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Abstract

We present the novel parallel linear least squares solvers ARPLS-IR and ARPLS-MPIR for dense overdeter-
mined linear systems. All internode communication of our ARPLS solvers arises in the context of all-reduce
operations across the parallel system and therefore they benefit directly from efficient implementations of
such operations. Our approach is based on the semi-normal equations, which are in general not backward
stable. However, the method is stabilised by using iterative refinement. We show that performing iterative
refinement in mixed precision also increases the parallel performance of the algorithm. We consider different
variants of the ARPLS algorithm depending on the conditioning of the problem and in this context also eval-
uate the method of normal equations with iterative refinement. For ill-conditioned systems, we demonstrate
that the semi-normal equations with standard iterative refinement achieve the best accuracy compared to
other parallel solvers.

We discuss the conceptual advantages of ARPLS-IR and ARPLS-MPIR over alternative parallel ap-
proaches based on QR factorisation or the normal equations. Moreover, we analytically compare the com-
munication cost to an approach based on communication-avoiding QR factorisation. Numerical experiments
on a high performance cluster illustrate speed-ups up to 3820 on 2048 cores for ill-conditioned tall and skinny
matrices over state-of-the-art solvers from DPLASMA or ScaLAPACK.

Keywords: parallel least squares solver, semi-normal equations, normal equations, iterative refinement,
mixed precision, tall and skinny matrices, all-reduce

1. Introduction

In scientific applications, a typical problem is fitting the parameters of a mathematical model to ob-
servations which are subject to errors. Performing linear regression analysis on these observations requires
efficient linear least squares (LLS) solvers. We consider the problem of solving the dense LLS problem

min
x
‖b−Ax‖2 (1)

in parallel, where A ∈ Rn×m with n ≥ m and b ∈ Rn. Of special interest are strongly overdetermined
LLS problems where the matrix A has many more rows than columns (n � m), also known as tall and
skinny LLS problems. Many big data applications naturally exhibit such a strongly rectangular structure,
having billions of data points with only a few hundred descriptors. For example, monitoring seismological
activity generates massive amount of data. In [1], a wireless sensor network with only three nodes was
deployed around a volcano and returned millions of rows of sensed data. Tall and skinny problems also
arise in partial differential equations [2]. Another field of application where high dimensional regression is
required is genetics [3]. Single nucleotide polymorphisms (SNPs) can help exhibit a human’s susceptibility
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to different diseases. Millions of SNPs are known today, but the number of subjects for a study of a certain
disease is often very low, often limited to a few thousand due to high costs.

We present and evaluate the novel all-reduce parallel least squares solvers ARPLS-IR and ARPLS-MPIR
for solving problem (1) which are based on the method of semi-normal (SNE) or normal equations (NE)
with (mixed precision) iterative refinement (IR). A and b are distributed row-wise across all N processes
and the solution x ∈ Rm is replicated across the processes. All internode communication in the ARPLS
algorithms is contained in all-to-all reduction operations across the participating processes. We consider
different variants of the ARPLS algorithm depending on the conditioning of the problem. We show that the
application of mixed precision iterative refinement (MPIR) in the context of parallel LLS solvers not only
reduces the amount of computation but also the communication costs. To the best of our knowledge, the
combination of MPIR with LLS solvers has not been studied so far. The mixed precision SNE approach is
limited to systems with a condition number up to κ(A) ≈ 107 due to single precision being used throughout
the majority of the algorithm. In the case of NE, the mixed precision approach is further limited because
the normal equations square the condition number of A. Therefore, mixed precision NE does not work for
ill-conditioned systems. However, we demonstrate that the accuracy of the standard precision IR method is
comparable to existing methods also for higher condition numbers of A. For ill-conditioned systems, unlike
some other methods, the approach using SNE with IR (ARPLS-SNE-IR) can still solve the LLS problem and
in all cases returns the highest accuracy among the compared algorithms. Moreover, we provide an analysis
and comparison of the communication cost of different parallel LLS solvers. Like many standard parallel
solvers for dense LLS problems, many ARPLS variants require a parallel QR factorisation algorithm. We
thoroughly compare an all-reduce-based parallel version of modified Gram-Schmidt with Tall Skinny QR [4]
in terms of computation and communication cost and show how to optimise the communication cost of the
all-reduce-based QR factorisation.

The paper is organised as follows. Section 2 summarises related work on parallel and distributed LLS
solvers. Section 3 describes the mathematical basis for our approach. Section 4 introduces and discusses
different variants of the ARPLS method and a parallel QR factorisation method based on modified Gram-
Schmidt. Section 5 provides an analysis of the communication cost and a comparison with an LLS solver
based on the communication-avoiding QR (CAQR) algorithm [4] which achieves the theoretical minimum
in terms of communication cost. In Section 6 we summarise numerical experiments conducted on a large
scale cluster for comparing the performance of ARPLS methods and the LLS solvers from DPLASMA and
ScaLAPACK. Section 7 concludes our paper.

2. Related Work

Many parallel algorithms for solving LLS problems have been studied in the literature and are avail-
able in high-performance libraries like ScaLAPACK [5], aimed at distributed memory parallel computers,
PLASMA [6], designed for shared-memory multi-core machines, MAGMA [6], considering heterogeneous
and hybrid architectures with multi-core and GPU systems, or DPLASMA [7], which extends PLASMA
to distributed heterogeneous systems. PLASMA and DPLASMA use specialised dynamic scheduling sys-
tems (QUARK and PaRSEC, respectively) based on building a direct acyclic graph of parallel tasks and
considering the data dependencies of these tasks.

The basic building block of many LLS solvers is a QR factorisation. In PLASMA this is implemented
using the tiled QR factorisation algorithm [8], which divides the matrix into small square tiles instead
of using rectangular panels seen in block algorithms. The finer granularity achieved by the square tiles
is better suited for multicore architectures [9]. Demmel et al. [4] introduced communication-avoiding QR
factorisation (CAQR) and proved that its communication cost is optimal up to polylogarithmic factors. The
CAQR algorithm factorises block-columns of A, called panels, in parallel using the TSQR algorithm, which
is designed for tall and skinny matrices. The panels are divided into block-rows, called domains, which are
factorised independently and then merged using a binary tree strategy. In [10], a systolic QR factorisation
algorithm is implemented for a distributed memory machine using the PaRSEC parallel scheduler. The
authors target a 3D torus topology and limit the communication of the algorithm to neighbouring nodes,
aiming to minimise the amount of communication in the reduction trees.
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An example for a parallel LLS solver is the parallel multisplitting method by Renaut [11], which uses the
well-known fixed-point iteration methods Jacobi, Gauss-Seidel and successive over-relaxation to solve the
LLS problem by forming the normal equations. The matrix A is distributed column-wise over the network
nodes and weighting matrices are used to recombine the local problems, which are independent problems
resulting from the linear multisplitting of A. In each iteration a vector of size n has to be broadcast to all
other nodes in the network.

A slightly different emphasis is pursued in distributed LLS solvers, which limit their communication to
the immediate neighbourhood and are therefore of particular interest for loosely coupled networks. Sayed
et al. [12] have proposed a diffusion-based least mean square estimator (diffLMS) using normal equations
and steepest-descent iterations. Diffusion strategies are seen as an alternative to consensus strategies for
distributed optimisation problems, both aiming at limiting the communication to the neighbourhood. The
data A and b are both distributed row-wise. The distributed least mean squares method (D-LMS) described
in [13] also only uses neighbourhood communication. The method is based on Lagrange multipliers and
uses the least squares residual and the difference between the estimates of x from the neighbourhood in
a correction step to compute the LLS solution iteratively. The data distribution of A and b is again row-
wise. At each step an estimate for the solution x is available in each node. D-LMS communicates twice
in each iteration step, once to broadcast the current estimate to the neighbourhood and a second time to
send individual correction vectors to each node in the neighbourhood (one-hop unicast). However, first
observations indicate that D-LMS has higher communication cost to reach an accuracy comparable to the
ARPLS algorithms presented in this paper (for details, see [14]).

