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ABSTRACT
The domain of image processing technologies comprises many
methods and algorithms for the analysis of signals, repre-
senting data sets, as photos or videos. In this paper we
present a discussion and analysis, on the one hand, of clas-
sical image processing methods, as Fourier transformation,
and, on the other hand, of neural networks. Specifically we
focus on multi-layer and convolutional neural networks and
give guidelines how images can be analyzed effectively and
efficiently. To speed up the performance we identify vari-
ous parallel software and hardware environments and eval-
uate, how parallelism can be used to improve performance
of neural network operations. Based on our findings we de-
rive several guidelines for applying different parallelization
approaches on various sequential and parallel hardware in-
frastructure.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Image Processing, Convolutional Neural Networks, FFT, Se-
quential and Parallel Implementation

1. INTRODUCTION
In this paper we present a discussion and analysis of clas-

sical image processing methods, as Fourier transformation,
and of neural networks. Specifically we focus on multi-layer
and convolutional neural networks and show how effectively
and efficiently images can be analyzed.

Hereby we explore the features of CUDA and OpenMP on
multicore CPUs and GPUs for the parallelized simulation of
a neural network based image processing. We analyze the
application for different configurations of neural networks
and give recommendations for their effective parallel simu-
lation on both GPU and OpenMP versions.
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2. IMAGE PROCESSING METHODS

2.1 Convolution
An image can be considered as a matrix consisting of val-

ues between 0 and 255. During a convolution, we apply a
filter (also called kernel, which is a matrix too) on each pixel
of this image. In fact a matrix product to compute a con-
volution is performed. The result of this operation is a new
picture. For example, if we apply a Gaussian filter on the
picture of Lena [1] Figure 1, we get Figure 2. We see, one
goal of a convolution operation is to increase (sharpen) or
decrease (blur) the details of a picture.

Figure 1: Original Image
of Lena [1]

Figure 2: Convolution
Gaussian filter

An algorithm realizing this method needs 4 loops, two for
the picture and two for the kernel. If we have a picture with
many layers like in a RGB picture, we must add another
loop for each layer. However, in Algorithm 1, we consider
the image has only one layer.

We implemented this algorithm in C++, which can be
used with bitmap images of 8 bits or 24 bits. We per-
formed some performance test on varying image sizes which
are shown in Table 1.

Corollary 1. So it can be concluded that the processing
effort is acceptable for a small kernel, but with large pictures
and large kernels, the execution times grow dramatically.

2.2 Fourier Transformation
The Fourier transform allows to translate a function in

a certain domain to the frequency domain, in fact, we can
translate a numerical function into a frequency. The Fourier
transform is given by the following formula



Data: img, kern, imgH, imgW, kernH, kernW
Result: img-conv
while i ≤ imgH do

while j ≤ imgW do
while k ≤ kernH do

while l ≤ kernW do
x = (imgW + i - kernW / 2 + k) %
imageW;

y = (imgH + i - kernH / 2 + l) %
imageH;

res = img[x][y] * kern[k][l];

end

end
img-conv[i][j] = tmp;

end

end
Algorithm 1: Convolutional algorithm

Table 1: Execution time for classical convolution

Exp# Pict.size Bits Size kernel Time
Exp 1 512x512 8 7x7 3.89s
Exp 2 512x512 24 7x7 11.25s
Exp 3 512x512 8 49x49 29.12s
Exp 4 1024x1024 8 49x49 349.10s

F(f) : v ⇒ (F )(v) =

∫ +∞

−∞
f(t)e−i2πvtdt (1)

In this case, we have a function in the temporal domain
with the variable t and we translate this function in a fre-
quency domain with the variable v. When we use the Fourier
transformation on an image, we obtain a frequency picture.
However, we need to use a different formula to take into
consideration the two dimensions of a picture

F(u, v) =
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i=0

N−1∑
j=0

f(i, j)e−2iπ(ui
N

+ vj
N

) (2)

The Cooley-Tukey FFT algorithm algorithm became pop-
ular in 1965 [3]. One property of the FFT is to allow to be
separated. First, we cut the input data into two parts by
separating the even indices and the odd indices

Xk =
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n=0

xne
− 2iπ
N
nk (3)

After the separation we get
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If we isolate e−
2iπ
N in the second part and separate the sums,

we get
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However, with this operations we perform the FFT only on
the N

2
inputs, but with the periodicity property of the DFT,

we can simply compute the second part of the input Xk with
0 < k < N

2
by

Ek+N
2

= Ek (8)
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2

= Ok (9)

We know, the Twiddle factor can be

e−
2iπ
N

(k+N
2
) = −e−

2iπ
N (10)

And we have for 0 < k < N
2

Xk+N
2

= Ek − e−
2iπ
N Ok (11)

Based on these equations we can define Algorithm 2.

