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Abstract—Dynamic Instance Queuing (DIQ) is a promising
technique to optimize resource management during business
process execution. It is domain-independent, does not require
any predefined knowledge, and can be applied complementary to
other optimization strategies. It represents a compromise between
a non-optimized process execution and comprehensive business
process redesign approaches which require a lot of time, money
and knowledge. This paper reports on practical experiences
and lessons learned in applying, implementing, and deploying
a runtime-based resource optimization approach such as DIQ.
In addition to new concepts such as handling multiple resources
and several optimizations, an extensive application of the DIQ
approach in a real-world scenario from the service domain is
presented.

I. INTRODUCTION

“Organizations are undergoing major transformations –
to shift to digital business, become more customer-centric,
and keep pace with regulatory changes. Any transformation
impacts business processes, often requiring dramatic changes
to how people work. Yet over 70% of transformation initiatives
fail.” [1]. This forces companies to think about optimizing
their business process models beyond classical redesign con-
ducted typically at design time and requiring additional knowl-
edge. Instead shifting optimization to runtime is a promising
approach, as it will not be always possible to provide addi-
tional knowledge such as rules for the optimization. Hence,
flexible, domain and knowledge independent approaches are
needed. One such approach is Dynamic Instance Queuing
(DIQ) [2], [3], [4] that enables the optimization of instance
processing at critical resources at runtime without any further
knowledge. The basic idea is depicted in Fig. 1: Incoming
instances at a critical activity are first collected (step 1).
When the first resource shifts to idle state due to a lack
of instances, all waiting instances are classified into groups
(step 2). The classification is based on instance attributes.
The instance clusters are then transferred to the buffers of
the queuing system where each buffer represents one instance
cluster (step 3). The determination of a suitable resource
requires a permanent assessment of the effectiveness of the
current setting (step 4). The instances from one buffer are
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collect Collect incoming 
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classify Classifiy similar 
instances to clusters
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Figure 1. Dynamic Instance Queuing (schematic description)

finally processed in a row (step 5). The core idea is that
certain instances can be processed more efficiently if they are
handled in a certain order (the application of a processing rule)
by making use of optimizations such as reduced changeover
times, caching or gaining of routine by human resources than
randomly distributed instances.

Performance gains achieved by DIQ in terms of time have
been analyzed for different application scenarios, i.e., the
medical domain (14% decrease in changeover time) [2] and
the manufacturing domain (13% in throughput time) [3], both
when compared to FIFO. This work investigates in how far the
DIQ approach can be pushed to its limits in terms of further
performance gain. For this, several optimizations are provided
that result in the extended DIQ approach, i.e., by a) improving
the logic of DIQ based on the so called Triple Classification
Approach (TCA), b) specifying attributes that shall be adopted
for classification, c) incorporating multiple resources to de-
termine the most efficient one, and d) considering costs and
quality of service in addition to time. Optimizations a) - d)
are evaluated based on a real-world process from a Tier 1
technical support in a medium size organization.

Sect. II presents DIQ optimizations which are applied in a
real-world scenario in Sect. III. Results and the evaluation are
presented in Sect. IV. Sect. V and Sect. VI discuss future
potentials and related work resp. Sect. VII closes with a
summary.

(c) IEEE
published: https://ieeexplore.ieee.org/document/7849949/
https://doi.org/10.1109/SSCI.2016.7849949



1

2

3

unclassified set 1st classification

identify similar instances classify instances in cluster evaluate cluster order

2nd classification 3rd classification

basic DIQ

Figure 2. Triple Classification Approach (TCA)

II. DIQ EXTENSIONS AND OPTIMIZATIONS

A. Triple Classification Approach (TCA)

While basic DIQ classifies instances once per activity based
on the instances’ attributes, TCA exploits further potentials by
considering three different levels for determining an optimized
execution order of instances, i.e., (1) the identification of
similar instances, (2) their order inside the clusters and (3)
the processing order of the clusters themselves (cf. Fig. 2).

