
ar
X

iv
:1

60
7.

05
92

2v
1

 [
cs

.D
C

]
 2

0
Ju

l 2
01

6

A XML Based Datagrid Description Language

Rene Felder and Erich Schikuta
Institut für Informatik und Wirtschaftsinformatik, University of Vienna

Rathausstr. 19/9, A-1010 Vienna, Austria
erich.schikuta@univie.ac.at

Abstract
We present xDGDL, an approach towards a concise but

comprehensive Datagrid description language. Our frame-
work is based on the portable XML language and allows to
store syntactical and semantical information together with
arbitrary files. This information can be used to administer,
locate, search and process the stored data on the Grid. As
an application of the xDGDL approach we present ViPFS,
a novel distributed file system targeting the Grid.

Keywords:

Datagrid, XML, meta information, distributed file sys-
tems, parallel and distributed I/O

1 Introduction
Today new and stimulating data-intensive problems

in biology, physics, astronomy, space exploration, human
genom research arise, which bring new high-performance
applications with the need to store, administer and search
intelligently gigantic data set spread over globally dis-
tributed storage resources [13].

We face a similar situation as in the well-known area of
database systems [1], where data represents a model of the
reality. Information must be searched, analyzed, adminis-
tered easily and must be at hand efficiently for arbitrary
applications. Consequentially data has to be attributed
with meta information describing the specific semantics
of the information in a standardized and processable way.
This meta information allows applications to search the
stored information intelligently.

However meta information in the context of Grid com-
puting has to describe not only the logical part of the data
(semantical information) but also specific structural infor-
mation on the physical distribution of the data (syntactical
information). Thus we propose an approach for an XML
based language to act as a notational tool to describe all
this information for data stored, administered, searched
and processed on the Grid. Any information stored on the
Grid (from a conventional text file to a structured database
relation) is attributed with a sematic description expressed
by the XML notation. In the most simple case the XML
description is stored together with the file.

Only a few similar approaches exist, but these are in a
early state (e.g. [8]) or target mostly very specific applica-
tion domains (e.g. [3] [9]).

The layout of the paper is as follows. In the next section
we present xDGDL, the XML-based Data Grid Description
Language, and give several examples for the usage of the
language. Then we introduce shortly the Meta-ViPIOS
system [7], which is a client server based I/O system sup-
porting distributed applications on the Grid. Finally we
present an prove-of-concept implementation of the xDGDL
language within the ViPFS, the distributed file system
component of the ViPIOS system.

2 xDGDL - the XML Data Grid De-

scription Language

We propose the XML Data Grid Description Language
(xDGDL) which aims to provide a convenient XML frame-
work for the specification of meta information of data
stored on the Grid. xDGDL is a derivative of PARSTOR-
AGE [2], which was specifically designed as meta language
for parallel IO data.

The xDGDL descriptor consists of a logical and a phys-
ical view to the file. The logical view describes the se-
mantical information and the physical view the syntactical
information (the physical layout) of the file.

Focusing the Grid we have to specify a very general
Grid architecture hosting our framework. From our point
of view the Grid consists of an arbitrary number of collabo-
rations, which are defined by an organizational domain [6],
interconnected by WAN technology. In practice such a col-
laboration will be usually (but must not be) a coherent IT
infrastructure represented by a cluster like system, which
consists of a number of execution nodes. These nodes are
processing nodes and/or data (server) nodes. The latter
type provides data storage resources by a number of stor-
age devices (e.g. disks, tapes, etc.). It is to note that a
single data node can host an arbitrary number of devices.

2.1 The goals of xDGDL

The basic idea of the XML based approach is quite sim-
ple: Together with any ”chunk” of data a xDGDL descrip-
tion of the meta information of the data is stored, in other
words, any arbitrary number of bytes stored within our
framework is attributed with its describing information,
delivering the following properties:

1

http://arxiv.org/abs/1607.05922v1

2.1.1 Semantics of data

Applications write results to files. There are lots of appli-
cations, there are lots of formats, there are lots of files. But
what can be found in these files? Generally applications do
not write simple bytes into a file. They write integers, real
numbers, characters, records of arbitrary types etc. So the
contents of a file is not just a sequence of bytes, but it is
a sequence of typed elements. Without the knowledge of
the semantics of the applications, we have no clue about
its contents. Further the application that created it, used
its own format, a format that is known to this application
only. Today we have the urge for analyzing and processing
data found on the Grid (as in typical OLAP applications),
thus there is an undeniable need for semantic description.
Simply said, data without semantics is dead, data with se-
mantics lives. This statement leads naturally to the next
issue, persistency of data.