3. Iterative Refinement for Linear Least Squares Problems

Mathematically, our approach for solving problem (1) in parallel is either based on the semi-normal
equations (SNE) or the normal equations (NE) in combination with iterative refinement (IR).

3.1. Normal Equations

The method of normal equations (NE) solves problem (1) by forming and solving the normal equations:

A>Ax = A>b (2)

Assuming A has full rank, the LLS problem has a unique solution. The normal matrix C := A>A ∈ Rm×m
is symmetric and positive definite. Therefore, (2) can be solved using the Cholesky factorisation C = LL>:

LL>x = A>b

The main drawback of NE is that the method is not necessarily backward stable [15]. Forming the
cross product squares the condition number: κ(A>A) = κ(A)2. The best forward error bound that can be
expected is

‖x∗ − x‖
‖x∗‖

. nmκ(A)2εmach

with x∗ being the exact solution and εmach = b1−t being the machine epsilon with b defining the base of the

floating-point representation and t the precision. If κ(A) ≥ ε
−1/2
mach, C can be singular or indefinite and the

Cholesky factorisation of C will break down. Only if A is well-conditioned, the approach based on the NE
is guaranteed to be backward stable.

3.2. Semi-Normal Equations

The method of semi-normal equations (SNE) for solving LLS problems is derived from the normal
equations using a QR factorisation A = QR:

A>Ax = A>b ⇔ R>Rx = A>b.
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Note that the factor Q is not needed to compute the solution, due to Q>Q = I. For a large and sparse
matrix A, storing and accessing Q is often uneconomical and therefore Q is often discarded. Having the
original matrix A, it is still possible to solve multiple right-hand sides b with SNE without Q.

The stability of the SNE method for the LLS problem is analysed extensively in [16]. It has been shown
that SNE are not backward stable and that the error in x is similar to the error for the method of normal
equations. They have the same numerical properties as the normal equations, even though the factor R
from the QR factorisation is of better quality than a Cholesky factorisation of A>A. The dominating error
arises from the rounding errors in the computation of the right hand-side A>b. However, adding an iterative
refinement correction step, as shown in [17] and [18], leads to much more satisfactory results. As long as A
does not have widely differing row norms, the SNE with IR become backward stable under certain conditions
which will be discussed in Section 3.3.1.

3.3. Iterative Refinement

Iterative refinement (IR) [19] is a strategy for improving the accuracy of a computed solution by trying
to reduce round-off errors. The method iteratively computes a correction term to an approximate solution
by solving a system using the residual of the result. The correction term is then added to the result to
correct the solution. This process is repeated until the accuracy of the solution is sufficiently improved. The
cost of the iterative improvement is very low compared to the cost of the factorisation of the matrix but
results in a solution which can be accurate to machine precision. Iterative refinement was first analysed in
detail by Wilkinson in [19] for linear systems using a scaled fixed point arithmetic and was later expanded
by Moler [20] to cover floating-point arithmetic.

A wide range of variations of IR exist which mainly differ in the precisions used for computing the
different steps in the process. The terms target precision pα and working precision pβ will be used here
to distinguish between the targeted precision of the solution and the precision used for the majority of
the computation steps, respectively. The standard IR method performs all computations using the same
floating-point precision pα = pβ . In [21], standard IR has been expanded to use a higher working precision
than the target precision to compute the critical steps of IR. This method has been called extra precise
iterative refinement (EPIR).

Mixed precision iterative refinement (MPIR) [22, 23] is a special performance-oriented case of IR which
has been studied for solving linear systems of equations. The majority of operations, the matrix factorisation
and solving the linear systems, is computed in single precision (SP) and only the critical parts, computing
the residual and updating the solution, are performed in double precision (DP), operations of low complexity
compared to the factorisation. This can lead to a result which is accurate to the targeted double precision
while the performance has been greatly improved, since the iterative process incurs only very low additional
cost. As stated in [23], MPIR using single and double precision achieves at least the same and often higher
accuracy than a double precision direct solver as long as the matrix is not too badly conditioned. Some
very ill-conditioned systems may never converge and others may need a high number of iterations until they
converge to the correct solution. The number of iterations required for convergence directly relates to the
condition number of the system matrix, as can be seen in Section 3.4.

Using the lower working precision has many benefits. Modern processors support vector instruction
sets, which enables the processor to compute multiple double precision operations in one clock cycle. With
SP, the processor can perform double as many operations in one cycle, which significantly increases the
performance. SP data also uses less storage, which results in a lower number of cache misses. Furthermore,
moving SP data through the memory is faster due to the lower storage requirements. MPIR computes
the entire solution of the system with increased performance as long as the performance of SP and DP is
significantly different on the used hardware [24].

In [25], it was shown that IR can be used to stabilise almost any linear equation solver and that there
is no need to compute the residual in higher precision to stabilise the method but using the same floating-
point precision as the solver is sufficient. Numerical stability is proved for κ(A)εmach ≤ 1, where κ(A) is the
condition number of A and εmach is the machine epsilon.
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3.3.1. Corrected Semi-Normal Equations

For LLS problems, the iterative refinement approach [17], which is also referred to in the literature as
corrected SNE (CSNE), is defined by

‖b−Ax‖2 = ‖r −A∆x‖2

where x = x̂+ ∆x with x̂ being the initial solution, ∆x the correction term and r = b− Ax̂ is the residual
vector of the LLS problem. The least squares residual satisfies A>r = 0 [26]. The correction term ∆x is
itself the solution to a linear least squares problem. The steps of IR for the SNE method are as follows:

1. Factorise A = QR

2. Solve R>Rx̂ = A>b for x̂

3. x0 := x̂

4. For i = 0, 1, 2, . . .

(a) Compute ri = b−Axi
(b) Solve R>R∆xi = A>ri for ∆xi
(c) Update xi+1 = xi + ∆xi

In Step 1, a QR factorisation of A is computed and then used in Step 2 to compute an initial solution x̂.
Subsequently the iterative refinement algorithm tries to increase the accuracy of the solution by computing
the residual ri of the result in Step 4a and using A>ri as the right-hand side to solve the system for the
correction term ∆xi in Step 4b using the already available factor R. Finally, the correction term is added to
the result to improve the solution of the LLS problem in Step 4c. This process is repeated until the accuracy
of the solution is satisfactory. The rate of convergence is shown in [18] to be roughly linearly dependant on
the condition number κ(A).

Summarising the analysis in [16], assuming that R is non-singular, then the bound of the estimate of the
absolute error for SNE with a single step of IR is

‖x∗ − xi‖2 ≤ σκεmach

(
c2 ‖x∗‖2 +m1/2n

‖b‖2
‖A‖2

)
+m1/2κεmach

(
m ‖x∗‖2 + nκ

‖r‖2
‖A‖2

)
+m1/2εmach ‖x‖2

with κ := κ(A), x∗ being the exact solution and xi the solution after the ith refinement step. In this bound,
c2 = 2m1/2(c1 + m) and c1 = c1(n,m) is a polynomial in n and m and depends on the method used to
compute the QR factorisation. Moreover,

σ = c3κ
2εmach, with c3 ≤ 2m1/2

(
c1 + 2m+

n

2

)
.

The combination of SNE with IR is not in general backward stable, but for σ < 1 it is more accurate than
the QR method (a QR factorisation followed by triangular solve) and less accurate if σ > 1.