1. Identification of similar instances. In the first step, similar
instances are identified based on the instance attributes and
grouped in the same cluster [2], [3]. Let I be the set of all
instances and C be the set of all instance clusters. Then cl
denotes the surjective function that maps each i ∈ I onto a
cluster c ∈ C, i.e., cl : I 7→ C. There are two different clas-
sification techniques: The identification of similar instances
can either be based on all attributes the instances possess
(generic approach) or the attributes embraced for classification
are specified for each task in advance (specific approach). The
generic approach allows to apply DIQ without any a priori
configuration, while the specific approach enables a processing
optimized on the specific characteristics of each resource,
which allows to set the classification attributes similar to the
ones that trigger a processing rule and thus achieving a better
performance. For any application scenario, the classification
algorithm that fits the requirements best can be implemented,
e.g. decision tree approaches, the k-Means clustering method,
fuzzy means or Diana classification algorithm. Based on the
performance evaluation from the state management service (cf.
Fig. 1), the target cluster size and number can be adapted to
the specifics of the available resources (if supported by the
classification algorithm).

2. Determination of the optimum instance order inside the
clusters. A second classification is executed to identify the
instances with the highest similarity score for the same activity
[5]. These instances are placed at the start of a cluster’s
queue, as similar instances offer the potential to reduce the
processing time [2], [3]. This technique is called shortest job
first (SJN) scheduling strategy. Schrage [6] proved that the SJN

strategy minimizes the expected waiting time. It results in an
optimum waiting time for all jobs [7] since it prevents the so
called convoy effect [8]. The convoy effect is a phenomenon
occurring in different disciplines meaning that some slow
processes can slow down a whole system, leading to longer
average waiting times and lower resource utilization [9]. This
is particularly important for the application at hand, in which
processing times have quadratic impact on the waiting times
of the upcoming instances [10].

3. Optimum processing order of clusters. The instances of
one cluster are processed in a batch, however, if more clusters
than available resources exist, a processing order for the clus-
ters should be defined. At this level, it is ensured that the mean
average waiting times do not explode by considering the arrival
times of the instances within the clusters: The processing
order of clusters is evaluated based on the arithmetic mean
cumulative difference to the respective instance’s arrival times
at the resource. By doing so, a certain sequential processing of
instances at a high level is ensured, i.e., instances with a higher
waiting time at the respective node are preferred compared
to instances that arrived lately. If due times are defined,
the arithmetic mean cumulative difference to the respective
instance’s due times is used instead.

B. Multiple Resource Support

Basic DIQ only supports scenarios in which exactly one
resource is associated to one activity [2], [3]. In this paper,
DIQ is extended towards the support of multiple resources,
i.e., assigning several resources to one activity and vice
versa. An evaluation by Russel et al. [11] shows that the
support of resource patterns that offer work items to multiple
resources is still limited in contemporary workflow engines.
In our approach, offering work items to multiple resources is
especially challenging, as clusters of instances are transferred
to the resource’s work list as a batch.

The mapping is applied by an extended resource broker
which has access to all relevant performance data during
runtime. It implements the decision function to determine the
most suitable resource out of a list of available resources for



an activity. We offer a reference function that incorporates
both, the expected waiting time and the expected costs for
processing in Formula 1.

rbest := min∀r∈Ra{
∑

i∈Ir,a

(
1

α
· T (pi,r) +

1

β
· C(pi,r))} (1)

In Formula 1, the most suitable resource rbest out of the
set of resources Ra that are able to process activity a is
evaluated. This means for any resource r ∈ Ra, the instances
that are located in its waiting queue Ir,a for activity a are
considered. For any instance i ∈ Ir,a, both the expected
processing time T (pi,r) and the costs C(pi,r) are considered:
T (pi,r) is evaluated based on the processing durations of pre-
vious instances processed by resource r for the same activity.
Typically, information about the expected costs C(pi,r) for
processing instance i is known (or assumed) a priori, but a
dynamic evaluation based on the costs for processing previous
instances is an option as well.

The relative importance of the factor time and costs is
individual for any application scenario. In Formula 1, α
reflects an individual factor for the impact of the parameter
time, while β represents the impact factor for the costs. That
way, the relation between time and costs can be set; e.g.
α = 10 and β = 1 represents a setting in which time is ten
times more important than costs. Remember that α, β ≥ 1
must be fulfilled. In this decision function, lower values
represent a better performance. Different decision functions
can be implemented that fit the application scenario best.

III. CASE STUDY AND SIMULATION SETUP

We applied DIQ including TCA and multiple resource
support in a human process scenario based on a real-world
dataset1. The process describes the operation of the Tier 1 tech-
nical support in a medium size organization. The employees
of the IT service department provide basic support for users
in terms of software administration and hardware replacement.
The scope of the scenario is one day.