2.1.2 Persistency of data

Data stored without semantic information is lost (can not
be reused), because the semantics is originally only in the
program code of the application producing the data. With-
out the program the data is just a sequence of bytes with-
out meaning. With the usage of a framework like xDGDL
the data can be reused easily by any application under-
standing the meaning of the data. A practical Java-based
example is given in [2].

2.1.3 Portability

In a distributed environment parts of data can migrate
from one node/system/environment to another. On dif-
ferent hosting environments naturally the data formats
change. However when moving data from one system to
another, applications must still be able to read the data.
By the description of the format the data can be inter-
preted and can be easily transformed to any proprietary
format of the target machine [8].

2.1.4 Performance and efficiency

To enhance the bandwidth of the IO media (to fight the
famous IO bottleneck) it is the most common technique to
distributed the data among different nodes and/or devices
and perform the accesses in parallel. If the user has knowl-
edge about the available nodes or the application behavior
she can describe the distribution of the file to her needs.
This can lead to performance improvements especially if
the user is aware of node’s performance, the given network
latency, the network bandwidth to each server, etc.

2.2 The xDGDL specification
The Extensible Markup Language (XML) is the univer-

sal format for structured documents and data on the Web.
It describes a class of data objects called XML documents
and partially describes the behavior of computer programs
which process them.

XML documents are made up of storage units called
entities, which contain either parsed or unparsed data.
Parsed data is made up of characters, some of which form
character data, and some of which form markups. Markup
encodes a description of the document’s storage layout and
logical structure. XML provides a mechanism to impose
constraints on the storage layout and logical structure.

The structure of XML is fundamentally tree oriented.
Therefore a document can be modelled as an ordered, la-
belled tree, with a document vertex serving as the root
vertex and several child vertices. Without the document
vertex, an XML document may be modelled as an ordered,
labelled forest, containing only one root element, but also
containing the XML declaration, the doctype declaration,
and perhaps comments or processing instructions at the
root level.

To define the legal building blocks of an XML docu-
ment, a DTD (Document Type Definition) can be used. It
defines the document structure with a list of legal elements.

A DTD can be declared inline in your XML document,
or as an external reference.

It was a clear decision to choose XML as the basis for
our framework due to its undeniable success within the
Internet community and its acceptance as basis for be-
neath any standard movement in the Grid community (e.g.
WSDL [5]).

2.3 The xDGDL document type defini-
tion

In our framework a typical xDGDL description consists
of the following elements:

• Document Root The root of the document specifies
the version and timestamp of the file of the XML
description.

• Island Defines a logical unit with several servers
distributed worldwide. This element resembles the
collaboration of our simple Grid architecture given
above.

• Server Servers are physical machines identified by
their host name. These servers denote data nodes.

• Devices Devices are the disks holding the data on
the specific server.

• View The View element allows a specific distribution
within the device.

• Block The Block element specifies the number of
bytes to write to the specific disk.

The complete DTD of xDGDL can be found in the Ap-
pendix.

2.3.1 Document root

The root of the document is described by the element
PARSTORAGE. It has the attribute VERSION that contains
the version of the document and the attribute TIMESTAMP

that identifies the external name together with the logical
file. Both attributes are mandatory.

The root element can contain several child elements.
The PROCESSORS and the ALIGN children are optional. The
following child elements are possible:

• PROCESSORS describes the named processor arrays. A
document may contain zero or more processor array
definition, which are normally derived from the HPF
definition.

• TYPE describes the data types and variables stored in
the logical file. Types enhance the quality of stored
data. They allow to define the meaning of the infor-
mation stored. This leads to the fact that not only
the program that stored the data can use them. Ev-
ery program that understands the type information of
the data can use the stored bytes. Because of these
meta information it is also possible to migrate data
from one machine to another. There must be at least
one TYPE element in the document.

• ALIGN describes the alignments of the variables.

• ISLAND describes the physical view of the file.

Example:

<PARSTORAGE VERSION="1.0"

TIMESTAMP="testfile_twoserver">

<TYPE>

...

</TYPE>

<ISLAND NAME="pri.univie.ac.at">

...

