
A Model Checking Based Approach for
Containment Checking of UML Sequence Diagrams

Faiz UL Muram, Huy Tran and Uwe Zdun
University of Vienna, Faculty of Computer Science,

Software Architecture Research Group, Vienna, Austria
Email: faiz.ulmuram|huy.tran|uwe.zdun@univie.ac.at

Abstract—The main challenge in software development process
is to detect and fix the deviations of system’s behaviors at
different abstraction levels in early phases. For this purpose,
UML 2 sequence diagrams are widely used for describing and
analyzing the communication behavior of software systems. This
paper describes a containment checking approach for UML 2
sequence diagrams to verify whether the behavior (or functions)
described by a low-level model conforms those specified in
the high-level counterpart based on model checking techniques,
in order to improve the system’s quality. However, creating
consistency constraints and formal specifications for the sequence
diagrams is a labor-intensive and error prone task. To alleviate
this issue, we propose an automated transformation of sequence
diagrams into formal specifications and consistency constraints
that enable us to leverage the analytical powers of model checking
to automatically verify the containment relationship. In addition,
our approach provides the stakeholders more informative and
comprehensive feedbacks regarding the inconsistency issues, and
therefore helps them to efficiently identify and resolve the
problems. The approach is implemented and validated using
three realistic scenarios.

Keywords-Containment checking; consistency checking; behav-
ior model; sequence diagram; UML

I. INTRODUCTION

In software development process, scenarios are often mod-
eled using sequence diagrams to describe the interactions
among environment (e.g., human beings) and components
(aka lifelines) for analyzing the behavior of software systems.
In the course of software system modeling, as models are
created and evolved independently by different stakeholders,
inconsistencies among models often occur. Therefore, it is
crucial to detect and fix the inconsistencies at early phases
of the software development process.

It is a general consensus that model checking techniques are
best applied in the early phases of the software development
process, as the costs are relatively low and the potential
benefits are high. However, these techniques require formal
specifications and consistency constraints of the models. It is
a challenging task to accurately and correctly express such
formal specifications and consistency constraints due to the
substantial amount of knowledge and specialized training
required not only for the formal verification technique but
the formal specification language (notation and semantics),
which is unusual for software architects and/or developers.
Moreover, the results produced by existing model checkers
(e.g., counterexamples) are rather cryptic and verbose, and

therefore, they are difficult for the stakeholders, who–as men-
tioned above–often have limited knowledge of the underlying
formal techniques, to interpret and understand [1].

To address the aforementioned problems, we developed a
technique which allows to automatically check containment
consistency of UML 2 sequence diagrams based on model
checking techniques that has not been addressed adequately so
far. The idea behind containment checking is to verify whether
the behavior (or functions) described by the refined and
extended low-level sequence model conforms those specified
in the high-level counterpart. It allows the stakeholders to
improve the quality of the complex systems by determining
and resolving the deviations at design phase, before the
systems are actually implemented and deployed.

Although, some semantics have been proposed for the veri-
fication of sequence diagrams against safety properties such as
deadlock freedom [2]–[4], they do not cover the containment
relationship between sequence diagrams. In this paper we
therefore provide the efficient and simpler formalizations of
sequence diagrams to track the execution state of an interac-
tion involving send/receive events of messages and combined
fragments without compromising the containment relationship.
Specifically, we introduced a fully automated technique to
translate both high-level and low-level sequence diagrams into
temporal logic based constraints (LTL) [5] and formal behavior
specifications (i.e., symbolic model language (SMV) [6]),
respectively. The model checker NuSMV is used to verify
the containment relationship. If the consistency constraints
do not satisfy formal specifications then the model checker
produces a counterexample as a trace of states. In order to
facilitate better feedback, we integrate the counterexample
analysis method for locating the cause(s) of inconsistency and
presenting the appropriate suggestions to aid stakeholders in
resolving containment inconsistencies. We have developed a
tool to implement all of the techniques and have validated our
approach by detecting and interpreting inconsistencies in three
realistic scenarios.

The paper is structured as follows. Section II discusses the
background information. In Section III we discuss our model
checking based approach for containment checking in detail.
In Section IV a realistic use case scenario is described in detail
to illustrate our approach along with a performance evaluation
of three realistic scenarios. Finally, Section V presents related
work and Section VI concludes the paper.

II. PRELIMINARIES

A. Linear Temporal Logic

In our study we use linear temporal logic (LTL) [5] for
specifying the temporal relationships between the involved
elements of UML sequence diagram. LTL is a prominent
formalism that is highly expressive and widely used in formal
verification tools. Formulas in LTL are usually constructed
from boolean connectives and temporal modalities. In the
mapping scheme of constructs of UML sequence diagrams
into LTL, we opt for a syntactical definition of a well-formed
LTL formula ϕ in terms of the following BNF grammar (note
that p is a primitive proposition).

ϕ ::=>|⊥|p|¬ϕ|ϕ ∧ϕ|ϕ ∨ϕ|ϕ → ϕ|Fϕ|Xϕ|Gϕ|ϕ Uϕ|ϕ Rϕ

Each interaction of a UML sequence diagram in the ex-
ecution path is considered a primitive proposition. Temporal
operators such as F (future), X (next), G (globally/always),
U (until), and R (release) are used to represent the temporal
relationships [6]. For the sake of readability, we use the logical
exclusive OR operator “xor” which is not part of the traditional
LTL definition but often supported by several tools.

B. NuSMV Overview

The NuSMV model checker [6] supports symbolic model
verification and is widely used both in academia and industry.
The language that underpins the formal specifications is the
SMV specification language. Here, we only discuss the syntax
elements we actually use in our mapping scheme.