Fig. 3 provides the process model for the application sce-
nario: Users or their responsible local IT personnel register
certain requests in a ticket system which are then handled by
the tech support. At first, new incidents are checked by ticket
administrators for completeness of information. If important
data is missing, certain skilled employees will contact the
inquirer and complete the missing information. This poten-
tially iterative process is represented by the loop pattern in
the process model. Once the information is complete, tickets
are being classified into administrative tickets and hardware
incidents. Administrative issues are processed by software
staff, while hardware incidents involve the work of both
storage keepers to fetch the necessary items and hardware
deployers to introduce them. When the work is finished, the
corresponding ticket is being closed by a ticket administrator.

1Available at cs.univie.ac.at/project/wst-dc

Table I
OVERVIEW OF ROLES, EMPLOYEES AND TASKS

employee role salary task
Ryan Crowington ticket admin 0.7 check ticket,

close ticket
Melinda Jones ticket admin 0.7 check ticket,

close ticket
Jennifer Winston sen. service admin 0.7 ask for more

information
Rilla Sanders team Leader 1.2 classify ticket
Faron Warrick software admin 0.9 do administration

work
Mark James software admin 0.9 do administration

work
Jack Osborne storage keeper 0.6 get hardware

from stock,
deliver hardware

Jeff Bray hardware deployer 0.7 set up hardware
Christian Horner hardware deployer 0.6 set up hardware

In this scenario, support incidents represent process in-
stances. Instances possess certain attributes that represent the
characteristics of the associated support request: The name
of the editor, a subject, an individual problem description
provided by the editor, the id of the workstation (computer,
mobile device) as well as the location of the workstation are
available right at the start of the process. Further instance
attributes, such as the ticket category, administration category,
the affected hardware pieces and the location of the affected
hardware in the storage are supplemented by the employees
from the technical support within the execution of the process
depending on the individual scenario.

Employees of the Tier 1 support represent resources that
process the relevant tasks. A group of tasks is associated
to a certain role. Most tasks can be processed by different
employees. On the opposite, three members of the staff are
able to perform different activities. A list of all existing roles,
associated employees and relevant tasks is shown in Table I.

Preliminarily, the company has executed a process analysis
to gain a better understanding of the occurring tasks, their
dependencies and performance parameters. This process anal-
ysis also included the evaluation of estimated processing times
for the tasks within the process. The analysis showed that
the processing times depend on the order in which the work
(resp. process instances) is done. For example, the task ask
for more information, which is normally estimated to last 8
minutes, can be reduced to 2.5 minutes if the editor was the
same as for the previous ticket. The reason is that information
for both support incidents can be gained within one phone
call, which prevents the redundant execution of subtasks such
as searching the phone number of the editor, dialing or
contacting an agent if the editor is not available. Two or more
consecutive tickets from the same editor typically occur if
local IT personnel reports incidents for the employees who
then initialize several incidents as a batch, i.e. one ticket for
each affected employee. Equivalent potentials were identified
for other tasks: The software administration performs faster
if tickets concerning the same software are processed in a
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Figure 3. Tier 1 technical support process (produced using Signavio R©)

Table II
OPTIMIZATION POTENTIALS FOR CERTAIN TASKS

task pt ptopt relevant attributes
ask for more information 8 2.5 editor, ticket id
do administration work 15 12 administration category
get hardware from stock 7 6 hardware location, hardware
deliver hardware 16 9 location of workstation

batch as the administration tool for the software application
needs to be initialized only once and the delivery time of new
hardware can be reduced if the location of the editor is the
same (loss of redundant distance). All these potentials share
the fact that they occur if a resource processes instances with
certain attributes in a row (the triggering of a processing rule).
Reordering instances means reordering tickets in the work lists
from the employees. The applicable activities as well as the
relevant attributes are marked in the process model (Fig. 3)
and illustrated in Table II, where pt represents the expected
processing time for regular processing and ptopt the time if a
similar instance according to the described attributes has been
processed before. The processing time of the remaining tasks
check ticket, classify ticket, set up hardware and close ticket
does not depend on the processing order.

By introducing DIQ including the optimizations presented
in Sect. II as well as by optimizing organizational processes,
the following targets shall be achieved:

• Time: Reduction of the overall throughput time for the
processing of support incidents in the Tier 1 tech Support.
Time savings can be achieved primarily through comput-
ing an ideal order of work items in terms of reducing the
processing time at critical activities.

• Costs: Reduction of the resource costs. Tasks shall be
assigned to the tech support employees with the best
relation of salary and estimated processing time (tech
support is provided by external service providers).

• Quality of service: Avoidance of redundant calls as part
of the ask for more information activity; reduction of mul-
tiple disturbance for users during hardware replacements.