</ISLAND>

</PARSTORAGE>

2.3.2 Island

The ISLAND describes several server interconnected to-
gether. These servers can be distributed across the Grid.
The island is identified by an island name. The ISLAND

consists of one or more servers. At least one server is
needed to write the file sequential to that server. The
number of servers are received from the number of child
present. Example:

<ISLAND NAME="pri.univie.ac.at">

<SERVER HOST="vipios.pri.univie.ac.at">

</SERVER>

</ISLAND>

2.3.3 Server

The SERVER identifies uniquely a node. It has an attribute
called HOST which mirrors the name of the server.

The SERVER element consists of one or more DEVICE el-
ements. At least one must be present for each server to
know how the file should be distributed on the several
disks. For this purpose the number of available devices
on a specific server should be known.

Example:

<SERVER HOST="vipios.pri.univie.ac.at">

<DEVICE DEVICE_ID="/dev/vda1">

</DEVICE>

</SERVER>

2.3.4 Device

Devices are the disks holding the data on the specific
server. On one SERVER there could be more than one phys-
ical device. The server can have a RAID system for exam-
ple with several disks connected onto it. The devices need
not be physical, even a mounted NFS device on another
server could be a device which could be accessed from a
processing node. Although there can be many devices on a
specific server, in most cases there will be only one device
available.

The DEVICE element consists of the attribute DEVICE ID

only, which specifies the physical device on the system. To
describe the structure of file parts to be written to disk,
a VIEW is used. If there is no VIEW defined we expect that
the file should be written sequential by the ”first” logical
server and the ”first” logical disk on this server.

Example:

<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="0" SKIP="7">

</VIEW>

</DEVICE>

2.3.5 View

The VIEW element is the link between logical, physical and
application view. It is responsible for transforming the in-
ternal structure of the data layout to application programs.

A specific distribution is expressed by a VIEW element.
The VIEW needs to correspond to the servers available. The
NOVIEW elements marks that there is no VIEW element avail-
able. If NOVIEW is the only available child, the pointer to
the access-descriptor is set to NULL and therefore the file
will be written sequentially onto the disk. At least a VIEW

or a NOVIEW element has to be present.

The VIEW consists of the SKIP HEADER attribute that de-
scribes how many header bytes are skipped at the begin-
ning of the data block and the SKIP attribute that defines
the number of bytes to be skipped viewer units.

The VIEW element consists of one or more BLOCK ele-
ments. Theoretically there can be an infinite number of
BLOCK elements, but at least one is needed. The BLOCK

itself can have another VIEW element within itself.

Example:

<VIEW SKIP_HEADER="0" SKIP="7">

<BLOCK OFFSET="0" REPEAT="3" COUNT="5" STRIDE="7">

<BYTEBLOCK/>

</BLOCK>

</VIEW>

2.3.6 Block

The BLOCK element can have two types of childs. It can
have a BYTEBLOCK element, which means, that either there
are no more VIEW elements or it can consist of VIEW ele-
ments which have one or more BLOCK elements themselves.
This leads to a recursive structure which allows arbitrary
distribution. At least one has to be present.

The BLOCK element consists of the following attributes:

• OFFSET describes how many bytes should be
skipped from the starting point of the current BLOCK.

• REPEAT describes how often the BLOCK should be
read/written.

• COUNT number of bytes to read/write at each
BLOCK operation.

• STRIDE describes the number of bytes to skip at
each BLOCK operation.

Example of a regular distributed file onto 2 servers. The
definition on server 1

<BLOCK OFFSET="0" REPEAT="3" COUNT="5" STRIDE="7">

<BYTEBLOCK/>

</BLOCK>

corresponds to the definition on server 2:

<BLOCK OFFSET="5" REPEAT="3" COUNT="7" STRIDE="5">

<BYTEBLOCK/>

</BLOCK>

2.4 xDGDL examples
The following three examples show several possibilities

that the xDGDL description provides. To depict the map-
ping between the internal structure and the xDGDL de-
scription two figures are attached to each example. The
first figure shows a graphical tree representation of the un-
derlying XML structure and the second figure the data
distributed onto different servers.

2.4.1 A regularly distributed, two-server ex-

ample

The first example introduces the structure of the xDGDL
description. It uses two servers and writes data in round
robin fashion to the local disks on each server: vip-
ios.pri.univie.ac.at and vipclus9.pri.univie.ac.at.

It is also possible to use more than one block. We would
call this an interleaved distribution. The interleaved dis-
tribution divides the file into two parts. The first part is
distributed on block one on server one and block one on
server two. The second part is distributed on block two on
server one and block two on server two.

