
An Implementation of the WS-Agreement
Negotiation Standard in CloudSim

Benedikt Pittl
Faculty of Computer Science
University of Vienna, Austria

Email: benedikt.pittl@univie.ac.at

Werner Mach
Faculty of Computer Science
University of Vienna, Austria

Email: werner.mach@univie.ac.at

Erich Schikuta
Faculty of Computer Science
University of Vienna, Austria

Email: erich.schikuta@univie.ac.at

Abstract—The currently dominating market mechanism for
selling IaaS resources is the so called supermarket approach:
Consumer buy resources from providers without negotiation.
The recent development of Amazon EC2 spot market shows that
dynamic market mechanisms are becoming increasingly popular.
The so called Bazaar approach is such a dynamic market
mechanism. On a Bazaar-base market consumer and provider
can negotiate all characteristics of IaaS resources described
by SLAs. The WS-Agreement Negotiation standard describes
concepts for such bilateral negotiations on Bazaar-based markets.

The scientific simulation framework CloudSim is not able to
simulate Bazaar-based markets. Thus we extended the frame-
work by developing the so called Bazaar-Extension which im-
plements the basic principles of the WS-Agreement Negotiation
standard. Using the Bazaar-Extension consumers and datacenters
are created, strategies are assigned to them and the result of the
bilateral negotiation simulation are analysed.

I. INTRODUCTION

A digital service market may be envisaged as the culmi-
nation point of stake-holders providing services used along
each link in a value chain. Currently such service markets are
evolving dramatically [1].

Service markets allow providers to sell their resources to
consumers. Therefore, they form contracts which are tech-
nically realized by SLAs (Service Level Agreements). As
described in [2] cloud providers can make use of SLA tech-
nology to advertise and offer their services capabilities while
consumers are able to formalize their service level objectives
through SLAs. SLA contracts are described in protocols like
WS-Agreement [3].

In this paper we consider IaaS (Infrastructure as a Service)
as an example of a cloud service. Thus we use the terms IaaS
provider and cloud provider synonymously.

Usually cloud providers run data centers providing IaaS
resources. Providers sell these resources to enterprises in
forms of virtual machines (VMs). Virtual machines are not
commodities which are totally interchangeable. Virtual ma-
chines are goods which have several characteristics such as:
(i) processing power (ii) storage (iii) RAM (iv) price. Today,
these machines are mainly traded directly for fixed prices from
provider to consumer [4].

For our research project focusing on economical aspects
of Cloud Computing we needed an adaptive cloud simulation
environment which is able to run our envisioned Bazaar-based
market ecosystem. The basic requirement for simulating our

Bazaar-based market ecosystem is the simulation of resource
allocation mechanisms based on bilateral negotiations. We
found several relevant frameworks: (i) The simulation en-
vironment greenCloud [5] was developed by the University of
Luxembourg. It focuses on the simulation of energy consump-
tion of Cloud infrastructures. (ii) iCanCloud [6] is a Cloud
simulation framework for analysing trade-offs between cost
and performance of a given set of applications executed in
a specific hardware. (iii) The CloudSim framework [7] was
developed by the University of Melbourne. A lot of other
researchers have extended this framework.

None of the frameworks we found is able to simulate service
markets (and consequently negotiation based resource alloca-
tion mechanisms). However, for the simulator CloudSim [7]
two market extensions (including scientific papers) are existing
using CloudSim for simulating resource allocations.

• The extension introduced by [8] allows to run a double
combinatorial auction. It is published on the official
CloudSim website (http://www.cloudbus.org/cloudsim/).

• The authors of [4] described that they extended CloudSim
for running procurement auctions.

To the best of the authors knowledge no bilateral negotiation
extension exists enabling Bazaar-based markets. Therefore,
we developed the Bazaar-Extension for CloudSim as this
framework (i) is well known by the community (ii) offers
a lot of extensions (iii) is appropriate for introducing market
based components like the Bazaar-Extension.

The remainder of the paper is organized as follows: Sec-
tion II describes the high level architecture of the Bazaar-
Extension. The paper is closed by a description of further
research in section III.

II. ARCHITECTURE OVERVIEW

We designed the Bazaar-Extension so that the existing
CloudSim architecture as well as the classes need not be
modified.

