like an upper and lower bound for it, as we will
see in Section VII. For one thing kd should not exceed n

10
on danger of the Levy Walk losing its meaning. We see |L|
is directly related to k and the size of L heavily influences
the runtime for creating clusters, because creating clusters is
mainly a task of counting the sequences of (xi, y), y ∈ Cj
in L. The shorter L is, the faster this can be done, especially
considering that there will be fewer xis, because the grid is
smaller. The size of Ci also depends on k. If the grid cells
are bigger, than we need less of them to completely cover Ci
and |Ci| is a relevant term in our earlier runtime-calculations.

Therefore holds: The smaller we choose k, the faster the
algorithm will be. But this carries the risk of loosing some of
the precision Levy Walk Clustering could have. See Section
XI for details on this.

VII. DECIDING THE DETAILS

There are some decisions that have to be made, for the
Clustering to be at its most effective. In this section we wish

Fig. 5. Quality of Clustering relative to various parameters. m is in the
range from 300.000 to 1.000.000 and k ranges from 30 to 200. We see that
the quality of clusterings is very similar if the parameter are above a certain
threshold. Hence, we know how to set them. Data set shown in Fig. 10a

to address these difficulties and show how they can be dealt
with, if they have to be dealt with at all.

The size of the Levy Walk L:. We ran our algorithm on the
same dataset with different settings for m multiple times and
average the results (Fig. 5). It becomes clear from this, that we
only need to pass a certain threshold for the Clustering to reach
its maximal reachable quality. On the dataset with 22.500 grid
cells, this threshold lies at approximately 500.000 jumps. But,
if we take a look at some two-dimensional clusterings we see,
that this is due to some statistical fluctuations. These cause
some rather remote parts of the cluster to be recognized as part
of it, but lose some areas closer to the centre which should be
found. This is less likely for higher values of m and therefore
800.000 seems to be a wiser choice here. From this follows
that 800000·|G|

225000 ≈ 35|G| is a valid choice for the size of L.
The size of the Grid G: While m is a parameter that –

in the end – has little effect on the quality of the clustering,
the size of k is a very significant decision, that determines
the quality of the clustering as well as the runtime. We
nevertheless feel the need to stress that a ”wrong” decision
– e.g. a decision that leads to false results – is hard to come
by. We see in Fig. 5 that k can be chosen in a very broad
range of values. Nevertheless, (very) small k have two serious
disadvantages: 1) The precision of the clustering has to suffer
by default, due to the imprecise excision of a cluster. The
smaller k the coarser the grid will be and hence every mistake
in computing the form of a Cluster will lead to a far bigger
drop in NMI, than if k were bigger. 2) The Grid needs to
have a certain size in every dimension because the Levy Walk
depends on the possibility of taking very large steps. If k
would be chosen too small, the Levy Walk would almost
become a random walk and lose the purposiveness of the Levy
Walk, developed and shaped by evolution.

VIII. USING THE RANDOMNESS: ADDING MULTIPLE
CLUSTERINGS UP

Usually it is considered a disadvantage if a clustering
algorithm is non-deterministic. But there is also an advantage
to it, which we will now discuss. We have a data set (see

(a) The dataset: Three Gaussian
Clusters, a Half-moon, a ring and
one cluster consisting of three
gaussian sub-cluster.

(b) The ideal Clustering. (c) The combination of the clus-
terings.

(d) The combination of the clus-
terings, using the irregular clus-
terings.

Fig. 6. Simulation results for the technique described in VIII.

Fig. 6a) and various clusterings of it. Each of these clustering
has a certain quality, which means that some clusterings are
further or closer to the ”true” clustering in certain areas. Some
clusterings will have a very good approximation of one cluster,
but only a part of another cluster and maybe even a bit too
much of a third one. Now, if we assume that Levy Walk
Clustering is a valid way of clustering, then we can say that
most of the information we have is true, but maybe not all of
it. We will now take those various clustering and assemble the
information they each have into a single clustering. Through
this process we hope to eliminate some of the false information
and add up information that actually belongs together. In a
certain way we are adding an ensemble-clustering approach
for the Levy Walk Clustering, which uses the fact that Levy
Walk Clustering is non-deterministic.