The finer the granularity of the distribution gets, the
more complex the structure grows.1

1Beside this it is not wise to use a fine granularity for small

files as the overhead of parsing the descriptor gets to large. In

case of small files it would also lead to the situation that the

description file is probably bigger than the files to write.

<ISLAND
NAME=““>

......

<DEVICE
DEVICE_ID=““>... ...

<VIEW SKIP_HEADER=““
SKIP=““>

<PARSTORAGE>

<SERVER
HOST=““>

<DEVICE
DEVICE_ID=““>

<SERVER
HOST=““>

<SERVER
HOST=““>

<DEVICE
DEVICE_ID=““>

<NOVIEW/>

<BLOCK OFFSET=““ REPEAT=““
COUNT=““ STRIDE=““>

<BLOCK OFFSET=““ REPEAT=““
COUNT=““ STRIDE=““>

......

<VIEW SKIP_HEADER=““
SKIP=““>

<BLOCK OFFSET=““ REPEAT=““
COUNT=““ STRIDE=““>

<BLOCK OFFSET=““ REPEAT=““
COUNT=““ STRIDE=““>

...

...

... ...

...

<VIEW SKIP_HEADER=““
SKIP=““>

<TYPE>
...

Figure 1: Example of a xDGDL tree

We suppose that server one writes more data to the
disk. The factor is 5:7. (Please note it is an artificial
example of minor practical relevance!)

The xDGDL representation of the regular, two-server
example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE PARSTORAGE SYSTEM "XDGDL.dtd">

<PARSTORAGE VERSION="1.0"

TIMESTAMP="testfile_regular">

<TYPE>

<ETYPE TYPE="CHAR" LENGTH="1"/>

</TYPE>

<ISLAND NAME="island1.pri.univie.ac.at">

<SERVER HOST="vipios.pri.univie.ac.at">

<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="0" SKIP="7">

<BLOCK OFFSET="0" REPEAT="3"

COUNT="5" STRIDE="7">

<BYTEBLOCK/>

</BLOCK>

</VIEW>

</DEVICE>

</SERVER>

<SERVER HOST="vipclus9.pri.univie.ac.at">

<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="0" SKIP="0">

<BLOCK OFFSET="5" REPEAT="3"

COUNT="7" STRIDE="5">

<BYTEBLOCK/>

</BLOCK>

</VIEW>

</DEVICE>

</SERVER>

</ISLAND>

</PARSTORAGE>

A graphical view of the regular distributed, two server
example can be seen in Figure 2

2.4.2 A regular distributed, nested three-

server example

The last example handles three server. Beside the exten-
sion to three servers it is also the one that shows a nested
description. The recursion depth itself is not limited.

The nested description gives the user an unrestricted
flexibility to express any data distribution.

The xDGDL description of a regular distributed, nested
three-server distribution:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE PARSTORAGE SYSTEM "XDGDL.dtd">

<PARSTORAGE VERSION="1.0"

TIMESTAMP="regular_multilevel">

<TYPE>

<ETYPE TYPE="CHAR" LENGTH="1"/>

</TYPE>

<ISLAND NAME="island3.pri.univie.ac.at">

<SERVER HOST="vipios.pri.univie.ac.at">

<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="0" SKIP="12">

<BLOCK OFFSET="0" REPEAT="2"

COUNT="1" STRIDE="12">

<VIEW SKIP_HEADER="0" SKIP="0">

<BLOCK OFFSET="0" REPEAT="3"

COUNT="5" STRIDE="7">

<BYTEBLOCK/>

</BLOCK>

</VIEW>

</BLOCK>

</VIEW>

</DEVICE>

</SERVER>

<SERVER HOST="vipclus9.pri.univie.ac.at">

<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="0" SKIP="12">

<BLOCK OFFSET="0" REPEAT="2"

COUNT="1" STRIDE="12">

<VIEW SKIP_HEADER="0" SKIP="0">

<BLOCK OFFSET="5" REPEAT="2"

COUNT="7" STRIDE="12">

<BYTEBLOCK/>

</BLOCK>

</VIEW>

</BLOCK>

</VIEW>

</DEVICE>

</SERVER>

<SERVER HOST="vipclus10.pri.univie.ac.at">

<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="0" SKIP="0">

<BLOCK OFFSET="29" REPEAT="2"

COUNT="12" STRIDE="29">

<BYTEBLOCK/>

</BLOCK>

</VIEW>

</DEVICE>

</SERVER>

</ISLAND>

</PARSTORAGE>

A graphical view of the regular distributed, nested
three-server example can be seen in Figure 3

3 An Application of xDGDL

3.1 The ViPIOS island

ViPIOS - the Vienna Parallel Input Output System - is
an I/O system that tries to solve the well-known I/O bot-
tleneck of high-performance computing [4, 12]. ViPIOS
was originally designed as a client-server system satisfy-
ing parallel I/O needs of high performance applications.
Due to the requirements of the Datagrid initiative ViP-
IOS was extended to Meta-ViPIOS, which harnesses dis-
tributed I/O resources [7].