The application of extended DIQ to the process scenario
set out in this section was implemented and simulated based
on lightweight application logic that strongly orients on the
generic architecture of workflow engines described by [12],
extended for the logic that is required for extended DIQ. This
DIQ prototype consists of several components [3] including
workflow engine, rule provider, resource broker, state manage-
ment service and a classifier. At first, the engine processes an
inbound queue containing completed work items. A work item
is completed if the processing of the corresponding instance
in its previous node of the process model has been finished.
The rule provider evaluates the next activity of the instance
based on the underlying process model. The resource broker
then offers processing capacity for the evaluated activity.
Based on information from the state management service, the
resource broker ensures that the most efficient resource for
the respective task is returned. In the last step, the instance is
transferred to the work list of the resource, where the triple
classification by the classifier takes place to determine an ideal
work item order. Ultimately the work item will be processed
by the resource associated to the corresponding work list.
This architecture shows that DIQ is an extension (basically
consisting of the classifier and the state management service)
that can be easily added to existing workflow engines.

Three parameters are needed to execute the simulation
of a process in a workflow engine, i.e., a) an instance log
containing a list of all instances including trigger times and
initial instance attributes; b) the process model holding the
definition of all activities and their dependencies. The work-
flow engine used for this scenario expects a process model
in BPMN-2 notation (BPMN XML 2.0); and c) the resource
definition including costs and expected processing times. In
the DIQ context, the resource definition contains information
about instance attributes relevant for classification (specific
approach, cf. Sect. II-A) as well.

For the scenario depicted in Fig. 3, the processing times
have been derived from an existing analysis the company
has executed before. We applied the simulation twice, once
based on the extended DIQ approach (simeDIQ) as described
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in Sect. II and once based on the FIFO processing logic
(simFIFO), which represents the gold standard (cf. Sect.
IV). For simFIFO, instances are not reordered within the
work lists of the resources. This means the first in first out
(FIFO) processing strategy is applied, based on which process
instances are processed in the same order as they arrived at
the node of the process model. For simeDIQ the triple classi-
fication (TCA) was applied employing the k-Means algorithm
for classification (setting: expected instance-cluster ratio: 3,
minimum/maximum number: 2/5 clusters per classifications
with a number of 50 iterations). A reduced processing time
occurs if a resource processes two instances in a row that
trigger a processing rule as described in Table II. This can
happen in both cases, i.e., if similar instances are placed in a
row by chance or if the classification results in an alignment
(DIQ). Hence, simFIFO and simeDIQ are fully comparable.

IV. RESULTS AND EVALUATION

To understand the simulation results in detail, in the follow-
ing, the process model provided in Fig. 3 will be discussed
along its subprocesses indicated by dotted lines. The subpro-
cesses can be detected based on the corresponding process
structure tree [13], represented by Fig. 4. The analysis focuses
on Subprocesses 3.1, 3.2 and 1 which contain DIQ-relevant
activities (cf. Table II).

In detail, Subprocess 1 represents the initial loop, including
the activities check ticket and ask for more information. Sub-
process 3 represents the exclusive choice, which splits in the
first branch (to which we refer as Subprocess 3.1) containing
the single-task do administration work and Subprocess 3.2
including the sequence of get hardware, deliver hardware and
set up hardware.

The analysis starts with Subprocess 3.1 representing a
single-task. Activity do administration work is executed by
74 workflow instances, i.e., 62% of all support tickets are
of category administration. The task is processed by two
employees. The first one handled 42 and the second one 32
support tickets. In Sect. III, we described that the estimated
processing time for this activity is 12 instead of 15 minutes,
if the previous ticket for the same resource had the same
administration category. For simeDIQ, the reduced processing
time, i.e., 12 minutes occurred 24 times. For simFIFO, a
reduction to 12 occurred for 28 cases. This does not constitute
a significant difference. The reason is that do administration

work is not a critical activity – the two resources are not
utilized for the whole time. In fact, a classification was
enrolled only for 5 cases where more than one instance for
the activity was in the resources’ work lists. A low number of
items to classify is a drawback as potentials from an optimized
work order cannot substantially take effect [3].