Let us say we have j clusterings Clui, (i ∈ {1, 2, . . . , j}),
of a dataset. If a grid cell is only in one clustering part of a
cluster but only considered as noise in the others, then we can
assume that it is noise over all and the error lies in the single
clustering. Those cells which appear in less than a certain
percentage of the clusterings – we propose 30% for this –
will therefore be labelled as ”noise cells”. If a grid cell is in
more than a certain amount of the clusterings part of a cluster
than it is very unlikely that it is noise. For this we propose
80%, but it does not seem to be too important how exactly
this value has been chosen, just like the other value. We will
call these cells ”core cells”.

We start with one of those ”core cells”. We take all the
clusters of the various clusterings that contain this ”core
cell” and add them together, excluding those cells that are
considered ”noise cells”. We have a new cluster now, which
might contain other ”core cells”. We add the cluster which
contains these new ”core cells”, again excluding the ”noise
cells”. This way we should obtain a new cluster which should
be closer to the ”ideal” cluster which we strive for. Let us see
how this actually pans out.

We have chosen an artificial dataset with clusters varying
widely in size, shape and distinctness (see Fig. 6a) and
created 8 clusterings for this dataset. We used the threshold

described in Section IV and V and the techniques described
there. The NMI-values2 of these clusterings lie in the interval
[0.647, 0.675]3 which is not bad. We combine these clusterings
as described above and get a new clustering (see Fig. 6c) with
an NMI-value of 0.706. This is better than any of the other
clusterings and is on average an improvement of 0.046. This
might not seem like a lot, but it solves two problems at once.
If one uses the Levy Walk Clusterings algorithm there is a
chance that the algorithm will give sub-par results. Without
any experience in handling clustering algorithms one might
be tempted in just using the first result and presenting it as
the final solution. If one were to repeat the clusterings and
combine them in this way, the chance that the result is sub-
par becomes very small. This way it is even possible to deal
with very bad clustering results. We have tempered with the
thresholds to get some rather questionable results to prove this.
When we now use four of the regular clusterings and four
of those irregular clusterings and use the same technique as
before, then the same result still hold up: We have NMI-values
in the interval of [0.462, 0.663]4 for the 8 clusterings. The
combination of those (see Fig. 6d) give a clustering with an
NMI-value of 0.667, which is again (slightly) better than any
single one. We see that we can deal with sub-par clusterings an
inexperienced user might get. This ensemble-approach is not
very sophisticated, but already quite useful at this prototype-
state.

IX. ADVANTAGES OF LEVY WALK CLUSTERING –
ARTIFICIAL DATA

Sometimes it is easier to show the advantages of a clustering
technique by comparing it to a strong opponent. For the type
of datasets we are interested in here – many data points, with
even more noise – one (if not the) choice for the clustering
algorithm will be DBSCAN. Therefore, we have to show that
we are better than it, at least in some cases. Now, besides the

2We use artificial data sets here and can therefore compute the NMI-value.
3The exact values (rounded to three decimal places) are: 0.647, 0.654,

0.663, 0.659, 0.665, 0.661, 0.673, 0.663.
4The exact values (rounded to three decimal places) are: 0.647, 0.654,

0.663, 0.659, 0.619, 0.596, 0.462, 0.580.

(a) The dataset: Romeo and Juliet
against the world.

(b) The Cluster results – The
clusters are found

Fig. 7. We can even find clusters if the noise is denser than the cluster.

fact that finding the parameter-combination for DBSCAN is
of the utmost importance and often leads to quite false results,
while Levy-clustering is (almost) parameter free, we also have
one other quite important advantage, that we now want to
emphasize. We take a look at the dataset depicted in Fig. 7.
We have here two gaussian-shaped clusters and to their right
a wall of noise. Following the golden rule that a cluster is
supposed to entail the interesting part of the data, we want to
find these clusters, but not the wall of noise.