Data: x, N
if N = 1 then

return x 0
end
else

E = DFT(x, N/2);
O = DFT(x+1, N/2);
while k < N/2 - 1 do

tmp = O[k] ∗ ei∗PI/N );
x[k] = E[k] + tmp;
x[k + N/2] = E[k] - tmp;

end

end
Algorithm 2: Cooley Tukey FFT Algorithm: Spatial to
frequency domain translation

3. SEQUENTIAL IMPLEMENTATION
For the implementation in C++, we need to add some op-

erations as padding to set the image size and kernel size to
2n. To apply the FFT on a matrix, we must apply the FFT
on each line of the matrix first and secondly on each col-
umn. We used the transposition to avoid rewriting the FFT
function. After having converted the image and the kernel
in the frequency domain, we used a simple multiplication on
frequencies to perform convolution operations. Then we ap-
plied the inverse FFT operation to get the new image in the
spatial domain and create a new bitmap with these data.

The performance results obtained by the implementation
of the FFT are given in Table 2. The time to compute a con-
volution operation on small kernels and small pictures are
relatively high. Comparing these execution times to table 1,
we see that the classical convolution operation shows better
performance. However, in the case of a large picture with
large kernel the FFT shows very good performance. Com-
pare the experiment 4 of the classical convolution to exper-
iment 5 of the FFT where we gain more than one minute.
With experiments 2 and 3 or 5 and 6, we can observe that
changing the size of the kernel does not impact the execu-
tion time for the convolution operation. In fact, it is clear
that using FFT we need to scale the image and the kernel in
a same size. Also the kernel size is not important compared
to the image size for a FFT.



Corollary 2. For small images or small kernels we should
use the classical method. However, if we want to use larger
kernels, the FFT method is preferable.

Table 2: Execution Time for FFT and Convolution

Exp# Taille image Bits Taille kernel Time
Exp 1 512x512 8 7x7 21.62s
Exp 2 512x512 24 7x7 64.10s
Exp 3 512x512 24 49x49 66.39s
Exp 4 512x512 8 49x49 21.44s
Exp 5 1024x1024 8 49x49 286.72s
Exp 6 1024x1024 8 7x7 286.79s

An important concept of Convolutional Neural Networks
(CNN) is pooling, which is a form of non-linear down-sampling.

Written in C++, the convolutional neural network is a
simple update of the Multi layer backpropagation (MLP) al-
gorithm to perform convolutional operation. Two new layers
are added: a convolutional layer and a max pooling layer.
To compute the convolution operation, we use the classical
convolution. In fact for the MNIST database [2], we use a
small image and small kernel, so it is not necessary to use
FFT in this case. For the test, we applied the following
network:

Input ⇒ CL ⇒ Max ⇒ CL ⇒ Max ⇒ Cl ⇒ Max ⇒ FL
⇒ Output.

CL means Convolutional Layer, Max Max Pooling layers
and FC Fully connected layer that is used for the perceptron.
Our implementation leads to the following finding:

Corollary 3. It takes more time to use a CNN than a
MLP. By the way, the error rate is not better.

4. PARALLELIZATION APPROACHES
In the following we will analyse different parallelization

approaches for our image processing problem applying vari-
ous techniques. Based on our findings we will deduce prob-
lem specific implementation recommendations.

4.1 Parallel Convolutional Operations

4.1.1 OpenMP

Fast Fourier Transformation.
The FFT is relativelly easy to parallelize because there

are many parts of code that can be run independently. At
first, we apply parallelism to each layer of the picture (in this
example we used RGB pictures). We tried to improve perfor-
mance by modifying the FFT functions directly to perform
parallelism. To apply FFT we need to perform the following
operations:

• 1. Apply a padding to the picture to have a size of 2n.

• 2. Apply a padding of the kernel to have the same size.

• 3. Apply the FFT operation upon the kernel.

• 4. Apply the FFT operation upon the picture.

• 5. Apply a rotation on the kernel.

For parallelization we need to identify operations which are
not dependent. In fact, we can gather kernel operations
together. However, these operations must be execute in se-
quential order, so we can not apply the FFT before padding.
We decided to associate a thread with the kernel operations
and another thread with the pictures operations. The pro-
gram waits until these operations terminate to perform the
convolution operation. In order to achieve this it was neces-
sary to use the pragma functionality of OpenMP. The results
are shown in Table 3. We gain a factor 2 with this improve-

Exp# API Pict.size Bits Kernel Time
Exp 1 OpenMP 512x512 24 7x7 3.481s
Exp 2 OpenMP 512x512 24 49x49 3.563s

Table 3: Execution Time of Fast Fourier Transfor-
mation with OpenMp upon Layers and Separate
Threads for Kernel and Picture

ment. The FFT operations are executed on each line of the
matrix. However, these operations are not dependent, so we
launched a thread per line to perform the FFT operation.
We followed the same approach on the columns too. The
results are shown in Table 4. In this case we instantiate

Exp# API Pict.size Bits Kernel Time
Exp 1 OpenMP 512x512 24 7x7 4.644s
Exp 2 OpenMP 512x512 24 49x49 4.636s

Table 4: Execution Time for Fast Fourier transform
with Threads for each Line and Matrix Column

one thread for each line, so with 1024 lines we create 1024
threads, which is too much. As result, when we use paral-
lelism on a CPU, we have to limit the number of threads to
keep good performances.