<SERVER HOST=
vipios.pri.univie.ac.at>

<ISLAND>

<DEVICE DEVICE_ID=/dev/
vda1>

<DEVICE DEVICE_ID=/dev/
vda1>

<VIEW SKIP_HEADER=0
SKIP=0>

<VIEW SKIP_HEADER=0
SKIP=0>

<PARSTORAGE>

<SERVER HOST=
vipclus9.pri.univie.ac.at>

<BLOCK OFFSET=0
REPEAT=3 COUNT=5

STRIDE=7>

„To be, or not to be, that is the question-wheter tis nobler in the mind “Text to write:

Divided into
following parts:

to be , or no t to be, tha t is stion -wheter tis nobler in th

5 7 5 7 5 5 7 5 7 57

the que e mind

7

<BLOCK OFFSET=0
REPEAT=3 COUNT=5

STRIDE=7>

|To be|t to |t is |stion| tis |in
th|

|, or no|be, tha|the que|-
wheter|nobler |e mind |

<TYPE>

...

Figure 2: Tree representation of a regular distributed, two-server xDGDL distribution

<SERVER HOST=
vipios.pri.univie.ac.at>

<ISLAND>

<DEVICE DEVICE_ID=
/dev/vda1>

<DEVICE DEVICE_ID=
/dev/vda1>

<VIEW SKIP_HEADER=0
SKIP=12>

<VIEW SKIP_HEADER=0
SKIP=12>

<VIEW SKIP_HEADER=0
SKIP=0>

<PARSTORAGE>

<SERVER HOST=
vipclus9.pri.univie.ac.at>

<SERVER HOST=
vipclus10.pri.univie.ac.at>

<DEVICE DEVICE_ID=
/dev/vda1>

<BLOCK OFFSET=0
REPEAT=2 COUNT=1

STRIDE=12>

<BLOCK OFFSET=0
REPEAT=2 COUNT=1

STRIDE=12>

<BLOCK OFFSET=29
REPEAT=2 COUNT=12

STRIDE=29>

<VIEW SKIP_HEADER=0
SKIP=0>

<VIEW SKIP_HEADER=0
SKIP=0>

<BLOCK OFFSET=0
REPEAT=3 COUNT=5

STRIDE=7>

<BLOCK OFFSET=5
REPEAT=2 COUNT=7

STRIDE=12>

„To be, or not to be, that is the question-wheter tis nobler in the mind to suffer “Text to write:

Divided into following parts:
to be , or no t to be, tha t is the question -whet er this nobl er in t he mi nd to suffer

5 7 5 7 5 12 5 7 5 7 5 12

|To be|t to |t is |-whet|
nobl|he mi|

|, or no|be, tha|er this|er in
t|

|the question|nd to suffer|

<TYPE>

...

Figure 3: Tree representation of a regular distributed, nested three-server xDGDL distribution

Problem
layer

File
layer

Data
layer

application
clients view

pointer

persistent
file global

pointer

ViPIOS
servers

local pointer

A
FED
CB

HG I

B
HGF
DC

KJ L
J

ONM
LK

QP R N
I

PO

E

M

A R
XWV
TS

1Z 2
4

Y
65

U

3

Q

ABCDEFGHI JMPKNQLORABCDEFGHIJKLMNOP QUY3RVZ4SW15TX26
column orderrow orderrow order column order

ABCDEFGHI

ABCDEFGHIJKLMNOP

JMPKNQLOR

QUY3RVZ4SW15TX26

Figure 4: Different point of views: The ViPIOS layers

A ViPIOS island (resembling roughly a collaboration
within our Grid architecture) can be seen as a logically in-
dependent system, residing on a defined set of processing
nodes. Conventionally this is a typical cluster system, but
it can also be an arbitrary set of world-wide distributed
machines. An island comprises an arbitrary number of
ViPIOS servers processing the I/O requests of connected
applications. To reach such an island the client needs to
know the hostname (or IP-address) of a dedicated connec-
tion server responsible for that island (for more informa-
tion see [11]).