The SMV specification consists of one main module, and
a set of state variables and predicates on these variables.
In general, our approach creates a state variable of type
boolean in the SMV specification for the constructs of a UML
sequence diagram using the keyword VAR. The present states
and next states (i.e., predicates) of the variables are declared
under the keyword ASSIGN. In particular, init()–for defining
the initial state of a variable–and next()–for illustrating the
transition to the next state. Inside the next expression of
the variable, a case...esac expression is created for every
state that lists all possible subsequent states. Normally a state
variable will be initialized with FALSE. It can move to a
different state (e.g., TRUE) if the incoming guard conditions
are satisfied. The incoming guard conditions can contain a
guard expression and/or the finishing of preceding interaction.
The interaction’s state will be switched back to FALSE after
finishing its execution.

III. CONTAINMENT CHECKING APPROACH FOR UML
SEQUENCE DIAGRAMS

In this section, we describe our model checking based
approach for addressing the problem of containment checking
of UML 2 sequence diagrams. An overview of our approach
is presented in Figure 1, consists of the following steps:
(i) mapping the high-level sequence diagram into formal
consistency constraints (i.e., LTL formulas), (ii) translating the
low-level sequence diagram into formal SMV specifications,

refines &

models

business

analysts /

software

architect

high-level

behavior diagram

is refined to

LTL formulas

SMV specifications

developer

low-level

behavior diagram

Transformation of

high-level modelmodels

refine
Transformation of

low-level model

NuSMV Model

Checker

Checking

 results

Counterexample

analysis

Fig. 1: Overview of the containment checking approach

(iii) verifying whether the generated constraints and specifica-
tions satisfy the containment relationship using the NuSMV
model checker [7]. If the containment inconsistencies exist
then generated counterexample is scrutinized to uncover the
causes of inconsistencies and produce appropriate suggestions
to address the deviations. The subsequent sections describe the
steps involved in our containment checking approach.

A. Automated Transformation of Sequence Diagrams into LTL
and SMV Specifications

As the definitions and semantics of UML 2 sequence
diagrams are rather informal and ambiguous [8], we facilitate
the automated creation of the formal constrains and specifica-
tions by defining transformation rules for formally represent-
ing constructs of sequence diagrams based on containment
relationship. The main objective is to represent the high-
level diagram’s constructs and their relationships in an LTL
formalism such that the execution order of the interactions
will become the consistency constraints for the corresponding
low-level model. Furthermore, the encoding of the low-level
sequence diagram in terms of the SMV specification language
should provide the foundation to facilitate the verification of
the containment relationship.

Algorithm 1 Mapping UML Sequence Diagram SeqD into
SMV Specifications / LTL

1: procedure TRANSLATE(SeqD)
2: Q ← ∅ . Q is the queue of non-visited interactions
3: V ← ∅ . V is the queue of visited interactions
4: Q ← Q ∪ get_lifelines(Lf)
5: for all i ∈ Q do
6: V ← V ∪ {i}
7: Q ← Q \ {i}
8: generate_smv_code(i)/generate_ltl(i)
9: Iinteractions ← get_interactions(i)

10: for all e ∈ Iinteractions do
11: if (e 6∈V) then
12: Q ← Q ∪ {e}

Our approach takes advantage of the standards that are
widely used in industry, such as Eclipse Papyrus1, which is an
Eclipse based open source UML 2 tool. In order to translate the
high-level and low-level sequence diagrams into LTL formulas
and SMV specifications, respectively, we leverage the Eclipse

1See https://www.eclipse.org/papyrus

Xtend framework2. We achieve the mapping of sequence
diagram into SMV specifications and LTL formulas using an
extended version of the breadth-first search algorithm as shown
in Algorithm 1. In this algorithm, we develop four helper func-
tions, namely, get_lifelines(), get_interactions(),
generate_smv_code() and generate_ltl(). The func-
tion get_lifelines(Lf) returns a set of lifelines. The
function get_interactions(i) extract all interactions i, i.e.,
messages along with sending and receiving OccurrenceSpecifi-
cations (OSs) covered by lifelines in temporal order, associated
CombinedFragments included operands. An interaction e is
called “receiving event” of i “sending event” if there is a link
from i to e that synchronize with the appropriate sending and
receiving lifelines.

Algorithm 2 Generating SMV Specifications for an Interac-
tion i of a UML Sequence Diagram SeqD

1: procedure GENERATE_SMV_CODE(i);
2: extracts interaction information;
3: binds input values and generates SMV specifi-

cations using the following templates:
4: '''

5: VAR
6: «i» : boolean; . State variable declaration
7: ASSIGN
8: init(«i») := «interaction-initial-state»
9: next(«i») := case

10: «incoming-condition(s)» : TRUE;
11: «i» : FALSE;
12: esac;
13: '''

The most important function is generate_smv_code(i),
which is responsible for generating SMV specifications for
each interaction of a UML sequence diagram. We illustrate
the skeleton of the function generate_smv_code(i) in Al-
gorithm 2. The pair of triple apostrophes (''') denotes the string
templates used for generating code in the our implementation.
For the sake of readability, we opt to omit the verbosity of
the transformation code realized using the Xtend language
and use a pair of guillemots i.e., “«” and “»” to denote
the parameterized placeholders that will be bound to and
substituted with the actual values extracted from the low-
level input model interactions by the Xtend engine, as we
see in Figure 2c. In our formalizations, we map a message
and its sending and receiving OSs (i.e., events) as a tuple
〈L f ,msg,snd/rec〉, where L f represents the lifeline that is
responsible for sending or receiving messages. msg denotes
the message name. snd and rec represent the sending OS
and receiving OS of the corresponding message on a lifeline,
respectively. To represent multiple inputs for an element (i.e.,
state or event) the logical AND operator (“&”) is used.

We note that generate_smv_code(i) is not realized as a
single function but rather a polymorphism of multiple func-
tions. That is, depending on the type of the input interaction
i, a particular function for generating SMV specifications

2See https://eclipse.org/xtend

for that OS or fragment type will be invoked. This can
be achieved in traditional programming languages by using
a typical “if/then/else” or “switch/case” construct. In
our prototypical implementation, we leverage the powerful
polymorphic method invocation technique provided by Xtend3,
which is used to realize the transformation of UML sequence
diagram to SMV specifications. Using this technique, we
devise multiple functions for generating SMV specifications
with respect to the input types. Due to limitations of space we
do not discuss generate_ltl(i) function here.