For multiple iterative refinement steps, the error bound of a single step is given in [16] by

‖x∗ − xi‖2 ≤ m
3/2κεmach

(
‖x∗‖2 +

n

m
κ
‖r‖2
‖A‖2

)
[1 +O(κεmach)]

As long as O(κεmach) is negligible compared to 1, this error estimate also holds for further steps of IR. If
the refinement converges initially, the limiting accuracy does not depend strongly on the starting vector x0.
Therefore, SNE with IR is backward stable if

2c1m
1/2κεmach < 1 .

In [16], the author also provides an example for the very ill-conditioned Hilbert matrices, where SNE with
IR still produces useful results whereas normal equations (without IR) fail completely and SNE without IR
is unstable. The results from SNE with IR are shown to be comparable to the QR method. In Section 6.3,
we experimentally investigate the numerical stability of SNE with IR.
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3.3.2. Other Iterative Refinement Approaches for LLS Problems

The method of normal equations (NE) can also be used instead of a QR factorisation. Step 1 is then
replaced by forming the normal equations C := A>A followed by a Cholesky factorisation C = LL>. To
solve the systems in Steps 2 and 4b, the factor L is used to compute LL>y = A>b, where y is either x̂ or
∆xi, respectively. As stated in [15], for NE the rate of convergence depends on κ(A)2 instead of κ(A).

In [27], an extra precise IR (EPIR) method for LLS problems is proposed, where the critical parts of
computing the residual and updating the solution are performed in extended precision, which refers to using
double-double precision with a 106 bit significand for intermediate results. This leads to a reduction of the
forward norm-wise and component-wise errors to O(εmach) for the solution x and the residual r. The LLS
problem can also be formulated as an augmented linear system of dimension n+m, as shown in [18]:

(
In A
A> 0

)(
r
x

)
=

(
b
0

)
(3)

According to [27], the analysis for EPIR for linear systems [21] can be applied directly to the augmented
system (3) for the LLS problem.

To the best of our knowledge, the application of mixed precision IR in the context of LLS solvers has not
been studied so far. However, formulating the LLS problem as an augmented linear system (3) makes all IR
methods developed for linear systems applicable to LLS problems. Therefore the same proofs of convergence
and numerical improvement can be applied to MPIR for LLS problems.

3.4. Number of Iterations

In [28], the number of iterations required by iterative refinement is used to estimate the condition number
of a linear system Ax = b. For IR and MPIR with standard IEEE precisions, the number of iterations for
well-conditioned and mildly ill-conditioned problems is in general very low (mostly around two or three).
The logarithm to base b of the condition number κ(A) returns an estimate of the number of base-b digits
that are lost while solving the system. Through simple transformations one arrives at the following estimate
for κ(A) based on the number of iterations k required by IR for a precision p and gaining s digits of accuracy
in each iteration:

κ(A) ≈ bp−s = bp−p/k

From this relationship, it is possible to estimate the number of iterations of IR based on the knowledge of
κ(A). By setting the precision in the numerator to the target precision and the precision in the denominator
to the working precision, the model results in

k ≈ pα
pβ − log2(κ(A))

(4)

where pα and pβ are specified in number of bits stored in the mantissa of a floating-point number. For
standard IEEE single and double precision, this would be 24 and 53, respectively.

4. All-Reduce Parallel Linear Least Squares Solvers – ARPLS

In this section, we discuss a parallelisation strategy for an LLS solver based on SNE or NE and IR (as
summarised in Section 3). All communication of the resulting algorithms is contained in all-reduce operations
of the participating processes, and we therefore call our algorithms all-reduce parallel least squares (ARPLS )
solver. These algorithms comprise three main components: (i) a parallel QR factorisation or a parallel matrix
multiplication, (ii) a parallel matrix-vector multiplication followed by one (without SNE or NE) or two (with
SNE or NE) local triangular solves to compute the solution to the LS problem, and (iii) IR to stabilise and
improve the solution computed in the previous step (this will only be applied to algorithms based on SNE
or NE), also requiring a parallel matrix-vector multiplication.
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4.1. Parallel QR Factorisation

The first component required by most variants of the ARPLS algorithm is a parallel QR factorisation.
In this paper, we will consider two parallel methods, a variation of the distributed modified Gram-Schmidt
orthogonalisation (dmGS) [29] and the Tall Skinny QR (TSQR) [4].

4.1.1. All-reduce Modified Gram-Schmidt

A distributed modified Gram-Schmidt orthogonalisation (dmGS) was presented in [29] using a gossip-
based reduction algorithm. The parallel variant, the all-reduce modified Gram-Schmidt (armGS) algorithm,
is outlined in Algorithm 1. armGS assumes that the matrix A is distributed row-wise across the processes.
The part of A available locally at process u is therefore denoted by A(u). armGS returns the factor Q
distributed row-wise (the same distribution as A) and the upper-triangular factor R which is fully available
on every process. The armGS algorithm only differs from sequential mGS in the parallel computation of
two sums using two reduction operations. The first one, arsum in line 3, is a reduction of the local sums to
compute the 2-norm of column j and the second one is a parallel matrix-vector multiplication argemv of the
transpose of column j of Q with A. argemv first computes the product using the locally available factors and
then forms the sum of the local results using a parallel reduction operation. No additional communication
is necessary and the rest of the computations are performed locally.

Algorithm 1 All-reduce Modified Gram-Schmidt (armGS)

Input: A ∈ Rn×m with n > m distributed row-wise over N processes
Output: Q ∈ Rn×m distributed row-wise over N processes, R ∈ Rm×m on every process

1: in each process u do
2: for each column j = 1..m do

3: v ← arsum(〈A(u)>(:, j), A(u)(:, j)〉)
4: R(j, j)←

√
v . norm of column j

5: Q(u)(:, j)← A(u)(:, j)/R(j, j)

6: R(j, j + 1 : m)← argemv(Q(u)>(:, j), A(u)(:, j + 1 : m))
7: A(u)(:, j + 1 : m)← A(u)(:, j + 1 : m) +Q(u)(:, j)R>(j, j + 1 : m) . rank-1 update on A(u)

8: end for

For the SNE, the factor Q is not required. The Q-less mGS approach (denoted as armGSR in the
following) therefore only returns the full factor R of the QR factorisation and discards the computed columns
of Q. This reduces the memory requirements compared to the armGS algorithm by n(m−1) scalars as only
one vector of Q of length n is needed for the computation.

Both methods can be further improved in terms of communication cost by postponing the scaling of the
column of A by the diagonal element of R after the computation of the second parallel summation in line 6.
The first summation of a scalar in line 3 can be combined with the second parallel reduction operation by
appending a single value to the vector. This reduces the communication cost from 2m − 1 to m messages
and eliminates the overhead caused by the communication of a scalar value. In the following, we will refer
to this method as armGSR-Opt.

4.1.2. Tall Skinny QR (TSQR)

The parallel Tall Skinny QR (TSQR) method [4] is aimed at narrow matrices with n � m which are
distributed row-wise over all processes. As mentioned before, in the context of semi-normal equations, only
the factor R is required. Therefore we only outline the algorithm for this case and do not consider the
computation of Q. However, the Q factor is implicitly represented by the intermediate parts of Q computed
along the reduction path and can be reconstructed if needed.

TSQR first computes a local QR factorisation of the locally available rows and then performs a reduction
operation of the local R factors (denoted by R(u) at process u) to compute the full R factor of A. For example,
if the input matrix A is split into two block-rows A(0) and A(1), the local triangular factors R(u) would be
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R(0) = qr(A(0)) and R(1) = qr(A(1)). Performing a QR factorisation of the local factors R(u) stacked on top
of one another leads to the R factor of the entire matrix A:

R = qr

(
R(0)

R(1)

)

For more than two processes, this approach can be applied recursively to all R(u) to compute the QR
factorisation in parallel along a reduction tree. The method is associative and can also be made commutative
by ensuring that the diagonal of each computed R factor only contains positive entries and is therefore unique
(provided A is non-singular). This can be achieved by multiplying the rows of R having a negative diagonal
element with −1. The algorithm is outlined in Algorithm 2.