An island provides several interfaces; beside the native
interface, an MPI-IO interface (ViMPIOS), a HPF/VFC
(Vienna Fortran Compiler) interface as well as a Unix file
access interface (ViPFS) are supported.

The system defines two modes to describe the distri-
bution of a file. By default the automatic modes allows
ViPIOS to decide how to distribute the given file among
the available servers. The user guided modus in contrast
let the user decide how to distribute the file. In this modus
a xDGDL file describes the distribution of a given file.

ViPIOS provides a data independent view of the stored
data to the application process. It is based on a three-tier
model. The three specific ViPIOS layers are the following
(see Figure 4):

• Problem layer. Defines the problem specific data
distribution among the cooperating parallel processes
(View file pointer).

• File layer. Provides a composed view of the persis-
tently stored data in the system (Global file pointer).

• Data layer. Defines the physical data distribution
among the available disks (Local file pointer).

The three tier architecture allows ViPIOS to be com-
pletely logical data independent between the problem and
the file layer as well as to be physical independent between
the file and data layer.

3.2 The ViPIOS interfaces

ViPIOS provides a range of interfaces to support a wide
variety of applications. The interfaces are supported by
interface modules to allow flexibility and extendibility. Up
to now we implemented the following modules:

• HPF/VFC - High Performance Fortran interface
based on the Vienna Fortran compiler

• ViMPIOS - a MPI-IO interface

• ViPFS - ViPIOS distributed file system

• ViPIOS proprietary interface for some specialized
modules

In the context of this paper we concentrate on the novel
ViPFS, that allows both the casual and the experienced
user to use ViPIOS in form of a distributed file system.

3.3 ViPFS

Basically ViPFS is a library which overloads the stan-
dard file calls in UNIX. This methods allows users easily
and efficiently to employ transparently services provided
by ViPIOS. Thus all Unix tools for file accesses can be
used without recompiling. The idea is to redirect the calls
with ”conventional” data files to the standard I/O library
and to redirect the calls with ViPFS data files to the ViP-
IOS system. This approach is similar to PVFS [10].

Beside the overloaded Unix interface ViPFS also pro-
vides a C-Interface, which can be linked with C-programs.
This interface provides nearly the same functionality as
the standard I/O interface.

For users it is very easy to define the meta information
for the data file in focus. A respective xDGDL file has to
be created and stored in the same directory as the data
file, which has the same name as the data file, but with
the prefix ”.vd.”2. With an open statement the ViPFS
library checks if there is a corresponding xDGDL file for
the given file. The prefixed dot is used because these files
are not visible with the common ls command. It is also
quite common to use the dot for configuration files and to
a certain extent the ”.vd.*” files can be seen as configu-
ration files. When it is parsed, its is checked against the
given data type definition (DTD). If the file is erroneous
or does not exist the respective data file will be distributed
with the standard distribution of ViPFS which is a cyclic
distribution among the available ViPIOS servers.

Copy Example

The copy command is a simple example to show the trans-
parent usage of the ViPFS file system. In this example it
is the intent to copy a data file from a convention Unix file
system to ViPFS and back.

The preconditions for using ViPFS are the following:

• Start of ViPIOS

2The prefix stands for ViPIOS description

• Configuration of the ViPIOS configuration file
(ViPIOS.conf) that was set up in the environment.
In our example we used:

MAX_APP 5 MAX_SRV_FILE 32 DATA_BUFLEN 4096

SRV_GROUP_NAME "vipios_server" SRVR_DEVICE_LIST 3

/home/felder/ViPIOS/dev1/

/home/felder/ViPIOS/dev2/

/home/felder/ViPIOS/dev3/

VIP_DIR "/home/felder/vipios"

• Setting of Unix environment variable that points to
the ViPIOS configuration file
(e.g.
VIP CONF=/home/felder/vipios/ViPIOS.conf). The
environment could be set up with the command
export.

• Setting up the LD PRELOAD environment variable. The
variable must point to the vipfsinvoke.so shared
object. In our example we set it up as follows: export
LD PRELOAD=/home/felder/vipfs/vipfsinvoke.so

After these steps the ViPFS can be used similar to an
NFS mounted device. The user uses standard Unix calls
only for writing and reading files. Internally all I/O calls
on the specified directory (VIP DIR) are passed to the
ViPFS library. Therefore all the Unix commands that use
the standard I/O calls can be used with ViPFS.