1) Basic Sequence Diagram: A sequence diagram without a
CombinedFragment is referred to as a basic sequence diagram
(such as the one in Figure 2a). The following rules for sending
and receiving messages must be considered as the semantics
of a basic sequence diagram.

: Lf1

msg1_asyn

msg2_synsnd1 rec1

snd2 rec2

msg4_asyn

rec3 snd3

: Lf2 : Lf3

msg3_rep

rec4 snd4

(a) Basic sequence diagram

1. G (Lf1 -> F (
Lf1_msg1_asyn_snd1)
)

2. F (Lf2_msg3_rep_rec3)
-> ((!

Lf2_msg3_rep_rec3)
U (

Lf2_msg2_syn_snd2 &
Lf3_msg3_rep_snd3

& wait_rep))
3. G ((Lf2_msg3_rep_rec3

) & ! (wait_rep) ->
F (

Lf2_msg2_asyn_snd4)
)

4. F (Lf1_msg4_asyn_rec4
) -> ((!
Lf1_msg4_asyn_rec4)
U (

Lf2_msg4_asyn_snd4
&
Lf1_msg1_asyn_snd1)
)

(b) LTL generation rules

1 VAR
2 «Lf1_msg1_asyn_snd1» : boolean;
3 «wait_rep» : boolean;
4 ...
5 ASSIGN
6 init(«Lf1») := TRUE;
7 next(«Lf1») := case
8 «Lf1» : FALSE;
9 esac;
10 --sending OS on a lifeline Lf1
11 init(«Lf1_msg1_asyn_snd1») := FALSE;
12 next(«Lf1_msg1_asyn_snd1») := case
13 «Lf1» : TRUE;
14 «Lf1_msg1_asyn_snd1» : FALSE;
15 esac;
16 --receiving OS on a lifeline Lf1
17 init(«Lf1_msg4_asyn_rec4») := FALSE;
18 next(«Lf1_msg4_asyn_rec4») := case
19 «Lf1_msg1_asyn_snd1» & «

Lf2_msg4_asyn_snd4» : TRUE;
20 «Lf1_msg4_asyn_rec4» : FALSE;
21 esac;
22 ...
23 init(«wait_rep») := FALSE;
24 next(«wait_rep») := case
25 «Lf2_msg2_syn_snd2» : TRUE;
26 «wait_rep» : FALSE;
27 esac;
28 --sending OS after receiving reply
29 init(«Lf2_msg4_asyn_snd4») := FALSE;
30 next(«Lf2_msg4_asyn_snd4») := case
31 «Lf2_msg3_rep_rec3» & ! «

wait_rep» : TRUE;
32 «Lf2_msg4_asyn_snd4» : FALSE;
33 esac;

(c) SMV generation rules

Fig. 2: Translation of basic sequence diagram

• The OSs on the same lifeline must occur in the same
order in which they are described [8, p.505].

• “The semantics of a complete message is simply the
trace 〈sendEvent,receiveEvent〉” [8, p.507]. A receiving
OS of a message is enabled for execution if and only if
the sending occurrence of the same message has already
occurred [8, p.507].

• If sending and receiving OSs of the same message are
on the same lifeline then the sending event of a message
must exist before its receiving event [8, p.506].

3See https://eclipse.org/xtend/documentation/202_xtend_classes_members.html

Figure 2a shows a basic sequence diagram where msg4_asyn
is a message received on the lifeline L f 1 which is sent from
the lifeline L f 2. The receiving OS is only enabled when its
sending OS (snd4) on L f 2 and its prior OS (snd1) on L f 1
have already occurred. The particular receiving rule is shown
in Figure 2c (Line 17–21). In case the synchronous message is
sent, a condition wait_rep is used indicating that the OS can
not be sent when the lifeline is waiting for the reply (Line 23–
33). Figure 2b shows the LTL generation rules for sending OSs
of messages msg1 and msg4, and receiving OSs of messages
msg3 and msg4.

2) Weak Sequencing Combined Fragment: The seq interac-
tion operator imposes the order of the execution of operands
associated with the same lifeline with the following constraints
[8, p.483]:
• The ordering of events (i.e., OSs) within each of the

operands are maintained.
• OSs on different lifelines from different operands may

execute in any order.
• OSs on the same lifeline from different operands are

ordered such that an OS of the first operand comes before
that of the second operand.

:Lf1 :Lf2

seq msg1

msg2

snd1
rec1

snd2 rec2

msg3
snd3 rec3

(a) Weak Sequencing example

1. G (seq -> F opd1) & G
(opd1 -> F opd2)

2. G (opd1 -> F (
Lf1_msg1_snd1))

3. G (Lf1_msg1_snd1 -> F
(Lf1_msg2_snd2))

4. G ((opd2 &
Lf1_msg2_snd2) -> F
(Lf1_msg3_snd3))

5. F (Lf2_msg3_rec3) ->
((! Lf2_msg3_rec3) U
(Lf1_msg3_snd3 &
opd2 & Lf2_msg2_rec2
))

(b) LTL generation rules

1 ASSIGN
2 ...
3 init(«opd1») := FALSE;
4 next(«opd1») := case
5 «seq» : TRUE;
6 «opd1» : FALSE;
7 esac;
8 --OSs in the first operand on Lf1
9 init(«Lf1_msg1_snd1») := FALSE;
10 next(«Lf1_msg1_snd1») := case
11 «opd1» : TRUE;
12 «Lf1_msg1_snd1» : FALSE;
13 esac;
14 init(«Lf1_msg2_snd2») := FALSE;
15 next(«Lf1_msg2_snd2») := case
16 «Lf1_msg1_snd1» : TRUE;
17 «Lf1_msg2_snd2» : FALSE;
18 esac;
19 init(«opd2») := FALSE;
20 next(«opd2») := case
21 «opd1» : TRUE;
22 «opd2» : FALSE;
23 esac;
24 --OS in the second operand on Lf1
25 init(«Lf1_msg3_snd3») := FALSE;
26 next(«Lf1_msg3_snd3») := case
27 «opd2» & «Lf1_msg2_snd2» :