If we were to use DBSCAN on this dataset, there are
3 outcomes possible: 1) No Cluster is found; 2) There are
clusters found in the noise-area; 3) One or both of the clusters
are found, but also one/many cluster(s) in the noise-area. This
consideration holds true because the local density of data-
points is higher in the noise-area, than in one of the clusters.
The clusters have been constructed in a way that one of them
is denser in its centre than the wall of noise, but not the other
one. DBSCAN as a density-motivated clustering algorithm will
now always find a ”cluster” in the noise-area before it could
find both of our clusters, simply because the local density there
is far higher. Our Clustering algorithm on the other hand, has
the more meaningful results. We clustered it 8 times to get a
feel for the reliability of the results and the NMI-values for
those did lie in the interval of [0.720, 0.780]. We used the
technique described in Section VIII the 8 clusterings as input
and got the clustering result depicted in Fig. 7b. The NMI-
value for this combination is ≈ 0.768.

The Levy Walk Clustering algorithm here has the advantage,
that it does not solely rely on the local density, but that it also
considers the change in local density to be of importance.
As the Levy Walk wanders in the direction of increased data
points, it moves in the direction of the cluster maximum and
invests its time there until it gets bored and wanders off. This
behaviour allows us to swiftly explore the whole of the data
set and find cluster despite a myriad of noise points, even if
the noise is distributed most unfavourably.

Let us explore a somewhat more realistic setting and take
a closer look at the dataset from the beginning with the nasty
noise—Fig. 3a. We have here 5 gaussian shaped clusters of
varying size and density, like they might be found in a real
dataset. We did not find a data set with enough data points, that

adheres to our needs and is also labelled – probably nobody
wants to label a million data points – therefore we have to
calculate the NMI-values for an artificial dataset. We will show
that Levy Walk Clustering is very much capable of dealing
with real data sets in Section X, but for NMI-Values we have
to fall back on artificial data. We decided to use NMI-Values
instead of AMI-Values, due to the easier implementation and
when we compared AMI and NMI in external implementations
the difference was minimal. The results can be seen in Table
II.

TABLE II
NMI-VALUES FOR DATA SET 3A.

Algorithm NMI
Levy Walk Clustering 0.561
Section VIII - Levy Walk Clustering 0.7259
DBSCAN 0.559
Sync (0.05)
k-means 0.068

Since Levy Walk Clustering is non-deterministic, the NMI-
Values listed in Table II can vary slightly. We created 24
clusterings and calculated the mean to get the NMI-Value
for the Levy Walk Clustering. This way we get a somewhat
significant value. The mean-deviation is around 0,03 though
and hence the advantage against the DBSCAN Clustering –
we tried the minPoints parameter in 10 points increments with
eps in 0,01 steps until we got false clusters (eps=1,91 and
minPoints=1120 seems to be a good choice) – is statistically
insignificant. We can not say that the singular Levy Walk
Clustering is better than the carefully parametrized DBSCAN,
but if we use the technique from Section VIII the advantage
becomes obvious and the lead is not in doubt. While DBSCAN
can extrude the centre of the clusters, it can not find their
tail. A parameter-combination that would add the tail too,
would necessarily also add various false clusters. Levy Walk
Clustering on the other hand is capable of ignoring such
statistical flukes in noise distribution and focusing on the
clusters. Due to its independence from absolute density values
it is capable of guessing the correct clusters better. SYNC is
in the current implementation not capable of handling such
massive data sets and we need to use a thinned-out data set
(see Figure 10) with only 2% of the data. On this data set
SYNC found 11 clusters and got a rather low NMI-value.

X. TESTS ON REAL DATA

As we will see the current version of the Levy Walk
Clustering algorithm is made for truly enormous data sets and
such are hard to come by, especially when they are supposed
to be classified to compute the NMI-/AMI-values. One data
set we have found, that somewhat adheres to being labelled,
is the North-Jutland-Street-data set [4]. While we do not have
a real classification, we have a map of North-Jutland itself
and can just look up which town is where and if we have
found it. The dataset itself is far from trivial, so we used the
technique described in Section VIII. We used 8 clusterings as

Fig. 8. A map of the world and the signal of the annual cycle that we found. We have a slight overlap with the continents because of the low resolution of
the grid we used and the resulting tendency of the Levy Walk for imprecision. We tried to visualize the three-dimensional results by projecting it down to
two dimensions, by plotting the two-dimensional layers of the found clusters. Overlapping layers are plotted darker. The tails of the found clusters (only one
or two grid cells) are left out.