In case of the example above the user can copy a data
file simply by the commands shown in figure 3.3

As we did not overload the ls command the user can
only see a file with 0 bytes within the VIP DIR. This is
due to the fact that the file is not really copied into the
directory. For transparency to the user ViPFS generates a
0-byte file to provide the user with the information which
files are currently distributed on the system.

In the first line we print out all .vd.* files. In our ex-
ample only one distribution file is present. We used the
distribution file presented in 3. That means, that the test-
file was distributed among three servers with one device
on each server. If we did not declare a .vd. file the testfile
would have been written sequentially to the first disk on
the current server.

4 Conclusions and Future Work
We presented xDGDL, an XML language for storing

meta information for distributed files on the Grid. The
proposed XML approach acts in the system in two ways;
on one hand it provides a user interface to specify the con-
tents (semantical information) and the layout (physical in-
formation) of the file, on the other hand it is the expressive
mechanism within the system to administer the distribu-
tion information of the files stored in the file system across
several sites on the Grid. We showed a practical prove-
of-concept implementation by the ViPFS distributed file
system.

The xDGDL language is the starting point for a new
way of defining data access paths on the Grid. We work
on a research project to define Grid I/O patterns, which
allow to define I/O data streams on the Grid easily. A
stream can be seen as a graph where the vertices are mod-
ules, which are instantiated from Grid I/O patterns, and
the edges are the data streams. Data is moved along
such streams and carries along from vertex to vertex its
self-describing information based on the xDGDL language.
This allows the modules, which in fact are active I/O re-
sources (Grid fabrics), as distributed file systems, database
systems, etc., to interpret and to process the data. We
work on a method for the automatic generation of such
Grid I/O graphs based on heuristic methods [14].

Acknowledgement

The work described in this paper was partly supported
by the Special Research Program SFB F011 AURORA of
the Austrian Science Fund.

Appendix: xDGDL DTD
<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- (c) Andras Belokosztolszki-->