Algorithm 2 Tall Skinny QR (TSQR)

Input: A ∈ Rn×m with n� m distributed row-wise over N processes
Output: R ∈ Rm×m on every process

1: in each process u do
2: R(u) ← qr(A(u)) . local QR factorisation
3: R← all-reduce(R(u))

TSQR, like armGS, can be implemented using only all-reduce operations, which also replicates the final
R factor over all processes. In MPI, the collective operations can be used directly with a user-defined
reduction operation, benefiting from the reduction trees available in the MPI implementations, which are
usually optimised for the targeted architecture.

TSQR has been shown to be communication optimal [30], only requiring O(logN) messages for the
reduction operation of R. However, even though the algorithm is communication optimal, in each step of
the reduction tree, a QR factorisation has to be computed, which can have a significant performance impact
(depending on m). The number of flops is O(m3 log(N)) along the critical path [31]. The performance can
be improved by exploiting the triangular structure of the stacked matrices and using a custom local QR
factorisation. In [30], the recursive approach of Elmroth and Gustavson [32] has been used to achieve a
reduction of the number of flops by a factor of 5 compared to a standard QR factorisation with 10

3 m
3 flops.

4.2. Parallel LLS Solver

One of the standard methods for solving the LLS problem (1) is the use of the QR factorisation to solve
the system Rx = Q>b. The ARPLS-QR algorithm (shown in Algorithm 3) computes the QR factorisation
of A in parallel, either using armGS or TSQR, followed by a parallel matrix-vector multiplication argemv of

Q(u)> and b(u) in line 3 in Algorithm 3. The final step in ARPLS-QR is the local back substitution using
the locally available factor R and the result z of argemv. Each process then holds the solution x.

Algorithm 3 All-Reduce Parallel Least Squares Solver based on QR Factorisation (ARPLS-QR)

Input: A ∈ Rn×m with n > m, b ∈ Rn, both distributed row-wise over N processes
Output: x ∈ Rm on every process

1: in each process u do
2: [Q(u), R]← qr(A(u)) . parallel QR factorisation (armGS or TSQR)

3: z ← argemv(Q(u)>, b(u))
4: x← solve Rx = z . local linear system solve

For ARPLS-SNE (see Algorithm 4), whose mathematical basis has been reviewed in Section 3, the process
is identical in terms of communication. The Q-less mGS method, armGSR, requires the same amount of
computation and communication as armGS, but only returns the factor R. argemv is used to compute
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A(u)>b(u) in parallel, with A(u)> having the same row-wise distribution as Q(u)> in ARPLS-QR. Finally,
the system is solved using a forward and back substitution using R and R>.

Algorithm 4 ARPLS based on Semi-Normal Equations (ARPLS-SNE)

Input: A ∈ Rn×m with n > m, b ∈ Rn, both distributed row-wise over N processes
Output: x ∈ Rm on every process

1: in each process u do
2: R← qr(A(u)) . parallel QR factorisation (armGSR or TSQR)

3: z ← argemv(A(u)>, b(u))
4: x← solve R>Rx = z . local linear system solve

As described in Section 3.1, an alternative to solving the LLS problem using the QR factorisation is the
computation of the normal equations (NE). ARPLS-NE (shown in Algorithm 5) first computes C = A>A
in parallel, which only requires a single reduction operation to compute the sum of O(m2) local values.
Therefore, this approach is as communication optimal as TSQR, only requiring O(logN) messages for the
reduction operation of C but performing a much simpler operation than TSQR along the critical path.
The following Cholesky factorisation of C is performed locally. The subsequent steps are the same as in

ARPLS-SNE. argemv is used to compute A(u)>b(u) in parallel and the system is solved using a local forward
and back substitution using the local factor L.

Algorithm 5 ARPLS based on Normal Equations and Cholesky Factorisation (ARPLS-NE)

Input: A ∈ Rn×m with n > m, b ∈ Rn, both distributed row-wise over N processes
Output: x ∈ Rm on every process

1: in each process u do

2: C ← arsum(A(u)> ·A(u)) . parallel computation of the normal equations
3: L← cholesky(C) . local Cholesky factorisation

4: z ← argemv(A(u)>, b(u))
5: x← solve LL>x = z . local linear system solve

4.3. Iterative Refinement

We denote our ARPLS solvers using IR as ARPLS-IR and ARPLS-MPIR (see Algorithm 6). They
first compute an initial solution by using ARPLS-SNE or ARPLS-NE and then improve the solution by

IR. They compute the residual locally (line 5 in Algorithm 6) and then in parallel apply A(u)> using
argemv. Subsequently, a correction term ∆x is computed by solving the system using the already computed
factor R. Finally, the approximate solution is updated by the correction term. The process continues until
a convergence criterion is met.

ARPLS-IR uses the same precision throughout the process (pα = pβ). The mixed precision approach
ARPLS-MPIR computes the initial solution completely in the lower working precision pβ . Computing the

residual and applying A(u)> to r (lines 5 and 6 in Algorithm 6) have to be computed in pα. The correction
term is computed in the lower precision using the factor R or L, which is only available in pβ . The final
step, updating the solution, is again performed in the higher target precision pα. The majority of the
computations, i. e. the factorisation or forming the normal equations, and of the communication are both
performed in the lower working precision, leading to improved performance for the local computations and
smaller message sizes during the communication.
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Algorithm 6 Mixed Precision ARPLS-IR (ARPLS-MPIR)

Input: A ∈ Rn×m with n > m, b ∈ Rn, both distributed row-wise over N processes
Output: x ∈ Rm on every process

1: in each process u do
2: [R, x]← ARPLS-SNE(A(u), b(u)) or [L, x]← ARPLS-NE(A(u), b(u)) . parallel and local, pβ
3: i = 0
4: while i < maxiter do
5: r ← b(u) −A(u)x . local, pα

6: s← argemv(A(u)>, r) . pα
7: if ‖s‖ < tolerance then
8: break → converged
9: end if

10: ∆x← solve R>R∆x = s (ARPLS-SNE) or solve LL>∆x = s (ARPLS-NE) . local, pβ
11: x← x+ ∆x . local, pα
12: i = i+ 1
13: end while

4.4. Combining Iterative Refinement with Other LLS Solvers

One could consider the use of iterative refinement (IR or MPIR) with other LLS solvers. Using the
QR factorisation to solve the initial LLS system with the factor Q does not make any difference in the
amount of communication compared to SNE and NE. All these approaches require a parallel matrix-vector

product for forming z = Q(u)>b(u) (line 3 in Algorithm 3) or z = A(u)>b(u) (line 3 in Algorithm 4 and
line 4 in Algorithm 5). The local linear system solve is more expensive for ARPLS-IR since it requires
a backward and forward substitution instead of only one backward substitution in ARPLS-QR. However,
those operations are only of order m2 and therefore have a very low impact on the overall computation
time, which is dominated by the QR factorisation or by forming the normal equations, both being of order
O(nm2).

The main advantage of using SNE or NE appears in the iterative refinement. To compute s = A>(b −
Ax) = A>r (line 6 in Algorithm 6), a parallel matrix-vector operation is needed in each iteration of IR. This
parallel computation is required by all variants of the LLS solver but at different steps of the algorithm. For
SNE or NE, s is required to compute the correction term and at the same time provides the accuracy of the
current result to determine if the method has already converged. Not using SNE or NE, this step is only
required to check for convergence after the computation of the correction term. To solve the system for ∆x,
ARPLS-QR would multiply r by Q>, which would incur an additional parallel matrix-vector operation. This
step is not required by the SNE or NE approach in ARPLS-IR because all information needed to solve the
system (the R factor from the QR factorisation or the L factor from the Cholesky factorisation) is already
available locally and no further communication is necessary. Combining Algorithm 3 with IR would also
require more memory for storing Q ∈ Rn×m than SNE or NE with IR.