Traditional Convolution.
In a first approach we used parallelism over each layer of

the picture with a pragma omp prallel for statement. In Ta-

Exp# API Pict.size Bits Kernel Time
Exp 1 No 512x512 24 7x7 0.324s
Exp 2 OpenMP 512x512 24 7x7 0m0.125s
Exp 3 No 512x512 24 49x49 15.122s
Exp 4 OpenMP 512x512 24 49x49 5.503s

Table 5: Execution Time for Traditional Convolu-
tion with OpenMP on each Layer

ble 5 we observe that the time of execution is divided by 3.
In a second try, we apply the parallelism on each line of the
picture’s matrix. However, the performance was below ex-
pectations as can be seen in Table 6. The parallel approach
showed worse results than the sequential one. This is ob-
viously clear because when we define a thread to work on
each line of the matrix, we create 512 different threads and
our multicore processor can execute only 16 threads in par-
allel. The management of threads (create and destroy) takes
a lot of time. In this special case, it is degrading the per-
formances dramatically. Thus, when we use this approach
upon a matrix, we need to limit the thread number. So we
tried again but with the option num threads(10) after the



Exp# API Pict.size Bits Kernel Time
Exp 1 No 512x512 24 7x7 0.324s
Exp 2 OpenMP 512x512 24 7x7 0m2.001s
Exp 3 OpenMP 512x512 24 49x49 3m8.437s

Table 6: Execution Time for Traditional Convolu-
tion with OpenMP on each Matrix and Columns
Lines.

pragma to limit the thread number to 10. The result are
shown in Table 7.

Exp# API Pict.size Bits Kernel Time
Exp 1 No 512x512 24 7x7 0.324s
Exp 2 OpenMP 512x512 24 7x7 0.149s
Exp 3 OpenMP 512x512 24 49x49 1m20.641s

Table 7: Execution Time for Traditional Convo-
lution with OpenMP upon a matrix with limited
amount of threads

We faced an improvement, however, the performance is
below our first parallelization optimization, where we ap-
plied the pragma on the different layers. This convolution
method is quite difficult to parallelize. However, as result
we recommend the parallelism operation for each layer that
gives good performance results.

Corollary 4. The performance improvement obtained
with OpenMP is remarkable, particularly on pictures with
multiple layers, where we associate a thread per layer. We
realized that we have to keep the numbers of thread low, be-
cause the cost for management of threads exceeds the perfor-
mance gain.

4.1.2 Pthreads
By curiosity, we investigated if Pthreads were more effi-

cient than OpenMP API, so we did the same tests using
Pthreads.

Fast Fourier Transformation.
Analogous to the test with OpenMP, we execute a thread

for each layer of the picture: The obtained results are shown
in Table 8. The execution times are cut by three as in the

Exp# API Pict.size Bits Kernel Time
Exp 1 No 512x512 24 7x7 12.876s
Exp 2 Pthread 512x512 24 7x7 4.628s
Exp 3 Pthread 512x512 24 49x49 4.629s

Table 8: Execution Time for Fast Fourier Trans-
formation and Convolution with Pthreads on each
Pictures Layer

OpenMP implementation. In a second step we apply the
same improvements separating the processing operations on
the kernel and the pictures. As shown in Table 9, the results
are very similar to the OpenMP implementation. However
with Pthreads, we had to modify a large part of the source
code. In fact, we created a structure to contain the argu-
ments and three additional functions: one to perform paral-
lel computation on the layers, one for the kernel and another
one for the picture.

Exp# API Pict.size Bits Kernel Time
Exp 1 Pthread 512x512 24 7x7 3.548s
Exp 2 Pthread 512x512 24 49x49 3.546s

Table 9: Execution Time for Fast Fourier Trans-
form and Convolution with Pthreads and Separate
Threads for Kernel and Picture

Traditional Convolution.
By applying parallelization on each layer with traditional

convolution and Pthread we obtain results shown in Ta-
ble 10. The results are too pretty similar to OpenMP. I have

Exp# API Pict.size Bits Kernel Time
Exp 1 Pthread 512x512 24 7x7 0.117s
Exp 2 Pthread 512x512 24 49x49 5.284s

Table 10: Execution Time for Traditional Convolu-
tion with Pthreads

not tested to apply the parallelism on the line and columns
directly on the matrix this time because we have already
seen that this kind of optimization has bad performance.