TRUE;
28 «Lf1_msg3_snd3» : FALSE;
29 esac;

(c) SMV generation rules

Fig. 3: Translation of Weak Sequencing combined fragment

Figure 3a shows an example of a Weak Sequencing com-
bined fragment. Figure 3c illustrates the rules for mapping a
Weak Sequencing combined fragment into SMV specifications.
The combined fragment, corresponding operands, each of its
covered lifelines, and OSs are mapped into state variables.
The choice of the order of OSs is made using a “case/esac”
construct. For instance, the sending OS of a message msg3
on a lifeline L f 1 within the second operand opd2 (i.e.,
Lf1_msg3_snd3) cannot occur until the last OS of the first

operand opd1 on the same lifeline (i.e., Lf1_msg2_snd2)
completes its execution (Line 25–29). Figure 3b shows the
LTL generation rules for sending messages within both
operands on a lifeline L f 1 (Line 2–4) and receiving a message
within a second operand on a lifeline L f 2 (Line 5).

3) Strict Sequencing Combined Fragment: The semantics
of Strict Sequencing (i.e., strict interaction operator) im-
poses the total order between adjacent operands. It contains
a stronger version of the second rule introduced for Weak
Sequencing, in particular, OSs on different lifelines from
different operands have strict order of execution [8, p.483]. In
other words, the first OS in a succeeding operand cannot be
enabled until all the OSs on all the covered lifelines within the
preceding operand have completed. Any covered lifeline needs
to wait for other lifelines to enter the second or subsequent
operand. For instance, sending OS of a message msg3 within
the second operand covered by a lifeline L f 1 will not be
executed until the last OS that is rec2 within a first operand
on a lifeline L f 3 finishes its execution, as shown in Figure 4c
(Line 15–19). Figure 4b shows LTL generation rules for the
Strict Sequencing.

:Lf2

strict
msg1

msg2

snd1 rec1

snd2

rec3

:Lf3

snd3

rec2

msg3

:Lf2:Lf1

(a) Strict Sequencing example

1. G (opd1 -> F (
Lf1_msg1_snd1))

2. F (Lf3_msg2_rec2) ->
((! Lf3_msg2_rec2) U
(Lf2_msg2_snd2))

3. G ((Lf1_msg1_snd1 &
Lf3_msg2_rec2 & opd2)
-> F (Lf1_msg3_snd3)
)

(b) LTL generation rules

1 ASSIGN
2 ...--OSs within the first operand
3 init(«Lf1_msg1_snd1») := FALSE;
4 next(«Lf1_msg1_snd1») := case
5 «opd1» : TRUE;
6 «Lf1_msg1_snd1» : FALSE;
7 esac;
8 ...
9 init(«Lf3_msg2_rec2») := FALSE;
10 next(«Lf3_msg2_rec2») := case
11 «Lf2_msg2_snd2» : TRUE;
12 «Lf3_msg2_rec2» : FALSE;
13 esac;
14 --the first OS within the

second operand
15 init(«Lf1_msg3_snd3») := FALSE;
16 next(«Lf1_msg3_snd3») := case
17 «Lf3_msg2_rec2» & «

Lf1_msg1_snd1» & «opd2»
: TRUE;

18 «L1_msg2_snd2» : FALSE;
19 esac;

(c) SMV generation rules

Fig. 4: Translation of Strict Sequencing combined fragment

4) Alternatives: In the UML 2 specification [8, p.482], an
Alternative combined fragment describes a branching opera-
tion in a sequence diagram. The alt operator of the combined
fragment represents a choice of behavior where at most one
of the operands will be selected whose interaction constraint
(guard condition) evaluates to True (i.e., an if-then-else state-
ment). The else guard is the negation of the disjunction of all
other constraints in the enclosing combined fragment. If none
of the operands has a guard that evaluates to True, none of the
operands will be executed and the remainder of the enclosing
InteractionFragment will be performed.

Figure 5a shows an example of an Alternative combined
fragment, whose guard is encoded as a boolean variable. If
the guard of the first operand evaluates to True, the OSs
enclosed within the first operand are executed, otherwise the
whole operand is skipped. We introduce a temporary variable,

:Lf1

alt
[guard_1]

[else]

msg1

msgn

:Lf2

snd1 rec1

sndn recn

[guard_2]

...

(a) Alternatives example

1. G (alt -> F ((opd1
xor ... xor opdn)
xor ! (opd1 &
... & opdn)))

2. G (opd1 & guard_1
-> F (
Lf1_msg1_snd1))

3. F (Lf2_msg1_rec1)
-> ((!
Lf2_msg1_rec1) U
(Lf1_msg1_snd1 &
guard_1))

4. G (opdn & else -> F
(Lf1_msgn_sndn))

5. F (Lf2_msgn_recn)
-> ((!
Lf2_msgn_recn) U
(Lf1_msgn_sndn &
else))

(b) LTL generation rules

1 VAR
2 «guard_1» : boolean;
3 ... -- temporary variable
4 «post_alt_i» : {undetermined, «ch_opd1

»,..., «ch_opdn»};
5 ASSIGN
6 ...
7 init(«post_alt_i») := undetermined;
8 next(«post_alt_i») := case
9 «alt» & «guard_1» : «ch_opd1»;
10 ...
11 «alt» & «else» : «ch_opdn»;
12 TRUE : undetermined;
13 esac;
14 --the first operand
15 init(«opd1») := FALSE;
16 next(«opd1») := case
17 «post_alt_i» = «ch_opd1» : TRUE;
18 «opd1» : FALSE;
19 esac;
20 init(«Lf1_msg1_snd1») := FALSE;
21 next(«Lf1_msg1_snd1») := case
22 «opd1» : TRUE;
23 «Lf1_msg1_snd1» : FALSE;
24 esac;
25 ... --the nth operand
26 init(«opdn») := FALSE;
27 next(«opdn») := case
28 «post_alt_i» = «ch_opdn» : TRUE;
29 «opdn» : FALSE;
30 esac;
31 init(«Lf1_msgn_sndn») := FALSE;
32 next(«Lf1_msgn_sndn») := case
33 «opd2» : TRUE;
34 «Lf1_msgn_sndn» : FALSE;
35 esac;