Another disadvantage arises when mixed precision IR is being considered for ARPLS-QR (Algorithm 3).
When applying Q> to r, the factor Q has to be available in the higher target precision pα. However, to
exploit the potential performance benefits of MPIR, the initial QR factorisation has to be computed in the
lower working precision pβ . In this case, the factor Q is not available in pα and without the SNE or NE,
MPIR will not be able to improve the result beyond the lower precision pβ .

Overall, we can conclude that combining SNE or NE with IR leads to the best results in terms of
communication and computation compared to other dense LLS solvers.

4.5. Extensions of ARPLS-IR and ARPLS-MPIR

All communication in our ARPLS solvers is concentrated on reduction operations. Through the use
of fault tolerant reduction operations, the algorithms have the potential to become fault tolerant against
silent communication failures, such as message loss. Fault tolerant reduction operations include gossip-based,
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randomised algorithms like push-flow [33], which limit their communication to the immediate neighbourhood
of a computing node. This approach is well suited for extreme scale systems and loosely coupled systems
(e. g., wireless sensor networks).

In order for parallel iterative refinement to work, it is important that all nodes use the same x to compute
the residual in the first step of each IR iteration (line 5 in Algorithm 6). In the case of MPI Allreduce, this
is already guaranteed by the MPI standard which requires all processes to receive identical results [34]. For
other types of reduction algorithms, for example, gossip-based algorithms, which compute the sum iteratively
and therefore produce different approximations of the sum at each node, it is necessary to ensure that each
node u has the same approximation xu, at least to the accuracy targeted for the solution. Otherwise the
computation of the correction term ∆x will fail. This can either be achieved by averaging the approximate
solution vectors over all nodes, accurate to the targeted accuracy, or by selecting one node to distribute its
result to all other nodes in the network. For ARPLS-MPIR, if xu has to be averaged over all nodes, this
operation has to be computed in the higher target precision pα = DP .

5. Analysis of Communication Cost

In this section, we first analyse the communication cost for the different variants of the ARPLS method
(see Table 1) and then compare the costs to a parallel LLS solver based on CAQR. Denoting N as the number
of processes, a single reduction operation requires about 2 logN messages [35]. For reasons of simplicity, we
assume that the number of messages is independent of the size of the data being reduced.

armGS or armGSR can be used by the ARPLS variants having to compute a QR factorisation. Both

methods require 2m−1 sum reduction operations and send the same amount of data m(m+1)−2
2 +2m = O(m2)

per process. In armGSR-Opt the number of reduction operations is further reduced to m, as described in
Section 4.1.1. We will append OGSR to the name of the methods using this optimisation. Solving the LLS
problem requires one additional reduction operation for the matrix-vector product, resulting in a total of
2m reduction operations for armGS and armGSR or m+ 1 reduction operations for armGSR-Opt.

The TSQR method is communication optimal, as shown in [4], requiring only one reduction operation
and therefore being of order O(logN). It has to be noted, that the reduction operation is not a simple
summation, but a more complex and computationally intensive task of a QR factorisation of two R(u)

factors at every step of the reduction. Depending on the width of the matrix m, this can have a significant
impact on the performance of the algorithm compared to simple sum reduction operations. TSQR reduces
the amount of communication by increasing the number of flops by an additional O(m3 log(N)) along the
critical path [31]. In terms of amount of data, each process sends an upper triangular matrix of size m×m
per process, leading to m(m+ 1)/2 values.

Forming the normal equations in parallel is also communication optimal, again only requiring one re-
duction operation and therefore also being of order O(logN). However, in contrast to TSQR, the reduc-
tion operation is much simpler and only has to compute the sum of symmetric matrices. Therefore only
m(m+ 1)/2 elements have to be sent per process.

Adding iterative refinement slightly increases the communication cost due to the additional sum reduction
operation for each iteration in line 6 of Algorithm 6. Compared to an armGS QR factorisation, this increase is
negligible, since the number of iterations k is very small for well-conditioned matrices (usually, 2-3 iterations
suffice). Each reduction operation sums vectors of length m. MPIR requires the same number of reduction
operations as IR, but sends less data and therefore smaller messages for the bulk of the communication
performed in the QR factorisation or in the computation of the normal equations because of its use of single
precision. This halves the amount of data sent per process in all parallel QR factorisation methods and in
the summation of the local symmetric matrices to compute the NE.

The main part of the communication cost originates in the parallel QR factorisation, especially if the
modified Gram-Schmidt method is used. The TSQR method, which is only intended for tall and skinny
matrices, has been shown to be optimal with 2 logN messages [4]. Therefore, the communication cost of the
communication-avoiding QR (CAQR) algorithm, which has been shown to be optimal up to polylogarithmic
factors, is a reasonable lower bound for the communication cost of a general parallel LLS solver. CAQR
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Table 1: Theoretical communication cost per process for the different ARPLS methods. m denotes the number of columns in
A and k the number of iterations required by iterative refinement.

ARPLS method Factorisation Number of reduction Total amount of data
operations sent per process

QR (GS) armGS 2m m(m+1)−2
2 + 2m

SNE (GSR) armGSR 2m m(m+1)−2
2 + 2m

SNE-IR (GSR) armGSR 2m+ k m(m+1)−2
2 +m(2 + k)

SNE-MPIR (GSR) armGSR 2m+ k m(m+1)−2
4 +m(1 + k)

SNE (OGSR) armGSR-Opt m+ 1 m(m+1)−2
2 +m

SNE-IR (OGSR) armGSR-Opt m+ 1 + k m(m+1)−2
2 +m(1 + k)

SNE-MPIR (OGSR) armGSR-Opt m+ 1 + k m(m+1)−2
4 +m( 1

2 + k)

SNE (TSQR) TSQR 2 m(m+1)
2 +m

SNE-IR (TSQR) TSQR 2 + k m(m+1)
2 +m(1 + k)

SNE-MPIR (TSQR) TSQR 2 + k m(m+1)
4 +m( 1

2 + k)

NE Cholesky 2 m(m+1)
2 +m

NE-IR Cholesky 2 + k m(m+1)
2 +m(1 + k)

NE-MPIR Cholesky 2 + k m(m+1)
4 +m( 1

2 + k)

sends

msgCAQR(n,m,N) =
1

4

√
mN

n
log2 nN

m
log

(
N

√
nN

m

)
(5)

messages and

dataCAQR(n,m,N) =

√
nm3

N
logN − 1

4

√
m5

nN
log

mN

n
(6)

data per process. For the special case of almost square matrices n ≈ m, this simplifies to

msgCAQR(n, n,N) = O
(√

N log3N
)

and dataCAQR(n, n,N) = O

(
1√
N

log(N)

)

Comparing this to the number of messages required by the parallel mGS QR factorisation

msgarmGS(n, n,N) = O (n logN)

reveals that armGS requires a factor n/
(√

N log2(N)
)

messages more than CAQR. Considering the amount

of data, armGS requires
dataarmGS(n, n,N) = O(n2 logN)

which is
√
N more than the communication optimal CAQR method.