Figure 1 illustrates a high level view of the Bazaar-
Extension architecture including a rough communication se-
quence. The Bazaar-Extension is based on the CloudSim
framework and uses the framework fxyz for the visualization
of the negotiation results in 3d plots.

The Bazaar-Extension processes so called negotiation mes-
sages, which we developed during the creation of the Bazaar-

978-1-4673-9933-3/16/$31.00 ©2016 IEEE

356

Fig. 1: High level architecture of the main components

Extension. These negotiation messages contain offers and rep-
resent the messages defined in the WS-Agreement negotiation
standard.

For the Bazaar-Extension a negotiation datacenter and a
negotiation broker was created. The negotiation broker and
the negotiation datacenter are entities. They inherit the basic
behavior of the entity class defined in CloudSim. Each data-
center and each broker has exactly one negotiation manager.
All messages send to a broker or a datacenter are passed to
their negotiation manager. So the negotiation manager can be
considered as a gateway inter alia responsible for forwarding
messages to negotiations. Further, the negotiation manager
checks if the received message is a negotiation message or
a usual CloudSim message. If the received message is not a
negotiation message then it is not processed by the negotiation
manager. Negotiation objects encapsulate negotiation relevant
data and use a negotiation strategy which decides how to
respond to received offers.

A. Negotiation Messages

During a simulation flow in CloudSim events are ex-
changed. We use terms event and message synonymously.
The events used by CloudSim are described in the Java class
SimEvent.java in the CloudSim framework [9]. A event
contains three fields which are relevant within this paper as
shown in figure 2a.

• The MsgContent is of type Object. Therefore the mes-
sage content can contain an object of any type.

• The Msg Type field is an integer indicating what content
is send. These integers are also called tags. The tags rep-
resent message types. CloudSim defines several message
types. For example message type Register Resource
has the value 2. It is used by datacenters to regis-
ter at the CIS (Cloud Information System). The class
CloudSimTags.java contains tags which are defined as
public static final integers.

• In CloudSim each entity is identified by an unique integer.
This id is necessary to send a message to another entity
via CloudSim. In figure 2a the id of the destination is
represented by the To field.

For the Bazaar-Extension we created Bazaar-Tags represent-
ing the offer states defined in the WS-Agreement Negotiation
standard. Further an internal tag triggering the evaluation of
datacenters and brokers was defined. Such an internal tag
is necessary because of the round based simulation flow of

(a) Message structure of CloudSim (sim-
plified) (b) Negotiation between

consumer and provider

Fig. 2: CloudSim structure

Fig. 3: Message containing a negotiation message

CloudSim. The CloudSim messages were used by the Bazaar-
Extension for exchanging negotiation messages.

The simplest way for exchanging negotiation messages is to
use the MsgContent field. A sender could put an offer for a
VM including a price into this field and send it to a negotiation
partner. CloudSim adds the id of the sender to messages so
that the receiver knows the message creator. This id is also
called the source. Using the source the consumer as well as
the provider is able to distinguish between messages received
from different entities. So consumer and provider are able to
negotiate with several entities at same time as illustrated in
figure 2b. This figure shows several datacenters and brokers
including their id. Broker 2 is negotiating with datacenter 3
and 4 at the same time. Broker 2 is able to distinguish between
offers received from the datacenters 3 and 4 as it knows the
source. Similar, datacenter 3 is negotiating with two brokers
at the same time is able to distinguish between offers received
from broker 1 and 2 using the source.

If a consumer needs two VMs (for example a small and
a large VM) its broker starts negotiating with a datacenter
for each VM. Thus the broker has two negotiations with
a datacenter at the same time. A receiver of a message is
able to use the source for distinguishing between different
entities. However, the receiver is not able to distinguish
between different negotiations with the same entity. The source
identifies the entity but there is no so called negotiation id.
Therefore a negotiation message class was created. Instances
of this class can be exchanged between entities via the message
content field. An overview is depicted in figure 3. So the
priced VM stored in the MsgContent field is replaced by a
negotiation message object containing a VM which is offered
to the negotiation partner.

The negotiation message introduces a negotiation id (NID)
which is a UUID. Consumer and provider use the same
UUID for identification of a negotiation. The consumer
generates an UUID and sends it to the provider in exchange
for its templates. By using the NID the receiver of a message
is able to distinguish between parallel running negotiations of
an entity.