(c) SMV generation rules

Fig. 5: Translation of Alternative combined fragment

namely, post_alt_i (i is an incrementally generated number)
for exclusively choosing one of many alternative operands.
The variable post_alt_i has an enumerated type including a
normal state “undetermined” and the values corresponding to
the operands (Line 4). The choice among alternatives is made
using a “case/esac” construct as shown in Figure 5c (Line
7–13). The LTL generation rules for the alt operator enumerate
all possible choices of executions; that is, only OSs of one of
the operands, whose guard evaluates to True, will happen, as
shown in Figure 5b.

5) Parallel Combined Fragment: A Parallel combined
fragment is denoted by an interaction operator par which
defines potentially parallel merge execution of behaviors of
the operands [8, p.483]. The OSs of different operands can be
interleaved in any way as long as the ordering imposed by each
operand is preserved. In other words, OSs of messages within
the same operand respect the order along a lifeline whilst OSs
of messages on the same lifeline from different operands are
ordered such that the first message occurrence of the operands
has the same preceding OS. Figure 6c shows the translation of
a Parallel combined fragment into SMV specifications where a
sending OS of a message msg1 (Lf1_msg1_snd1) on a lifeline
L f 1 leads to the execution of sending OSs of messages in
both operands (i.e., Lf1_msg2_snd2 and Lf1_msg3_snd3).
LTL generation rules for Parallel combined fragments for the
covered lifelines L f 1 and L f 2 are presented in Figure 6b.

:Lf1 :Lf2

par

msg1

msg2

msg3

snd1 rec1

snd2 rec2

snd3 rec3

(a) Parallel fragment

1. G (par -> F (opd1 &
opd2))

2. G (Lf1_msg1_snd1 &
opd1 -> F (
Lf1_msg2_snd2)) &
G (Lf1_msg1_snd1
& opd2 -> F (
Lf1_msg3_snd3))

3. F (Lf2_msg2_rec2) ->
((!
Lf2_msg2_rec2) U
(Lf2_msg1_rec1 &
Lf1_msg2_snd2)) &
F (Lf2_msg3_rec3
) -> ((!
Lf2_msg3_rec3) U
(Lf2_msg1_rec1 &
Lf1_msg3_snd3))

(b) LTL generation rules

1 ASSIGN
2 ...
3 init(«Lf1_msg1_snd1») := TRUE;
4 next(«Lf1_msg1_snd1») := case
5 «Lf1» : TRUE;
6 «Lf1_msg1_snd1» : FALSE;
7 esac;
8 ... --the first operand on Lf1
9 init(«opd1») := TRUE;
10 next(«opd1») := case
11 «par» : TRUE;
12 «opd1» : FALSE;
13 esac;
14 init(«Lf1_msg2_snd2») := FALSE;
15 next(«Lf1_msg2_snd2») := case
16 «opd1» & «Lf1_msg1_snd1» : TRUE;
17 «Lf1_msg2_snd2» : FALSE;
18 esac;
19 --the second operand on Lf1
20 init(«opd2») := TRUE;
21 next(«opd2») := case
22 «par» : TRUE;
23 «opd2» : FALSE;
24 esac;
25 init(«Lf1_msg3_snd3») := FALSE;
26 next(«Lf1_msg3_snd3») := case
27 «opd2» & «Lf1_msg1_snd1» : TRUE;
28 «Lf1_msg3_snd3» : FALSE;
29 esac;

(c) SMV generation rules

Fig. 6: Translation of Parallel combined fragment

6) Loop Combined Fragment: Describing Loop combined
fragments in terms of state-based formal specifications like
SMV is a very challenging task. The interaction operator loop
defines that its sole operand will be repeated for at-least the
minimum (minint) number of times and at-most maximum
(maxint) number of times as long as the guard condition
remains True [8, p.485]. If the loop has no bounds, this
means that an indefinite loop (with minint = 0 and maxint

= infinite) is executed, which can cause a state space
explosion for model checking. However, it is unrealistic for
most loops that they really execute indefinitely, and therefore,
we assume that loops will eventually stop.

Figure 7a shows an example of a Loop combined fragment
having minint = 0 and maxint = 2. To deal with Loop
combined fragments, we initialize the control variable, namely
counter, which is 0 initially (i.e., equal to minint). After the
end of the current iteration, the counter is increased by one at
the beginning of the next iteration shown in Figure 7c (Line
8). Furthermore, the loop condition and counter are checked at
the beginning of each iteration (Line 5–11). If the condition is
evaluated to False or counter is greater or equals to maxint,
a new iteration cannot start and execution of the loop will
terminate. The OSs of all the messages within the operand
among iterations execute sequentially along a lifeline. Figure
7b presents the LTL generation rules for the Loop fragment.