The communication cost of CAQR in (5) and (6) assumes that n andm are sufficiently large in comparison
with the block size. For the case n � m, CAQR is reduced to performing TSQR on a single panel and
therefore only requires 2 logN messages. For armGS, the number of messages depends on m and for
the optimised version of armGSR requires m reduction operations, which results in 2m logN messages.
Compared to TSQR, armGSR sends m − 1 more messages. The amount of data sent per message is lower
for armGSR, which only sends vectors with a length of up to m scalars per reduction operation. TSQR has
to send a triangular matrix which has m(m+ 1)/2 values. However, the total amount of data sent by both
methods is identical.

The communication cost is not the only factor that has to be considered. A low number of messages will
not guarantee a low runtime, especially if the computation during the reduction operation costs more than
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Figure 1: Parallel execution of armGS (top) and TSQR (bottom) on the same time scale for a wider matrix with n = 16384
and m = 2048. The green blocks represent the computation time, whereas the red blocks show the communication time.

the communication itself. The modified Gram-Schmidt orthogonalisation armGSR requires 2nm2

N flops to
compute the QR factorisation. During this operation, m reductions are executed computing a sum of up to
m elements, an operation costing m logN flops, resulting in the total computation costs for the reduction

of O(m2 logN). The TSQR algorithm also requires 2nm2

N flops to compute the initial QR factorisation of
the locally available data. The reduction operation then computes QR factorisations at every reduction
step, leading to a computation cost of O(m3 logN). The computation costs of this reduction is one order
of magnitude higher than the total computation costs for the reduction in armGSR. CAQR uses TSQR

for the panel factorisations in CAQR. Therefore, CAQR also computes a local QR factorisation with 2nm2

N
flops and additionally uses O(m3 logN) operations to compute the solution of the QR factorisation, again
a factor m more operations than armGSR.

An analysis of the communication and computation costs is given in Figure 1, which shows a trace
of armGS and TSQR using the VampirTrace library [36]. The green fields represent computational tasks
and the red fields display the MPI communication. To illustrate the effect, a wider matrix A was used
with n = 16384 and m = 2048. Both methods are displayed on the same time scale and in this example
armGS is about 30% faster. Naturally, for wide matrices one would apply TSQR to panels of A (using
CAQR) and achieve a much better performance. Furthermore, TSQR also has the advantage of exploiting
the performance of level 3 BLAS operations, whereas armGS is limited to level 2 BLAS. However, this toy
example is intended to demonstrate the influence of the synchronisation on the communication time. TSQR
only requires a single MPI Allreduce, but during this operation most processes are idle, waiting for the
MPI call to complete before they can continue with the next panel or with the solution of the LLS problem.
With every merge of two processes to compute the QR factorisation of a stacked matrix, fewer processes are
involved in the computation. At the end, only a single process is computing the final result, which is then
distributed to all other processes.

6. Experiments

In this section, we present performance results for the ARPLS solvers and compare them to state-of-the-
art parallel dense LLS solvers.

6.1. Experimental Setup

All experiments were run on the Vienna Scientific Cluster VSC-21 consisting of 1314 nodes. Each node
holds two AMD Opteron 6132HE processors with eight cores each and has 32 GB of main memory. The
nodes are connected through Infiniband QDR using a fat tree topology.

1http://vsc.ac.at/systems/vsc-2/
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The ARPLS variants only use the MPI Allreduce subroutine to perform the parallel summations,
which are the only operations which are computed in parallel. For DPLASMA [7] (version 1.2.1), ScaLA-
PACK [5] and the ARPLS variants the MPI library achieving the best performance on the VSC-2 was
chosen. DPLASMA achieved the highest performance using OpenMPI, whereas the best performance
of MPI Allreduce and therefore of ARPLS was achieved with MVAPICH2 or Intel MPI. In our setup,
the MPI Allreduce subroutine in OpenMPI was on average 100 times slower than the one in the other
MPI libraries available on the cluster. As ARPLS strongly depends on an efficient implementation of
MPI Allreduce, MVAPICH2 was used for the ARPLS algorithms and OpenMPI for DPLASMA. ScaLA-
PACK performed best using MVAPICH2.

We compare the performance of our approaches with the routine pdgels from ScaLAPACK and with the
routine dplasma dgels from DPLASMA, since these two routines represent the state-of-the-art in available
high performance implementations of parallel dense LLS solvers. DPLASMA is executed using one process
per node, with each node on the VSC-2 having 16 cores available. DPLASMA provides many different
parameters to tune its routines for high performance, including various block sizes (tile, supertile and inner
blocking), parameters for defining the process grid and the type and size of the high and low-level reduction
trees. The high-level trees are specific to the reduction between nodes and the low-level trees take care of
the reduction within the nodes. Four types of reduction trees are currently implemented for both levels:
a flat tree, a binomial tree, a Fibonacci tree and a greedy tree, which is also the default tree used by
DPLASMA. We tested various tile sizes for the different problem sizes and selected the ones delivering the
best performance on our test machine. All variants of the reduction trees were also tested using various
tree sizes, but a performance increase compared to the default greedy tree was only observed for a single
problem size (about 20% performance increase for n = 222,m = 16). In all other cases, any combination of
the possible parameters described above had none or a negative effect on the performance. In the following,
for DPLASMA we always report the best performance results achieved over many different parameter
combinations.

6.2. Generating Test Matrices

For the experiments, due to the dependence of the NE and mixed precision on the conditioning of the
input matrices, we require test matrices with specific condition numbers κ to analyse the accuracy of the
algorithms. We consider the condition number with respect to the 2-norm, κ(A) = σmax/σmin, where σi are
singular values of A. In this section we describe our procedure for generating our test matrices.

The idea of our approach is to modify the singular values of A to receive the desired condition number for
the matrix. The algorithm for generating the test matrices is shown in Algorithm 7. The method requires a
matrix A and the targeted condition number ϑ as its input and returns a modified matrix Â where κ(Â) = ϑ.
First, a singular value decomposition (SVD) of A is computed on line 1, where Σ holds the singular values
σi which are sorted in descending order. Depending on the requested ϑ, the singular values have to be
modified. We distinguish between the following different cases:

1. The simplest case is ϑ = 1, which can only be reached by setting all singular values to 1 (lines 3-4).

2. If κ(A) > ϑ, a pair of singular values is sought for which satisfy σi/σm−i ≤ ϑ, where i ∈ [1,m/2] (lines
6-10).

(a) If no pair of singular values matches this criterion, then we fall back to the simplest case of setting
all singular values to 1 (lines 11-12). The first singular value σ1 will then be set to the desired
condition number ϑ in line 19.

(b) Otherwise, the singular values larger than σi are set to σi and the ones smaller than σm−i are set
to σm−i (lines 13-15).

3. In the case κ(A) ≤ ϑ, no specific changes are necessary before the scaling in line 19.

In all cases, the first singular value is then set to the last singular valued scaled by ϑ (line 19). Finally, the
new matrix Â is computed using the factors U and V from the SVD and the modified singular values stored
in Σ (line 20), leading to κ(Â) = ϑ.
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Algorithm 7 Generating test matrices with prescribed condition number κ

Input: A ∈ Rn×m where n > m, targeted condition number ϑ
Output: Â ∈ Rn×m where κ(Â) = ϑ

1: U,Σ, V ← svd(A) . Singular value decomposition of A where ∀i : σi ≥ σi+1

2: κ(A) = σ1/σm
3: if ϑ == 1 then
4: σi = 1 ∀i ∈ [1,m] . Set all singular values (sv) to 1
5: else
6: if κ(A) > ϑ then
7: i = 1
8: while i ≤ m/2 and σi/σm−i > ϑ do . Find a pair of sv with ratio ≤ ϑ
9: i = i+ 1

10: end while
11: if i > m/2 then . No pair of sv found with ratio ≤ ϑ
12: σi = 1 ∀i ∈ [1,m]
13: else . Pair of sv found with ratio ≤ ϑ
14: σj = σi ∀j ∈ [1, i− 1]
15: σj = σm−i ∀j ∈ [m− i+ 1,m]
16: end if
17: end if
18: end if
19: σ1 = ϑσm
20: Â← UΣV >
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Figure 2: Comparison of the achieved accuracy ρ of all ARPLS methods and LAPACK dgels for n = 1024,m = 64 and
different condition numbers κ. The prefix “ARPLS” is omitted from the legend.