Subprocess 3.2 represents a sequence of activities get hard-
ware from stock, deliver hardware, and set up hardware, of
which the first and second offer the potential for reduced
processing times when certain instances with similar attributes
are processed in a row. These attributes differ between the two
activities. This circumstance is beneficial, as DIQ evaluates a
separate optimized processing order for any of the two activi-
ties to adapt on the resources’ specifications best: The average
processing time for one instance for get hardware from stock
is 17 seconds lower when making use of the DIQ optimization
compared to the simulation run with DIQ disabled, for deliver
hardware, the difference is even 112 seconds. For Subprocess
3.2, the total processing time over all instances is 34 hours
(h) 19 minutes (m) for simeDIQ compared to 35h 28m for
simFIFO, i.e., a reduction of 3.4%. The reduction of the
processing time has quadratic effect on the waiting times of
the upcoming instances [10]. This is reflected in the results
of the simulation, where DIQ reduces the overall throughput
time by 19.7%. The reason for the reduction in simeDIQ is the
identification rate of similar instances: For get hardware from
stock and deliver hardware, simeDIQ identified 36 similar
instances, while simFIFO aligned 11 similar instances in a
row. The theoretic probability for a processing rule to apply
(compared to the number of work items processed) based on
a random distribution of work items is 16.4%. The actual
percentage of processing rules that applied for simFIFO was
12.2% and for simeDIQ 40.0%. simFIFO processed instances
based on an initial order that we consider similar to a random
distribution. In fact, the computed percentage (12.2%) differs
only 4.2 points from the one theoretically evaluated (16.4%),
i.e. the assumption that the processing logic without reordering
of work items is random in terms of the instance order is valid
for this scenario.

For Subprocess 1, ask for more information holds a pro-
cessing rule: If tickets with the same editor are processed in
a row, the processing of the second and sequential tickets
takes less time. Ask for more information is executed 128
times for 77 different instances. The characteristic of loop
patterns is the fact that positive (or negative) implications
multiply with the number of executions [4]. Another effect
occurs: As instances pass activities multiple times, not only
the set of work items for the classification increases, but also
the number of work items that are associated to the same
instance attribute that triggers the processing rule (editor).
For this reason, the classification is expected to work more
efficient. The results of the simulation acknowledge this fact.
For simeDIQ, the classification algorithm identifies 39 similar
instances, while for simFIFO, only 5 instances are processed
in a row. simeDIQ reduces the average throughput time by
over 57 minutes resp. 35%.



Table III
RESULTS OF THE SIMULATION

Category target simFIFO simeDIQ

Time Avg. processing
time / inst.

41m 31s 39m 28s

Time Avg. throughput
time / inst.

3h 59m 32s 3h 03m 34s

Costs Utilization of
cheaper resource

29.7% 56.2%

Costs Due to busy time 4942.1 units 4698.1 units
QoS Disturbance of

users
reduced 5 times reduced 39 times

Cost reduction potentials arise from both, the allocation of
work to resources with a good performance-cost relation and
from reduced busy times. For the deployment of hardware,
two employees are available; Jeff Bray has a higher salary,
but a lower expected processing time, while Christian Horner
has the opposite characteristics. This makes set up hardware
a typical operations research problem. For this scenario, one
of the targets was to explicitly allocate work to resources with
low costs. In fact, for simeDIQ, Christian Horner was busy
56.2% of his working time (simFIFO: 29.7%), while Jeff
Bray was occupied 66.0% (simFIFO: 70.1%). Moreover, cost
reductions arise from the coherence of processing times and
expense. If one evaluates costs on a costs per busy time unit
method (which is appropriate for external service providers),
savings arise equivalent to the reduced processing times of-
fered by the DIQ approach. This means for Subprocess 3.1,
simeDIQ increased costs by 1.2%, while costs for Subprocess
3.2 decreased by 4.5% and costs for subprocess 1 decreased
by 3.5%.

Quality of service is a highly individual target that differs
between application scenarios. In this scenario, quality of
service is considered a smooth running process of processing
support tickets in a way that the users are only little affected
by its execution. The tasks ask for more information is of
special interest, as users often feel disturbed by phone calls
from the service department. This disturbance can be reduced
if questions concerning tickets from the same editor are
combined. All in all, the 119 support tickets were created
by 22 different editors. In 39 cases, simeDIQ identified that
tickets are written by the same person and the task should be
executed as a batch, i.e. user disturbance was minimized 39
times. For simFIFO, this happened only 5 times.