Corollary 5. The performances observed with Pthreads
are pretty similar to OpenMP. However, the programming
efforts to use Pthreads are high. For the Pthread implemen-
tation, we realized three different structures to get the func-
tion arguments and seven new functions to use Pthreads.
With OpenMp, we only had to add five or six pragma code
lines. Achieving the same performance, this last solution is
the best for our case of use. So we recommend for a fast de-
velopment process and/or not experienced developer to focus
on OpenMP, specifically for our problem.

4.1.3 CUDA
To conclude our tests, we use CUDA. To make a compar-

ison with the parallelization on CPU, we compile and use a
program that is available in the CUDA SDK sample folder
named ConvolutionSeparable. This program uses many op-
timizations like Separable Filter and memory coalescence to
achieve better performance. Using the same image of the
previous tests we get the results as shown in Table 11. The
results are impressive.

Exp# API Pict.size Bits Kernel Time
Exp 1 CUDA 512x512 24 7x7 0.00018s
Exp 2 CUDA 512x512 24 49x49 0.00060s

Table 11: Execution Time for Convolution with
CUDA

4.2 Parallel Neural Network Execution

4.2.1 Multilayer Perceptron Parallelization
For the multilayer perceptron we use the same source code

that was used in the first part of this report. The main dif-
ference is the use of OpenMP for parallelization and the use
of a batch learning mode. Each worker executes forward and
backward operations computing the different deltas. Only
updating of the synaptic weights is done sequentially. The
first test is done with digit 3 and 4 of the MNIST database,



a learning rate of 0.01, a momentum of 0.9 and 3 layers
of 30 neurons. As can be seen in Table 12 increasing the
number of threads the execution time is reduced. gives re-
sults as shown in Table 13. Similar to the previous tests, if
we increase the thread number, we reduce the computation
time.

Exp# OpenMP Train Error Time
Exp 1 No 5 1.35% 89.85s
Exp 2 Yes (4 threads) 5 0.80% 41.076s
Exp 3 Yes (8 threads) 5 4.01% 37.162s
Exp 4 Yes (16 threads) 5 2,35% 23.399s

Table 12: Execution Times of Multilayer Perceptron
with Parallelized Batch Training on the 3 and 4 Digit
of MNIST Dataset

Exp# OpenMP Train Error Time
Exp 1 No 1 56.34% 21m44.262s
Exp 2 Yes (4 threads) 1 27.97% 7m10.854s
Exp 3 Yes (8 threads) 1 27.34% 5m17.810s
Exp 4 Yes (16 threads) 1 31.73% 4m58.916s
Exp 5 Yes (16 threads) 5 20.46% 21m57.382s

Table 13: Execution Times of Multilayer Percep-
tron with Parallelized Batch Training on all MNIST
Dataset

4.2.2 Convolutional Neural Network Parallelization
Analog to our MLP tests we parallelize the batch training

over different threads. For digits 3 and 4 of the MNIST
database we obtain the results as shown in Table 14. We

Exp# API Train Error Time
Exp 1 OpenMP 1 15.21% 4m25.469s
Exp 2 OpenMP 2 6.72% 6m47.457s

Table 14: Execution Times of Convolutional Neural
Network witch Batch Training on digit 3 and 4 of
MNIST dataset

observe that the CNN is harder to train than the MLP.
However, there are more layers and more computation is
required.

In a second attempt we use CUDA to perform the convo-
lution operations. We realized the computation of the kernel
by using one threads for one pixel. The results are shown in
Table 15 for digit 3 and 4 of the MNIST database.

Corollary 6. Parallelization of a neural network is a
sensible task. We have to take care about the parameters
for the neural network and also how to manage the memory.
Both approaches delivered good results. Parallelism on CPU
with OpenMP for MLP delivers good results. The results for
the CNN are also good and even better than the MLP.

We analyzed the parallelization of neural networks heavily
in the past. In our former work we developed a number of
rules how to approach the parallel implementation of neural
network execution in general, independently of the specific
parallel hardware. Starting with developing very general

Exp# API Train Error Time
Exp 1 Cuda 1 6.73% 15m51.660s

Table 15: Execution Times of Convolutional Neural
Network with CUDA on digit 3 and 4 of MNIST
dataset

frameworks for neural network parallelization [6], we cov-
ered also the practical parallelization on classical supercom-
puters [7] and cluster systems [8, 5], and explored multicore
CPU and GPU systems [4].

5. CONCLUSION
In this paper we presented a study on the applicability

of convolutional neural networks for image processing and
compared its usage to classical approaches, as Fourier trans-
formation. Hereby a specific focus was laid on performance
issues of the various sequential and parallel implementations.
We derived several recommendations based on our findings
to ease and guide the implementation approach on different
sequential and parallel infrastructures.
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