A negotiation message contains several additional fields.
• ID: The ID is an UUID identifying the message. Each

message has an unique ID.

357

Fig. 4: Message passing

• Response: Each message has an reference to its prede-
cessor message. If several messages are exchanged the
reference helps to find out to which message the received
message belongs. The template has not a reference as it
is the initial message.

• The source field contains an integer representing the
entity id of the sender of the message. This id was added
into the negotiation message to simplify negotiation mes-
sage processing.

• The VM field contains the description of a virtual ma-
chine including its price.

A broker requiring a VM creates a negotiation id and
contacts several datacenters with a Resource Characteristic
Request. So the broker sends the same negotiation ID to all
datacenters. The negotiation id and the source field form the so
called interaction id. The interaction id identifies a negotiation
with an entity.

The Bazaar-Extension uses the negotiation messages as
message content for running negotiations. Therefore the
CloudSim framework needs not to be modified for running
negotiations

B. Negotiation Manager

The two main tasks of the negotiation manager are to
forward negotiation messages and create new negotiations.
Figure 4 shows an example how message forwarding works.
CloudSim forwards messages to entities using the destination
field (To field) stored in the message. If the entity receiving
the message is a negotiation entity it forwards the received
message to its negotiation manager. The negotiation manager
uses the message type to determine if the received message is
a negotiation message. If the received message is a negotiation
message it casts the message content referenced as an object
to a negotiation message.

A negotiation manager is responsible for several negotia-
tions. The negotiation message contains a negotiation id. This
negotiation id is used by the negotiation manager to forward
the message to the corresponding negotiation.

A new negotiation is created if a negotiation message
was received containing a negotiation id which is unknown
by the negotiation manager. For creating a new negotiation
a negotiation factory is used. This factory encapsulates the
creation of a new negotiation including a strategy. The factory
is necessary as strategy creation can be a complex task. So a
strategy may for example contain a counteroffer generator or

an utility evaluator for ranking received offers. Such a utility
evaluator was described by us in [10].

The tasks of a negotiation manager used by the consumer
and datacenter are identical. Both forward messages to ne-
gotiations and use a factory for creating new negotiations.
Consumer and provider use different factories. This is because
consumer and datacenter use different strategies in the nego-
tiation objects delivered by the factory.

C. Negotiation

The negotiation class is a container for storing negotiation
relevant data. Negotiation relevant data are the negotiation id
and a tree tracing the negotiation history for each negotiation
partner. Further a reference to the used strategy for the
negotiation is stored.

The strategy as described in the following section creates
messages which are sent to negotiation partners. So the
strategy passes the messages to the negotiation which passes
the messages to the negotiation manager. The negotiation
manager adds entity data to the negotiation message and passes
the message to the CloudSim framework which delivers the
message.

D. Strategy

The strategy is responsible for responding to received nego-
tiation messages. It sets for example conditions for accepting
or rejecting received offers. A goal of the Bazaar-Extension
is to create and test new negotiation strategies. Thus we tried
to keep the strategy creation as flexible as possible within
the Bazaar-Extension. Basically, a strategy has to extend an
abstract negotiation strategy class which enforces only to
implement an evaluation method. This method is called by
the responsible negotiation object after all messages from the
negotiation partners were received. The negotiation strategy
has access to the negotiation history.

We have already implemented initial negotiation strategies
for testing the Bazaar-Extension. The strategies make use of
the high level strategy process depicted in figure 5. Of course it
is possible to extend this basic strategy or create new strategies
in the Bazaar-Extension. The dark boxes represent the strategy
components depicted in figure 1. The basic strategy process is
identical for consumer and provider.

First, the received offers in a round (see [10] for a descrip-
tion of the term round) are collected. Then they are evaluated
in order to rank them. We used the utility function described
in [10] for doing the ranking. Afterwards the ranked offers are
handed to a decision maker. It decides how to respond to the
received offer. In case in which the decision maker decides to
create a counteroffer the received messages are handed to the
counteroffer generator. In all the other cases the corresponding
responses are created.