Evaluation of eDIQ over FIFO processing strategy:
We consider simFIFO the reference processing strategy for
processing workflow instances, as it computes items in the
same order as they arrived at the resource (FIFO). This
technique is very common, thus representing a gold standard
to evaluate simeDIQ against. All simulation results are sum-
marized in Tab. III: The expected probability for a processing
rule for simFIFO (1.66%) was clearly increased by simeDIQ

(12.0%), resulting in the application of 99 processing rules.
For simFIFO, only 44 processing rules applied (5.35%).
The temporal impact of simeDIQ on the average processing

time per instance was a reduction by 2m 3s (5.2%). For the
average throughout times, simeDIQ took 3h 3m 34s, while
for simFIFO, the average throughput time per instance was
3h 59m 32s which represents a reduction of 23.4%. For 39
instances, the processing at the last activity of the process
model was finished earlier for simFIFO, while 5 instances
were finished at the same time for both settings. In contrast, 79
instances were finished faster when applying simeDIQ. This
result is robust: Introducing a confidence level of one minute,
i.e. counting only those instances that were at minimum one
minute faster applying simeDIQ, this value drops only by one
to 78 instances. Even with a confidence level of three minutes,
70 out of the 119 process instances are finished earlier for
simeDIQ.

These time reductions also affect the costs, if they are
evaluated based on busy times on employees. Further on,
simeDIQ also realized the allocation of work to resources with
lower costs. By doing so, the utilization rate of the cheaper
resource increased by 26.5 points. Finally, the quality of
service could at least be improved concerning the disturbance
of users by phone calls asking for additional ticket information.
simeDIQ decreased the number of duplicate calls 39 times.
Overall, for the scenario at hand, simeDIQ offers a better
performance concerning time, costs and quality of service
compared to a non-optimized approach.

Evaluation of TCA: In order to assess the effects of
the optimizations and extensions offered in Sect. II, i.e., the
triple classification and the handling of multiple resources,
a third simulation was conducted that “strips off” extension
and optimization from simeDIQ resulting in the application
of basic DIQ (simDIQ) as initially proposed and applied in
[2], [3]. We analyzed the concrete effect by executing the
simulation in a third setting with only basic DIQ applied
(cf. Sect. II). Basic DIQ classifies instances only once (based
on the instance attributes), while TCA optimizes the instance
order within the cluster and the cluster order themselves.

Figure 5, left side shows the average throughput times
for simFIFO (3h 59m 32s) and simeDIQ (3h 03m 24s).
The application of basic DIQ simDIQ results in an average
throughput time of 3h 17m 22s which is better than simFIFO

but worse than the extended DIQ simeDIQ. Furthermore,
simeDIQ decreases the global throughput time from 16h
56m 06s for simDIQ to 15h 32m 30s, i.e., TCA causes an
optimization by 9.0% for this scenario. The global throughput
time represents the duration from the processing start of the
first instance until the processing end of the last instance
throughout the whole process execution. Other time param-
eters demonstrate the positive impact of TCA as well: The
average processing time for simeDIQ is 2.1% faster than for
simDIQ; the average cumulated throughput time is optimized
by even 7.5% (cf. Fig. 5). For simeDIQ, the overall costs are
decreased by 8.9%. For ask for more information, simDIQ

groups incidents from the same editor 23 times (out of 128
in total) which reduces the disturbance of users (Fig. 5). The
advanced classification for simeDIQ, in contrast, identified 39
similar instances, which enables a higher degree of QoS.
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The results show that TCA is a vital extension to basic
DIQ which enables optimizations concerning times and costs.
Although basic DIQ is a reasonable way to increase the
workflow execution and was successfully implemented in
certain scenarios ([2], [3]), it is strongly recommended to apply
the new TCA extension for future applications.

Evaluation of Multiple Resource Support: There are
four activities that can be processed by different employees:
Check ticket, close ticket, do administration work and set up
hardware. Some resources can perform different activities as
well (cf. Table I). This requires an extension of DIQ to deal
with multiple resources as presented in Sect. II-B

In the application scenario at hand, we applied the decision
function as described in Sect. II-B to determine the most
suitable resource. For the simulation, time and costs are
equally weighted by α = β = 1. Especially for the activity
set up hardware, this means that a compromise between the
expected processing time and the costs needs to be evaluated:
Jeff Bray (24 min / 0.7 costs per time unit) has a better
expected average processing time, while the working costs of
Christian Horner (28 min / 0.6 costs per time unit) are lower.
As costs and time are weighted equally (α=β), Jeff Bray offers
a better overall performance. The decision function therefore
assigns 73% of all tasks to Jeff Bray.