Fig. 9. Simulation results for the North Jutland Data set with k = 120—only
the bigger towns are left

input with the proposed parameters. We went ahead with the
first 8 results and the result is very satisfying.

The algorithm found the bigger settlements in North Jutland,
while ignoring small ones, where only few people live. The
biggest towns like Aalborg and Frederikshavn were easily
found and put onto the map with their rough shape and their
suburbs. Smaller villages like Nibe and Trend were also found.
If one feels that there are too many small settlements in the
clustering, one can reduce k. By doing this and repeating
the clustering in the same way we get Fig. 9, which has the
number of settlements reduced down to the biggest ones, with
the advantage of improved runtime.

We have also taken a look at a more than two-dimensional
dataset to show that we are not limited to them. We looked

at the changes in climatological mean of ocean-temperatures
from March to September5. The dataset already comes in the
form of a grid, so we can use it directly instead of putting a
grid over the data points. The three spatial dimensions make
up the first three dimensions with the temperature-value as the
fourth one. We have chosen the months March and September
because due to the change in the zenith angle of the sun the
change of temperature in this interval is the biggest. In March
the water is usually at its coldest (in the northern hemisphere;
the other way around for the southern one) and takes up energy
until the ocean starts to cool again, when the sun is lower
in the sky in autumn. Hence, the signal of the annual cycle
should be clearest then. We scaled the grid from 360x180x20
down to 72x60x20, to improve on runtime and have only a few
cluster as a result, which simplifies the analysis of the results.
We got the following results: We almost always got the same
clusters, each of them in a different ocean and corresponding
to one of the big gyres present in an ocean. In the northern
hemisphere are the North Pacific Gyre, which takes up most of
the pacific ocean north of the equator, and the North Atlantic
Gyre, the northward branch of which forms the Gulf Stream.
In the southern hemisphere we found the South Pacific Gyre,
the South Atlantic Gyre and the Indian Ocean Gyre. These
5 are all enormous currents in the oceans which are known
for their influence on the global climate. The found clusters
are also restricted to rather shallow depths and range from the
surface to roughly 100m below sea level, indicating the depth
to which the annual cycle of ocean temperatures penetrates.
We summarize the results in Fig. 8.

All of these results are meaningful, though one might con-
sider them trivial, if familiar with the subject. To corroborate
them we asked Dr. Michael Mayer from the Department of

5NODC WOA94 data provided by the NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/

(a) A regular dense dataset (b) The same dataset with far
lower density

Fig. 10. The same dataset with different densities.

Meteorology and Geophysics at the University of Vienna, to
have a look a these results that we got and though we have
to say that these results are not exactly the most fascinating
ones for someone knowledgeable in this area of science, they
– nevertheless – are meaningful. We can therefore say that
our Clustering Algorithm delivers proper results here and is
therefore not restricted to two dimensions.