<!-- 2000 -->

<!-- (c) Rene Felder -->

<!-- 2001 -->

<!ELEMENT PARSTORAGE

(PROCESSORS*,TYPE+,ALIGN*,ISLAND)>

<!ATTLIST PARSTORAGE VERSION CDATA #REQUIRED>

<!ATTLIST PARSTORAGE TIMESTAMP ID #REQUIRED>

<!-- processors -->

<!ELEMENT PROCESSORS (PROC_DIMENSION)+>

<!ATTLIST PROCESSORS NAME CDATA #REQUIRED>

<!ELEMENT PROC_DIMENSION EMPTY>

<!ATTLIST PROC_DIMENSION LOWER CDATA "1">

<!ATTLIST PROC_DIMENSION UPPER CDATA #REQUIRED>

<!-- hpf data structure -->

<!-- Intrinsic Data Types -->

<!ELEMENT TYPE (ETYPE|ARRAY|TYPE)+>

<!ATTLIST TYPE TYPENAME CDATA #IMPLIED>

<!ATTLIST TYPE NAME CDATA #IMPLIED>

<!ELEMENT ETYPE EMPTY>

<!ATTLIST ETYPE TYPE CDATA #REQUIRED>

<!ATTLIST ETYPE LENGTH CDATA #REQUIRED>

<!ATTLIST ETYPE NAME CDATA #IMPLIED>

<!-- Arrays -->

<!ELEMENT ARRAY (TYPE, DIMENSION+)>

<!ATTLIST ARRAY NAME CDATA #IMPLIED>

<!ATTLIST ARRAY MAJOR (ROW|COLUMN) "ROW">

<!ATTLIST ARRAY DISTRIBUTE_ONTO CDATA #IMPLIED>

felder@vipios:~/vipfstests > ls -al .vd.*

-rw-r----- 1 felder users 1177 Oct 14 2001 .vd.testfile

felder@vipios:~/vipios > cp testfile /home/felder/vipios # copy in

felder@vipios:~/vipios > cp /home/felder/vipios/testfile . # copy out

felder@vipios:~/vipios > ls -l /home/felder/vipios

total 0

-rw-r--r-- 1 felder users 0 Oct 14 2001 testfile

Figure 5: ViPFS copy of a data file

<!ELEMENT DIMENSION EMPTY>

<!ATTLIST DIMENSION LOWER CDATA "1">

<!ATTLIST DIMENSION UPPER CDATA #REQUIRED>

<!ATTLIST DIMENSION DISTRIBUTE

(BLOCK|CYCLIC|NO) #IMPLIED>

<!ATTLIST DIMENSION DIST_SKALAR CDATA "1">

<!-- Alignment -->

<!ELEMENT ALIGN EMPTY>

<!ATTLIST ALIGN WHAT CDATA #REQUIRED>

<!ATTLIST ALIGN WITH CDATA #REQUIRED>

<!-- data distribution in this file -->

<!-- Model Island-Descriptor -->

<!ELEMENT ISLAND (SERVER*)>

<!ATTLIST ISLAND NAME CDATA #REQUIRED>

<!-- Model Server-Descriptor -->

<!ELEMENT SERVER (DEVICE*)>

<!ATTLIST SERVER HOST CDATA #REQUIRED>

<!-- Model Device-Descriptor -->

<!ELEMENT DEVICE (VIEW|NOVIEW)>

<!ATTLIST DEVICE DEVICE_ID CDATA #REQUIRED>

<!-- Model Access-Descriptor -->

<!ELEMENT VIEW (BLOCK+)>

<!ATTLIST VIEW SKIP_HEADER CDATA #REQUIRED>

<!ATTLIST VIEW SKIP CDATA #REQUIRED>

<!ELEMENT BLOCK (VIEW|BYTEBLOCK)>

<!ATTLIST BLOCK OFFSET CDATA #REQUIRED>

<!ATTLIST BLOCK REPEAT CDATA #REQUIRED>

<!ATTLIST BLOCK COUNT CDATA #REQUIRED>

<!ATTLIST BLOCK STRIDE CDATA #REQUIRED>

<!ELEMENT BYTEBLOCK EMPTY>

References
[1] S. Sudarshan Abraham Silberschatz, Henry F. Korth.

Database System Concepts. McGraw-Hill, 1996.

[2] Andras Belokosztolszki. An xml based language for
meta information in distributed file systems. Mas-
ter’s thesis, University of Vienna / ELTE University
Budapest, 2000.

[3] Nassem Bhatti, Jean-Marie Le Goff, Hassan Waseem,
Zsolt Kovacs, Richard Martin, Peter McClatchey,
Heinz Stockinger, and Ian Willers. Object serialisa-
tion and deserialisation using xml. In 10th Interna-
tional Conference on Management of Data (COMAD
2000), Pune, India, December 2000.

[4] Peter Brezany, Thomas A. Mueck, and Erich
Schikuta. A software architecture for massively par-
allel input-output, pages 85–96. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1996.

[5] Erik Christensen, Francisco Curbera, Greg Meredith,
and Sanjiva Weerawarana. Web services description
language (wsdl) 1.1. http://www.w3.org/TR/wsdl,
March 2001.

[6] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and
Steven Tuecke. The physiology of the grid. draft,
June 2002.

[7] Thomas Fuerle, Oliver Jorns, Erich Schikuta, and
Helmut Wanek. Meta-vipios: Harness distributed
i/o ressources with vipios. Iberoamerican Journal
of Research ”Computing and Systems”, Special Is-
sue on Parallel Computing, 4(2):124–142, October–
December 2000.

[8] Feitelson Dror G. and Klainer Tomer. High Perfor-
mance Mass Storage and Parallel I/O: Technologies
and Applications, chapter XML, Hyper-media, and
Fortran I/O. John Wiley and Sons, November 2001.

[9] The ncsa hdf home page. http://hdf.ncsa.uiuc.edu/.

[10] W. B. Ligon and R. B. Ross. Implementation and
performance of a parallel file system for high perfor-
mance distributed applications. In Proceedings of the
Fifth IEEE International Symposium on High Perfor-
mance Distributed Computing, pages 471–480. IEEE
Computer Society Press, August 1996.

[11] Erich Schikuta and Thomas Fuerle. Vipios islands:
Utilizing i/o resources on distributed clusters. In 15th
International Conference on Parallel and Distributed
Computing Systems, Louisville, September 2002.

[12] Erich Schikuta, Thomas Fuerle, and Helmut Wanek.
ViPIOS: The Vienna Parallel Input/Output System.
In Proc. of the Euro-Par’98, Lecture Notes in Com-
puter Science, Southampton, England, September
1998. Springer-Verlag.

[13] Ben Segal. Grid computing: The european data
project. In IEEE Nuclear Science Symposium and
Medical Imaging Conference, Lyon, October 2000.

[14] Helmut Wanek and Erich Schikuta. A blackboard
method for automatic parallel i/o performance op-
timization. In Springer, editor, Fifth Interna-
tional Conference on Parallel Computing Technology
PaCT’99, St. Petersburg, September 1999.