In our initial experiments we were using thresholds in the
decision makers. This means that if e.g. a offer was received
which has an utility exceeding the used threshold, then it is
accepted. The most complex component in the process seems
to be the counteroffer generator. Computational intelligence

358

Fig. 5: Strategy process

techniques like neural networks or genetic algorithms may be
suitable for this task.

With the Bazaar-Extension new negotiation strategies can
be developed and evaluated.

E. Scenario

In the Bazaar-Extension scenarios are executed. A scenario
has a list of datacenters and a list of brokers attending the
scenario. A scenario is responsible for assigning strategies to
the entities. After running the scenario the datacenters and
brokers are accessed in order to analyse results.

F. View

The created view was developed using JavaFX determining
the basic architecture of the view. JavaFX is considered as an
eligible alternative for Swing [11]. As the view is visualizing
the negotiation results it is called result-view. Exactly one
scenario can be visualized by the view. The basic structure
of the view is shown in figure 6. The numbers in the figure
mark three areas which were realized using three fxml files.
Together these files form the result-view. Area 3 is the basic
view containing a menu bar as well as the other two view
areas. By selecting a scenario its data is loaded into area 1.
This area is the so called scenario area as it visualizes the
entities participating in a scenario. By selecting a negotiation
of an entity negotiation details are loaded into the view area
2. It consists of two diagrams:

• The tree list shows the messages which were exchanged
during negotiation. Each entry in the tree list shows the
characteristics of the VM of the received/sent offer.

• The utility-utility plot visualizes the tree list. The ordinate
shows utility of the offers for the consumer while the
abscissa shows the utility of the offers for the provider.
The utility evaluator is responsible for assigning utility
values to offers. The different colors indicates in which
iteration the offer was received/sent. It is possible to
calculate the Pareto-Boarder which shows how efficient
the used negotiation strategies worked.

III. CONCLUSION AND FURTHER RESEARCH

We envision a comprehensive framework for autonomous,
dynamic and adaptive negotiation processes of IaaS resources.

Current papers in the field of cloud economics consider a
simplified consumer-provider market. Thus additional market

Fig. 6: Screenshot of the GUI based on JavaFX

participants and market components are neglected which limits
the evidence of the outcomes derived from such models.

In our further research we will develop further components
based on the Bazaar-Extension: For example taxes on cloud
markets have not been considered yet by the scientific com-
munity.

REFERENCES

[1] W. Mach, B. Pittl, and E. Schikuta, “A Forecasting and Decision Model
for Successful Service Negotiation,” in Services Computing (SCC),
2014 IEEE International Conference on. IEEE, 2014, pp. 733–740.

[2] P. Hasselmeyer, H. Mersch, B. Koller, H. N. Quyen, L. Schubert,
and P. Wieder, “Implementing an SLA negotiation framework,” in
Proceedings of the eChallenges Conference (e-2007), vol. 4, 2007, pp.
154–161.

[3] H. Ludwig, “WS-Agreement Concepts and Use Agreement-Based
Service-Oriented Architectures,” IBM Research Division, Technical Re-
port, 2006.

[4] P. Bonacquisto, G. D. Modica, G. Petralia, and O. Tomarchio, “A
Strategy to Optimize Resource Allocation in Auction-Based Cloud
Markets,” in Services Computing (SCC), 2014 IEEE International
Conference on. IEEE, 2014, pp. 339–346.

[5] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-level
simulator of energy-aware cloud computing data centers,” The Journal
of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[6] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “icancloud: A flexible and scalable cloud
infrastructure simulator,” Journal of Grid Computing, vol. 10, no. 1, pp.
185–209, 2012.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” in High Performance Computing &
Simulation, 2009. HPCS’09. International Conference on. IEEE, 2009,
pp. 1–11.

[8] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial double
auction resource allocation model in cloud computing,” Information
Sciences, 2014.

[9] “The CLOUDS Lab: Flagship Projects - Gridbus and Cloudbus.”
[Online]. Available: http://www.cloudbus.org/cloudsim/

[10] B. Pittl, W. Mach, and E. Schikuta, “A negotiation-based resource
allocation model in iaas-markets,” in 8th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2015, Limassol,
Cyprus, December 7-10, 2015, 2015, pp. 55–64.

[11] JavaFX FAQ. [Online]. Available: http://www.oracle.com/technetwork/
java/javafx/overview/faq-1446554.html#6

359