XI. LIMITATIONS AND OUTLOOK

The size of the Grid G/The size of D: We have shown in
Section VII the influence the size of the grid, determined by k,
has. Fig. 5 seems to give the impression of an almost irrelevant
choice of k concerning the NMI-value, as long as it is big
enough. Very big k though will lead to a loss in the quality of
clustering, expressed in a fall of the NMI-values. We take the
same dataset as in Section VII again and cluster it with bigger
values of k. If k = 300 the NMI falls below 0.6 and down
to ≈ 0.3 for k = 400. This is because the direction the Levy
Walk takes in a grid cell, becomes almost random, if the local
density is too low. This becomes most obvious if we take a
dataset and delete 90% of all data points (90% of the noise and
90% of the cluster points, see Fig. 10). In theory nothing much
should have changed, but the Clustering Algorithm does not
work any more. The direction the Levy Walk takes becomes
too much dictated by chance and, of course, if the direction is
random the whole concept of creating clusters breaks down.
If we cluster the low-density-dataset the resulting NMI-value
is not satisfying, but if we reduce k to a mere value of 30, we
still get an NMI of ≈ 0.525, which is at least acceptable. We
can conclude from all that, that the density – i.e. amount of
data points per grid cell – has to lie above a certain threshold.
If we take the dataset of Fig. 10 as representative, then we can
conclude, that we should not go below 13-15 data points per
grid cell. This in turn means that we need very big data sets
for our clustering algorithm. If we have e.g. 5 dimension and
a value of k = 50 (which is already rather small) we would
need a data set of at least 4.687.500.000 data points for our
algorithm to work.

Small data sets: As we have seen we are currently restricted
to rather big data sets. We plan on abolishing this dependency
for our algorithm by developing a re-sampling-technique that

increases the data points. This way the Levy Walk should
win its purposefulness back and should be capable of finding
the essential information. This might also be possible by
increasing the area the Levy Walk takes into account, when
choosing a direction.

Getting rid of the Grid: We have a very clear idea on
how we plan on getting rid of the grid, but due to restrictions
in paper-length, we can not elaborate on that. We plan on
publishing a non-grid version of the Levy Walk Clustering
algorithm in the next step, where we will include more data
sets.

XII. CONCLUSION

We have created a new approach to clustering using the
hunting technique used by many predators, described by the
Levy Walk-model. It is a clustering-algorithm which works on
enormous data sets (though, sadly, currently only on those)
and is almost parameter free. There are still parameters, like
the size of the Levy Walk m, but none of them is difficult to
be set. We have not conclusively proven how they should be
set, but the simulations (Fig. 5) show good reason to believe,
that we only need to surmount a certain threshold. The only
parameter that we will most likely have to keep around is k,
but this one is a choice of the wanted precision/runtime, not
a necessity of clustering, like the parameters for DBSCAN.
We showed that our algorithm is capable of handling massive
data sets with enormous levels of nasty noise and that better
than some well-known as well as state-of-the-art alternatives.
While these comparisons were executed on artificial data, due
to the lack of big enough data sets, we could show that it
is very well capable of handling real datasets and creating
meaningful results, which we were able to corroborate.

Future works now shall follow through with the removal of
the grid we have used until now.

ACKNOWLEDGEMENT

We would like very much to thank Dr. Michael Mayer from
the Department of Meteorology and Geophysics at the Uni-
versity of Vienna with his help in analysing and corroborating
the results for the climate-data in Section X.

REFERENCES

[1] Böhm, C., Plant, C., Shao, J., Yang, Q., Clustering by Synchronization,
KDD, 2010.

[2] Dempster, A. P., Laird, N. M., Rubin, D. B., Maximum likelihood from
incomplete data via the em algorithm, Journal of the Royal Statistical
Society, 1977.

[3] Dorigo, M., Stützle, T., Ant Colony Optimization, MIT Press, Cambridge,
MA, 2004

[4] Kaul, M., Yang, B., Jensen, C.S., Building Accurate 3D Spatial Networks
to Enable Next Generation Intelligent Transportation Systems, IEEE
MDM, 2013.

[5] Monterey, G.I., Levitus, S., Climatological cycle of mixed layer depth in
the world ocean, U.S. Gov. Printing Office, NOAA NESDIS, 1997

[6] Nakrani, S., Tovey, C., On honey bees and dynamic server allocation in
Internet hosting centers, Adaptive Behavior, 2004.

[7] Yang, X.-S., Deb, S., Cuckoo Search via Levy Flights, NaBIC, 2009.
[8] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., A density-based algorithm for

discovering clusters in large spatial databases with noise, KDD, 1996.
[9] MacQueen, J. B., Some methods for classification and analysis of

multivariate observations, Berkeley Symposium on Math. Stat. and Prob.,
1967.