6.3. Numerical Accuracy

The accuracy of the result is determined by considering the relative residual

ρ =

∥∥A>r
∥∥
F

‖A‖F ‖x‖F
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Figure 2 shows the accuracy achieved by the different methods for a set of tall and skinny test matrices
generated according to Algorithm 7 with n = 1024, m = 64 and varying condition numbers κ(A). Starting
with Figure 2, we omit the prefix “ARPLS” from the legend. The LAPACK subroutine dgels, which uses
a QR factorisation to solve the LLS problem, is also included. ARPLS-QR and ARPLS-SNE result in the
same accuracy, showing that the SNE method has no adverse effect on the numerical accuracy of the result.
dgels achieves the same accuracy as ARPLS-SNE (TSQR), which is just slightly better than ARPLS-QR
(GS) and ARPLS-SNE (OGSR). In general, TSQR achieves the same or slightly better results than armGS.
Up until κ = 109, ARPLS-NE also achieves the same accuracy as ARPLS-QR (GS) and ARPLS-SNE. For
κ > 109, ARPLS-NE can no longer compute an acceptable result due to the loss of accuracy when forming
the normal equations.

Using IR improves the accuracy in almost all cases and reaches relative residuals which can be almost
two orders of magnitude lower compared to the methods without IR. The only exception is ARPLS-NE-IR,
which only benefits from IR up until κ = 108. For worse conditioned matrices (κ > 108), ARPLS-NE-IR
returns residuals close to ARPLS-NE up until κ = 109 and then fails to compute a correct result.

The improvement of the MPIR variants is limited by the accuracy of the working precision pβ = SP. If
the QR factorisation computed in pβ does not contain any correct digits then MPIR is not able to improve
the result. However, for mildly ill-conditioned systems up until κ ≈ 106, ARPLS-SNE-MPIR achieves the
same accuracy as ARPLS-SNE-IR. As shown in (4), the number of iterations k increases with κ to reach
the displayed accuracies. For κ ≤ 102 all MPIR variants normally converged after only 2 iterations and
for κ ≈ 105 ARPLS-SNE-MPIR needed 8 iterations. However, due to the low additional computational
complexity of O(m2) per iteration, the performance of the algorithms is not significantly influenced by
the number of iterations. For example, for ARPLS-SNE-MPIR (OGSR) with n = 222 and m = 256, an
iteration on average only made up 0.005% of the total execution time. Even multiple iterations could be
performed at very low cost. When the limiting condition number κ = 223 ≈ 8.4 · 106 is reached, the number
of iterations grows very fast. As discussed in Section 3.4, the relation pβ/k denotes the number of digits
(in bit) which can be improved per iteration. If k > pβ , the result can no longer be corrected because the
improvement per iteration would be less than a bit. In the case of ARPLS-NE-MPIR, forming the normal
equations squares the condition number of A and therefore the MPIR method already ceases to achieve an
accurate result after κ ≈ 103, roughly the square root of the condition number ARPLS-SNE-MPIR is able
to handle. Nevertheless, for mildly ill-conditioned systems ARPLS-SNE-MPIR achieves the same accuracy
as the double precision IR solvers and additionally benefits from the performance gain due to the use of the
lower working precision.

6.4. Runtime Performance and Discussion

In this section, we will consider two different test cases: well-conditioned and ill-conditioned matrices. In
the former case, we are interested in the performance benefits achieved through the use of mixed precision in
the ARPLS-MPIR variants. In the second test case the performance of the ARPLS-IR solvers is investigated
for LLS problems with κ(A) = 1010. As seen in Figure 2, all ARPLS-NE and ARPLS-MPIR variants are
no longer able to achieve an acceptable accuracy for such ill-conditioned systems and are therefore excluded
from these experiments.

Our experiments have shown that the execution times of the ARPLS methods using armGS and armGSR-
Opt to compute the QR factorisation are almost always the same for thin matrices. The optimised version
achieves more significant speed-ups for wider matrices due to fewer large messages being sent during the
reduction operations. Over all our experiments, ARPLS-SNE-MPIR (OGSR) was faster in 73% of the cases.
If we account for fluctuations in the measurements and also integrate almost negligible slow-downs at or
above 0.97, then ARPLS-SNE-MPIR (OGSR) was faster in over 87% of the cases. We therefore only show
results for the methods using armGSR-Opt.

6.4.1. Well-conditioned LLS Problems

In the following experiments, A and b are initialised with random values between -1 and 1. The IR and
MPIR based algorithms are terminated after reaching ρ ≤ 10−15 which takes place after 2-3 iterations due
to the matrices being well-conditioned when generated this way.
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Figure 3: Speed-up achieved due to mixed precision iterative refinement for n = 222,m = 256, well-conditioned

ARPLS-SNE using TSQR to compute the QR factorisation benefits from the usage of mixed precision
iterative refinement in ARPLS-SNE-MPIR, as shown in Figure 3a. As expected, ARPLS-SNE-IR is slightly
slower than ARPLS-SNE due to the additional computations of order O(n2) required by IR. ARPLS-SNE-
MPIR always outperforms ARPLS-SNE and for n = 222 and m = 256 achieves speed-ups between 1.3 and
2.3. However, for wider matrices (larger m) the execution time of TSQR increases significantly due to the
computation of a QR factorisation at every step of the reduction. Therefore, figures for wide matrices will
not include results for any ARPLS methods using TSQR. Focusing only on the communication time, as
shown in Figure 3b for the same experiments as in Figure 3a, ARPLS-SNE-MPIR also benefits from the
mixed precision approach and achieves speed-ups between 1.5 and 2.1 for N ≥ 128 due to the data being
sent in the lower working precision (SP).

Figure 4 shows the speed-up achieved by different ARPLS algorithms and ScaLAPACK over DPLASMA
for very tall and skinny matrices with n = 222 and m = {16, 256} for different numbers of cores along the
x-axis. For very thin matrices with m = 16, ARPLS-SNE-MPIR (OGSR) achieves a speed-up of 2802 and
ARPLS-SNE-MPIR (TSQR) of 4477 for the maximum number of cores. For m = 256, the speed-ups grow
up to 75 for ARPLS-SNE-MPIR (OGSR) and up to 183 ARPLS-SNE-MPIR (TSQR) on 2048 cores. The
ARPLS-NE methods outperform the other methods for these well-conditioned matrices, being up to 3.4
times faster than ARPLS-SNE-MPIR (TSQR). For the smaller problem size with m = 16, ARPLS-NE-IR
and ARPLS-NE-MPIR are slower than ARPLS-NE because the communication dominates their execution
time. ARPLS-NE only requires a single all-reduce operation to compute the normal equations, whereas
the corresponding IR and MPIR methods additionally require 2-3 iterations to improve the result and have
to perform an all-reduce operation in each of those iterations. However, for m = 256 ARPLS-NE-MPIR
benefits from the use of single precision and achieves the same speed-up as ARPLS-NE (up to 1204 for 2048
cores). ARPLS-NE-IR and ARPLS-NE-MPIR achieve a higher accuracy than ARPLS-NE for these well-
conditioned matrices (as seen in Figure 2), but for m = 256 ARPLS-NE-MPIR is faster than the standard
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Figure 4: Speed-up over DPLASMA for tall and skinny matrices (n = 222, large n/m, well-conditioned)

IR method and requires the same runtime as ARPLS-NE. The benefit of ARPLS-NE-MPIR continues to
increase with growing m and outperforms ARPLS-NE.