Contrary, for the two ticket admins both assigned to check
ticket and close ticket, the expected processing times and
costs are equal. The decision function evaluates a balanced
distribution, where 56% of the instances are assigned to
Ryan Crowington and the remaining 44% of instances to
Melinda Jones. DIQ’s resource broker obviously recognizes
the different resources’ characteristics and offers a mapping
based on a function that balances the performance parameters.

Evaluation of DIQ in other scenarios: Previous versions
of the DIQ technique have been applied in various application
scenarios. A case study from the medical domain covered the
printing management of specialized medical images [2]. In this
one-activity scenario, the image processing printers represent a
critical resource, which results in the arising of waiting queues.
By reordering the instances (i.e. print jobs), changeover times
declined by 14%, and costs could be reduced by 7%.

In a further scenario from the industrial domain, sequences

of activities were optimized [3]. This case study covered the
process of a retailer with a production line for construction
materials. The process included six activities, which is espe-
cially beneficial to DIQ (cf. Sect. V): The throughput time
was reduced by 13%; considering the processing end at the
last activity of the process model, the instances from the
DIQ run were processed in a total 9h 38m 38s faster than
using the FIFO processing logic. In this scenario, DIQ was
also evaluated against the theoretical, near-optimum scheduled
process execution (which requires a posteriori knowledge, i.e.
it can only computed after the process execution). DIQ turned
out to be only 7% worse concerning throughput time than
this optimum schedule. Although the early versions of DIQ
implemented in these two scenarios were not that advanced
as the eDIQ algorithm described in this work, these scenarios
show that the principle of reordering process instances is a
valid mean for optimizing the execution of business processes.

V. DISCUSSION

DIQ is an approach to optimize the processing strategy of
workflows during runtime. It can be applied either in addition
to conventional optimization strategies or instead of them
in order to achieve a certain degree of improvement with
little effort. In the following, we will analyze the potentials
of the DIQ approach: We will discuss (1) the context in
which the application of DIQ is particularly beneficiary, (2)
the requirements the applications scenarios must fulfill, (3)
beneficial parameters, and (4) the expected performance of
DIQ.

Context: A business process implemented within a PAIS
might include automated activities, human interaction, or a
combination of both. One of the following situations might
exist: (a) There is a lack of time or money to conduct a
comprehensive process analysis and redesign as described by
state-of-the-art optimization approaches (cf. Sect. VI), (b) the
process is too complex to evaluate a proper processing logic
or there is a lack of knowledge to do so, (c) the process
execution is too dynamic in terms of quantity of instances
or resource behavior to foresee an ideal processing strategy
or (d) optimizations shall be achieved on very short notice.
These factors often occur conjointly in complex service or
manufacturing scenarios with a high degree of collaborative
human involvement.

Requirements: The process instances are distinguishable
based on their attributes, e.g. instance id, and strict sequential
processing in terms of a first-in-first-out processing order is
not a requirement. Further on, at least for one resource of the
workflow, the processing performance depends on the instance
order, i.e., at least one processing rule exists. This is the case
for a lot of scenarios, e.g. through gaining routine by humans
or reduced changeover times at machines.

Parameters: Certain parameters improve the result of DIQ:
The occurrence of critical activities is an asset. We refer
to an activity as being critical if due to restricted resources
assigned to the activity, a significant number of process
instances cannot be processed momentarily after arrival at the



resource associated to the activity continuously throughout the
workflow execution [2]. The latter constraint acknowledges the
fact that waiting queues might occur as a result of temporary
inhomogeneous instance trigger times. Such sporadic events
do not constitute a sufficient requirement for a critical activity
on their own. A critical activity is characterized by a contin-
uous imbalanced ratio of processing ability and instances to
be processed. Concerning the process model, a large number
of sequences with several orchestrated activities are a plus,
while the occurrence of parallelizations is negative to the
performance of DIQ. Finally, a large number of resources
with associated processing rules are a plus. Concerning the
process instances, the characteristics of the instance attributes
are important to the quality of the classification. Numeric
attributes are an asset, as classification techniques are mature
for numbers. Non-numeric attributes are harder to handle,
as semantic clustering techniques are difficult to apply and
quality of outcome is ambivalent.

Potentials: DIQ will most probably offer a better perfor-
mance than a non-optimized processing approach - in any
case, the expected performance is not worse than a typical
first-in-first-out processing strategy [2]. However, DIQ will
not accomplish performance gains in an extent as provided
by optimization techniques that are tailored on the specific
application scenario. This includes business process redesign
techniques and operations research approaches (cf. Sect. VI),
which, however, both require expert knowledge and/or com-
prehensive input data. In fact, this is not the context DIQ is
made for: DIQ represents a heuristic approach that achieves
performance gains in a certain extent without or with little
a priori work necessary. DIQ might also be considered as a
first step towards a comprehensive process analysis. Flexibility
is an asset of DIQ, as the approach is independent from the
concrete application scenario and therefore covers changes in
the process or resource model.