7) Option, Break, Ignore and Consider Combined Frag-
ments: The interaction operator opt designates that the com-
bined fragment represents a branching operation (i.e., a simple
if-then statement) in a sequence diagram where either the
(sole) operand executes or nothing happens [8, p.483]. The
Option combined fragment is semantically similar to an Al-
ternative combined fragment, except that it has one operand

:Lf1

loop(0,2)

msg1

[cond]

snd1 rec1

:Lf2

(a) Loop fragment

1. G ((cond & counter
< 2) -> F opd)

2. G (opd -> F (
Lf1_msg1_snd1))

3. F (Lf2_msg1_rec1)
-> ((!
Lf2_msg1_rec1) U
(Lf1_msg1_snd1))

(b) LTL mapping rules

1 VAR
2 «counter» : «0..2»;
3 ...
4 ASSIGN
5 init(«cond») := {TRUE, FALSE};
6 init(«counter»):= ((0));
7 next(«counter»):= case
8 «Lf2_msg1_rec1» & («counter» >= 0)

& («counter» < 2) : «counter»
+1;

9 («counter» >= 2) : «counter»;
10 TRUE : «counter»;
11 esac;
12 init(«opd») := FALSE;
13 next(«opd») := case
14 «counter» < 2 & «cond» : TRUE;
15 «opd» : FALSE;
16 init(«Lf1_msg1_snd1») := FALSE;
17 next(«Lf1_msg1_snd1») := case
18 «opd» : TRUE;
19 «Lf1_msg1_snd1» : FALSE;
20 esac;
21 init(«Lf2_msg1_rec1») := FALSE;
22 next(«Lf2_msg1_rec1») := case
23 «Lf1_msg1_snd1» : TRUE;
24 «Lf2_msg1_rec1» : FALSE;
25 esac;

(c) SMV generation rules

Fig. 7: Translation of Loop combined fragment

with non-empty content and there is no else guard. The
interaction operator break represents a breaking scenario in
the sense that if the interaction constraint (guard condition)
evaluates to True its sole operand executes [8, p.483]. When
the constraint evaluates to False, the break operand will
be ignored and the remainder of the enclosing Interaction-
Fragment will be performed. The constraint after the break
operand is the negation of the break operand’s constraint (i.e.,
!guard is True). The interaction operator ignore defines that
there is a set of messages that needs to be ignored within
the combined fragment [8, p.487]. Conversely, the interaction
operator consider specifies a set of messages that are to be
considered within the combined fragment; all other messages
are ignored. Due to the space limitation, the mapping rules for
Option, Break, Ignore and Consider combined fragments into
LTL and SMV specifications are omitted.

B. Checking Containment between Sequence Diagrams via
NuSMV

The main goal of our approach is to assess whether the
“execution” of the low-level model includes the “execution”
prescribed in the high-level model (in the same order of
executed elements). More specifically, containment checking
for sequence diagrams aims to verify whether the elements
and structures of a high-level sequence diagram (e.g., lifelines,
sending and receiving events of messages and combined
fragments) correspond to those of a refined and extended
low-level sequence diagram. In our approach, containment
checking is achieved by utilizing the NuSMV model checker.
NuSMV takes as inputs the generated SMV specifications and
LTL formulas, and exhaustively explore all executions of the
SMV specifications by traversing the complete state space to
determine whether the temporal logic properties hold. In case
the SMV specifications satisfy the LTL formulas, this implies

that the behavior described in the high-level sequence diagram
is contained in the low-level sequence diagram’s behavior.
Otherwise, the low-level sequence diagram deviates improp-
erly from the high-level counterpart. In this case, NuSMV
will generate a counterexample that consists of the execution
traces of the SMV specifications leading to the violation,
which is then passed to our counterexample analysis tool. Note
that the counterexample provides only limited information for
understanding the causes of inconsistencies but not how to
fix the inconsistencies. In this regard, the actual causes of
the unsatisfied containment relationship are located based on
the generated counterexamples and appropriate guidelines to
resolve the particular inconsistencies are produced. Finally, the
concise descriptions of the violation’s causes and potential
countermeasures, produced are annotated in the low-level
sequence diagram.

IV. EVALUATION

A. ATM System Scenario

In this section, we present a realistic scenario, namely, the
Automated Teller Machine (ATM) to validate whether our pro-
posed approach helps identifying containment inconsistencies
in UML sequence diagrams. The high-level representation of
the ATM system in terms of a UML sequence diagram is
shown in Figure 8. For performing the containment checking
first the high-level sequence diagram of the ATM system is
automatically translated into LTL formulas. Afterwards, the
low-level ATM system–a refined version of the high-level
model is automatically converted into SMV specifications
using our translation tool. Finally, the containment checking
is achieved by using the NuSMV model checker.

par

:User :ATM :Bank

alt

Verify Card

Request for PIN
PIN Entered

Card Valid

[card_valid]

[else] Eject Card

Insert Card

Display Invalid PIN
loop(0,2)

[PIN_invalid]

Try Again
PIN Entered Verify PIN

PIN Status

Verify PIN
PIN Status

Fig. 8: High-level sequence diagram of ATM system

Listing 1 shows an excerpt of a violation trace generated
by NuSMV including the list of satisfied and unsatisfied
LTL formulas, i.e., a counterexample. By looking at the
violation reported as a counterexample, we found that LTL for-
mulas “G (User_DisplayInvalidPIN_Rec8 -> F ATM_TryAgain_Sn-

d9)” and “(F User_TryAgain_Rec9 -> (!User_TryAgain_Rec9 U (

ATM_TryAgain_Snd9 & User_DisplayInvalidPIN_Rec8)))” are vio-
lated. This means that this sequence of formal properties
specified by the high-level ATM system is not contained in its
low-level counterpart. Despite the size and execution traces
of this counterexample, the exact cause of the containment
inconsistency is unclear, for instance, “is the containment

$ NuSMV ATM.smv
-- specification (F User_DisplayInvalidPIN_Rec8 -> (!