6.4.2. Ill-conditioned LLS Problems

The following experiments use worse conditioned matrices by initialising A and b with random values
between -1 and 1 and then modifying A to have κ = 1010 by computing the SVD and scaling the singu-
lar values appropriately (as explained in Section 6.2). These experiments were terminated after reaching
ρ ≤ 10−8, which occurred after 3 iterations of standard precision IR. Since these matrices were not well-
conditioned, the ARPLS-NE and ARPLS-SNE-MPIR variants could not be used anymore. We therefore
focus our attention on the ARPLS-SNE-IR methods.

In Figure 5 the speed-ups achieved with ARPLS-SNE-IR (OGSR) and ARPLS-SNE-IR (TSQR) over
DPLASMA are shown for very tall and skinny matrices with n = 222 and m = {16, 256} for different
numbers of cores along the x-axis. For m = 256 the speed-up grows steadily reaching 42 for 2048 cores for
ARPLS-SNE-IR (OGSR) and 120 for ARPLS-SNE-IR (TSQR). For even thinner matrices with m = 16, the
speed-up reaches 3468 for ARPLS-SNE-IR (OGSR) and 3820 for ARPLS-SNE-IR (TSQR) for the maximum
number of cores tested on the cluster. ScaLAPACK also achieves speed-ups compared to DPLASMA (up
to 143 times faster for m = 16) but is generally much slower than both ARPLS-SNE-IR variants (up to 26
times for 2048 cores and m = 16).

As also stated in [9], PLASMA or PLASMA-like tiled QR algorithms are more efficient for wide matrices
(large m) and are the most efficient for square matrices (n = m). These algorithms exploit parallelism to
achieve good cache usage and do not perform well on very tall and skinny matrices.

Figures 6 and 7 show the scaling behaviour of the various algorithms with n (for fixed m). For thin
matrices with m = 256, ARPLS-SNE-IR (OGSR) again displays faster execution times than DPLASMA, for
all n being about 5, 12 and 50 times faster for 64, 256 and 1024 cores, respectively. ARPLS-SNE-IR (TSQR)
is slower than ARPLS-SNE-IR (OGSR) for smaller n and but does perform better than ARPLS-SNE-IR
(OGSR) for n ≥ 216. ScaLAPACK is in general slower than DPLASMA and always slower than ARPLS-
SNE-IR (OGSR). Analysing the results for wider matrices, as shown for m = 4096 in Figure 7, DPLASMA
is faster than ARPLS-SNE-IR (OGSR) for 64 cores, but again, due to DPLASMA not scaling further than
256 cores for the tested problem sizes, ARPLS-SNE-IR (OGSR) can achieve a higher performance for 1024
cores most of the time. ScaLAPACK is slower than DPLASMA on 64 cores but performs between 1.3 and
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Figure 5: Speed-up over DPLASMA for tall and skinny matrices (n = 222, large n/m, κ = 1010)
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Figure 6: Scaling behaviour for m = 256 and growing n (κ = 1010)

2.4 times better on 1024 cores. Compared to ARPLS-SNE-IR (OGSR), ScaLAPACK is faster on 64 and
1024 cores for these wider matrices.

Figure 8 shows the performance of the tested algorithms for varying number of columns m. With
increasing m, DPLASMA comes closer to and also overtakes ARPLS-SNE-IR (OGSR). However, for small
values of m ARPLS-SNE-IR (OGSR) performs significantly better than DPLASMA and also exploits the
available computing cores more efficiently for skinny matrices. ARPLS-SNE-IR (OGSR) is also faster than
ScaLAPACK up until m = 2048 on 1024 cores. Considering wider matrices (large m), ARPLS-SNE-IR
(OGSR) is in general slower, but with increasing number of cores catches up with and even overtakes
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Figure 8: Scaling behaviour for n = 65536 and growing m (κ = 1010)

DPLASMA. ARPLS-SNE-IR (OGSR) profits from the increased number of cores and scales well, reaching
a speed-up of up to 1.6 over DPLASMA for n = 65536 and m = 2048 on N ≥ 512 cores, as can be seen in
Figure 8 for N = 1024.

6.5. Communication Cost Analysis

In Figure 9, the execution time is shown for the different parts of the ARPLS-SNE-MPIR (OGSR)
algorithm. As one can see, the iterative refinement shown as a green bar always only accounts for a very
small percentage of the computation time due to its low complexity compared to the QR factorisation. In
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Figure 9: Communication and computation time of ARPLS-SNE-MPIR (OGSR) for different numbers of cores. The matrices
are well-conditioned and therefore IR only requires 2-3 iterations to achieve the targeted double precision accuracy.

most cases, armGSR-Opt shown in red makes up for the majority of the execution time. The communication
time for both parts shown in yellow depends on the number of columns m. For very skinny matrices it is of
course lower than for wider matrices, due to the smaller message sizes. Looking at the communication cost
for 1024 cores, it seems that the communication cost suddenly increases and dominates the execution time.
However, investigating the communication time more closely and measuring every MPI Allreduce call reveals
that only very few MPI Allreduce calls exhibit an above average communication time, leading to a strong
increase of the total communication time. The longest MPI Allreduce call for n = 4194304,m = 256 took
0.0193 s, whereas the average communication time over all reduction calls is 0.0035 s. For m = n/2 on the
right side of Figure 9, this behaviour is even more significant: on average only 5 out of 8196 MPI Allreduce

calls are responsible for almost 40% of the total communication time. These calls occur randomly throughout
the algorithm and are also independent of the message size. The average communication time is 0.0022 s
with a standard deviation of 0.0326. Therefore it is fair to assume that this large discrepancy for different
MPI Allreduce calls can be accounted to the network infrastructure.

7. Conclusions

We presented the parallel linear least squares solvers ARPLS-IR and ARPLS-MPIR which are based
on semi-normal or normal equations and (mixed precision) iterative refinement. We compared two differ-
ent strategies for the parallel computation of the QR factorisation required in this context (armGS and
communication optimal TSQR). In the ARPLS solvers, all communication operations between participating
processes are contained in all-reduce operations. Consequently, the ARPLS methods directly benefit from all
improvements in such reduction operations (e. g., efficient implementation, optimised communication trees,
fault tolerance or variants with localised communication).

The theoretical comparison of the communication cost of the relevant parallel QR factorisation methods
revealed an asymptotically higher message count of armGS compared to communication optimal TSQR and
CAQR. However, numerical experiments on several thousand cores of a high performance cluster showed
competitive runtime performance. We have also shown that the use of mixed precision IR in ARPLS-MPIR
reduces both, the computation and communication costs. However, mixed precision solvers are limited
to matrices with a condition number κ(A) < 107 due to the lower working precision. The experiments
confirmed that ARPLS-IR also scales very well with the number of cores and outperforms the parallel
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dense LLS solvers in the state-of-the-art libraries DPLASMA and ScaLAPACK for several test cases. In
particular, for tall and skinny matrices ARPLS-IR exploits the available computing power efficiently and
scales very well with increasing processor count as illustrated by our experiments for up to 2048 cores on a
high performance cluster. ARPLS-IR achieves speed-ups up to 3820 on 2048 cores over the state-of-the-art
solvers from DPLASMA and up to 26 on 2048 cores over ScaLAPACK for very tall and very skinny matrices.
ARPLS-SNE-IR, which uses standard precision IR, achieves better accuracy than all other solvers and the
results for κ(A) > 108 are improved by about two magnitudes. In contrast, the normal equation-based
solver ARPLS-NE, although faster for well-conditioned problems, fails to compute a correct result for those
ill-conditioned systems due to squaring the condition number when forming the cross product.
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