VI. RELATED WORK

Until today, a structured and repeatable methodology that
could be generally applied to business process improvement
was not established [14]. Differences among the approaches
concern the required parameters, the goals pursued and the
scenarios they can be applied in. The optimization approach
described in this work, e.g., aims at improving the processing
strategy in a simple and lightweight way, which is ideal for
scenarios with the need for an improved processing strategy
on short notice and/or a lack of time, money or knowledge
to apply a comprehensive process redesign. Alternative opti-
mization approaches are described in the following.

Business process optimization approaches including busi-
ness process redesign and/or reengineering efforts [15], [16],
[17] promise exceptional results [14]. However, significant per-
formance improvements will require fundamental changes in
the process model [18]. Moreover, existing approaches remain
at a rather abstract level in describing redesign phases [14],
leaving the core reengineering work to the process designer’s

intuition [19]. DIQ operates automatically at runtime and
hence does not require any redesign efforts.

Expert systems offer decision-making ability based on a
reasoning and knowledge base mechanism [20]. The quality of
the defined rule system hence determines the efficiency of the
process. Expert systems are suitable especially for scenarios
in which the stakeholders incorporate a comprehensive knowl-
edge about the process and are willing to invest resources
to develop such a system. DIQ, in contrast, is designed for
process optimizations with little investment.

Scheduling and operations research approaches refer to
allocating instances on resources in an ideal temporal manner
(overview provided in e.g., [21]). Especially mixed integer lin-
ear programming (MILP) has become one of the most widely
explored methods to solve scheduling problems [14]. Formal
mathematical [22] and fuzzy approaches [23] are common
as well. Generally, there is a great diversity of application
scenarios in which scheduling approaches can be applied.
Especially in the domain of logistics, scheduling is applied
wide spread. Optimization capabilities are targeted at a spe-
cific application area and cannot be easily transferred toward
another discipline [24]. Moreover, many scheduling techniques
can only be applied for constraints and objectives defined in a
formal manner [24]. DIQ deals with the allocation of instances
on resources as well. Contrary to scheduling approaches in
which the keeping of due times is the primary target, DIQ
aims to achieve a compromise between kept due times and
global temporal parameters. Furthermore, operations research
and algorithmic approaches require an extensive amount of
data, e.g. information about due dates, resource capacities or
the instance distribution [19], while DIQ requires only litte
a priori definition (in terms of relevant instance attributes for
optimization) and no input data.

Evolutionary computing offers the potential to adapt to
the specific circumstances of the application scenario con-
stantly. While evolutionary computing has been successfully
implemented in the context of scheduling [25], application
for process optimization in general is rather limited so far
[14]. Evolutionary approaches and DIQ share the characteristic
that they are applied during runtime. In our future work, we
will introduce elements of evolutionary computing in DIQ
as well by implementing supervised learning techniques for
computing appropriate clusters of instances.

Queuing and batching approaches have been proposed
for process optimization [26] and as a strategy to prevent
delays and deadline violations [27]. For these approaches,
even if queuing and batching become effective at runtime,
the underlying rules and strategies are still static, i.e., fixed
at design time. Hence, the specifics of the current situation in
the system known by the Process-Aware Information System
are not taken into consideration. In contrast, DIQ operates at
runtime with no a priori definition needed.

VII. SUMMARY

Business process optimization provides a major competi-
tive edge. However, financial and temporal restrictions often



prevent a comprehensive process analysis and redesign that
is required for most of the common optimization approaches.
DIQ is a technique that allows ad-hoc improvements concern-
ing time, costs, quality of service and flexibility. It fills the
gap between a non-optimized process execution and processes
that are optimized by common techniques. We implemented an
extended version of the DIQ approach including a multi-level
classification (TCA) with multiple resource support in a real-
world scenario to meet short-term management targets. We
learned that the total throughput time of the process could be
reduced by 19.7% and implemented a higher standard quality
of service. Furthermore, the service costs for the relevant task
decreased by 4.5%. This could be achieved with only little a
priori investment, which makes the extended DIQ approach an
easy way to optimize the resource management during process
executions in various application domains.
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