User_DisplayInvalidPIN_Rec8 U ATM_DisplayInvalidPIN_Snd8)) is
true

-- specification G (ATM_DisplayInvalidPIN_Snd8 -> F
ATM_TryAgain_Snd9) is false

-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-
User = FALSE

-- specification (F User_TryAgain_Rec9 -> (!User_TryAgain_Rec9 U (
ATM_TryAgain_Snd9 & User_DisplayInvalidPIN_Rec8))) is false

...

Listing 1: NuSMV containment checking result

inconsistency caused by a missing element, or a misplacement
of elements, or both of them?".

par

:User :ATM :Bank

alt

Verify Card

Request for PIN
PIN Entered

Card Valid

Verify PIN

PIN Status

Display Invalid PIN

Eject Card

Insert Card

alt

Eject Card

Select Operation
Select Withdraw

Enter Amount
Amount Entered

alt

Dispense Cash

Insufficient Funds

Verify Fund
Correct Amount

Take Cash

Eject Card

Process Transaction
Transaction Successful

[card_valid]

[PIN_valid]

[balance_correct]

[else]

[else]

loop(0,2) [PIN_invalid]

Try Again

PIN Entered

[else]

Verify PIN
PIN Status

Causes: (1) ATM_TryAgain_Snd9 OS does not lead to the

ATM_DisplayInvalidPIN_Snd8 OS.

Countermeasures: (1) Swap the sending occurrences of

TryAgain message and DisplayInvalidPIN.

(2) Add TryAgain message after DisplayInvalidPIN message.

Causes: (1) ATM_TryAgain_Rec9 OS does not exist before

User_DisplayInvalidPIN_Rec8 & ATM_TryAgain_Snd9 OSs.

Countermeasures: (1) Swap the receiving occurrences of

TryAgain message and DisplayInvalidPIN.

(2) Add TryAgain message after DisplayInvalidPIN message.

Fig. 9: Feedback of containment results in the low-level system

After the generation of the counterexample, it is important to
analyze the generated counterexample to find the actual source
of the inconsistency and correct the responsible elements in
the sequence diagram. In order to interpret the generated coun-
terexample, we applied our counterexample analysis technique
that creates annotation at the first element causing the incon-
sistency to show the description of inconsistency causes and
suggestions. In this case, the sending and receiving OSs rules
for the TryAgain message are violated because the TryAgain

message is sent and received prior to the receiving OS of the
DisplayInvalidPIN message in the low-level model. These
violations can be resolved by putting the TryAgain message
after the DisplayInvalidPIN message in the low-level ATM

system. In Figure 9, the blue boxes show the actual causes
and potential countermeasures of unsatisfied formulas. Once
the causes are located, causes are eliminated by updating the
responsible elements of the low-level sequence diagram.

TABLE I: Model size and translation time

Input size Order processing ATM system Itinerary management

HL LL HL LL HL LL

Occurrence Specifications 20 30 26 52 34 72

Interaction Operators 2 3 3 5 4 8

Interaction Operands 5 7 5 9 7 22

Lifelines 4 4 3 3 5 6

Total Elements 31 44 37 69 50 108

Model Loading (ms) 2.344±0.25 2.680±0.49 2.515±0.41 4.223±1.28 3.374±0.57 5.126±0.65

Translation Time (ms) 0.289±0.03 0.464±0.08 0.341±0.05 0.646±0.14 0.462±0.21 0.815±0.41

B. Performance Evaluation

The main idea behind our performance evaluation is to
validate whether the proposed approach provides considerable
support for typical models used in real-world settings. The
performance evaluation is conducted on a regular computer
equipped with an 2.6 GHz i5 processor and 8GB of memory
using NuSMV 2.5.4 running under Windows 8. In addition to
the ATM system presented in Section IV-A, we perform the
evaluation on two other industrial scenarios with different sizes
and complexity, in particular, Order processing and Itinerary
management, adapted from our previous projects in e-business
domain [9]. The reported times include model loading, gen-
erating and verification of models measured in milliseconds.
Table I shows the complexity of the input sequence diagrams
(HL = high-level model, LL = low-level model) with respect
to their elements including OSs of messages, interaction op-
erators and operands, and covered lifelines.

TABLE II: Performance evaluation results

Containment checking Order processing ATM system Itinerary management

Verification Time (ms) 127.55±10.350 1011.25±22.320 768.57±53.049

Total Time (ms) 133.327 1018.975 774.511

Violated Formulas 0 out of 22 2 out of 30 1 out of 38

Reachable States 6 (2^2.58496) 4056 (2^11.9858) 32 (2^5)

Total States 2.2518e+015 (2^51) 1.95846e+026(2^87.3399) 5.10424e+038(2^128.585)

Table II shows the total execution time of three models,
reachable states and violated formulas. The evaluation results
indicate that the containment checking time spent by NuSMV
for the ATM system is longer than for the Itinerary manage-
ment and Order processing. This is the case because NuSMV
found inconsistencies between the formal specifications of the
low-level model and LTL formulas of the high-level model
and thus NuSMV needed to generate a counterexample for
two violated LTL formulas. The evaluation results demonstrate
that our approach efficiently translates sequence diagrams into
formal specifications and consistency constraints for support-
ing containment checking. In particular, all realistic scenarios
are handled in a total time around a second which is quite
reasonable for practical purposes. Our analysis and evaluation
results based on the aforementioned use case scenarios show
the feasibility of our approach for larger realistic scenarios.

V. RELATED WORK

Some attempts have been made to give a formal definition
for UML sequence diagrams to enable model checking. For

instance, Alawneh et al. introduce a unified paradigm to
verify and validate prominent diagrams, including sequence
diagrams, using NuSMV [10]. The proposed semantics is not
in full accordance with the standard semantics specified in
UML 2 due to the lack of send and receive events. Moreover,
the approach only supports alternatives and parallel combined
fragments. Störrle [2] proposes the semantics for sequence
diagrams in terms of the set of valid and invalid traces
for “plain InteractionFragments”, i.e., ones without combined
fragments. Haugen et al. present the formal semantics of
sequence diagram through an approach named STAIRS [3].
STAIRS focuses on the refinement for interactions, as a
tuple 〈action,sender,receiver,messagename〉. However, this
notation cannot describe the order of occurrences, where
same message appears twice on the same lifelines. In con-
trast our work considers that each OS is unique within a
sequence diagram. The aforementioned approaches have ig-
nored the guard conditions, which compromises soundness
of containment reasoning. Lima et al. provide a tool to
translate sequence diagrams into PROMELA and verify using
SPIN model checker [11]. Their translation does not support
strict sequencing, consider and ignore combined fragments,
as well as synchronous messages. Leue et al. translate the
message sequence charts (MSCs), especially branching and
iteration of high-level MSC into PROMELA to verify MSCs
using the XSPIN tool [12]. Jacobs and Simpson present the
translation of sequence diagram into process algebra CSP to
investigate whether a potential design meets its specification
using FDR refinement checker [4]. None of these semantics, in
our opinion, achieves the simplicity and conceptual clarity of
verifying the containment relationship for sequence diagrams.
They are only useful for verification of sequence diagrams
against safety properties such as deadlock freedom.

The work presented in this paper provides translation of
both high-level and low-level sequence diagrams into LTL
properties and SMV specifications. In addition, the proposed
approach provides more informative and comprehensive feed-
backs regarding the inconsistency issues, and thus, do not
require the strong knowledge of formal methods. Our ear-
lier works presented in [13], [14] focus on the containment
checking problem for activity diagrams. In [14] we pre-
sented a graph-based approach for addressing the problem
of containment checking. In another study [13] we derived
a transformation of the input activity diagrams to equivalent
formal specifications to enable containment checking based
on model checking techniques. The main contribution of
this paper concerns the automated formalization of sequence
diagrams and counterexample analysis for locating the cause(s)
of inconsistency problems and their resolutions.

VI. CONCLUSION AND FUTURE WORK

This paper presented a model checking based approach
to automatically detect containment inconsistencies between
UML 2 sequence diagrams at different levels of abstraction
in order to improve the system’s quality. To this end, we
proposed a translation technique for automated generation of

consistency constraints (i.e., LTL formulas) and SMV spec-
ifications from high-level and low-level sequence diagrams,
respectively. The NuSMV model checker is employed for ver-
ifying containment relationship. The approach also provides
more informative and comprehensive feedbacks to understand
and resolve the cause(s) of containment inconsistencies, and
thus do not require strong background of formal techniques. In
order to illustrate the applicability of the proposed approach,
we realized realistic scenarios from various domains and
also evaluated the performance our approach in these cases.
Our research agenda includes developing support for other
behavior models radically different from sequence diagrams,
such as BPEL and statecharts. Another future work is to
include interaction operators neg and assert.

ACKNOWLEDGMENT

This work is supported by the Wiener Wissenschafts-
, Forschungs- und Technologiefonds (WWTF), Grant No.
ICT12-001.

REFERENCES

[1] H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in error traces,”
International Journal on Software Tools for Technology Transfer, vol. 6,
no. 2, pp. 102–116, 2004.

[2] H. Störrle, “Trace semantics of interactions in uml 2.0,” J. Visual
Languages and Computing, 2004.

[3] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen, “Stairs towards
formal design with sequence diagrams,” Software & Systems Modeling,
vol. 4, no. 4, pp. 355–357, 2005.

[4] J. Jacobs and A. Simpson, “On a process algebraic representation of
sequence diagrams,” in Software Engineering and Formal Methods.
Springer International Publishing, 2015, vol. 8938, pp. 71–85.

[5] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, ser. SFCS ’77.
Washington, DC, USA: IEEE Computer Society, 1977, pp. 46–57.

[6] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A
new symbolic model verifier,” in 11th Int’l Conf. on Computer Aided
Verification (CAV). London, UK: Springer-Verlag, 1999, pp. 495–499.

[7] E. M. Clarke, K. L. McMillan, S. V. A. Campos, and V. Hartonas-
Garmhausen, “Symbolic model checking,” in 8th Int’l Conf. on Com-
puter Aided Verification (CAV), 1996, pp. 419–427.

[8] Object Management Group, “UML 2.4.1 superstructure specification,”
http://www.omg.org/spec/UML/2.4.1, last accessed: 2016-06-01.

[9] H. Tran, U. Zdun, T. Holmes, E. Oberortner, E. Mulo, and S. Dustdar,
“Compliance in service-oriented architectures: A model-driven and
view-based approach,” Information and Software Technology, vol. 54,
no. 6, pp. 531 – 552, 2012.

[10] L. Alawneh, M. Debbabi, F. Hassaine, Y. Jarraya, and A. Soeanu, “A
unified approach for verification and validation of systems and software
engineering models,” in 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer-Based Systems (ECBS’06),
March 2006, pp. 10 pp.–418.

[11] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M. Pourzandi,
“Formal verification and validation of uml 2.0 sequence diagrams using
source and destination of messages,” Electron. Notes Theor. Comput.
Sci., vol. 254, pp. 143–160, Oct. 2009.

[12] S. Leue and P. B. Ladkin, “Implementing and verifying MSC specifica-
tions using promela/xspin,” in Proc. of the DIMACS Workshop SPIN96,
1996, pp. 65–89.

[13] F. U. Muram, H. Tran, and U. Zdun, “Automated Mapping of UML
Activity Diagrams to Formal Specifications for Supporting Containment
Checking,” in 11th Int’l Workshop on Formal Engineering approaches
to Software Components and Architectures (FESCA), Grenoble, France,
Apr. 2014, pp. 93–107.

[14] H. Tran, F. U. Muram, and U. Zdun, “A graph-based approach for
containment checking of behavior models of software systems,” in
Enterprise Distributed Object Computing Conference (EDOC), 2015
IEEE 19th International, Sept 2015, pp. 84–93.

http://www.omg.org/spec/UML/2.4.1

