Supporting Quality-Driven Architectural Design Decisions
in Software Ecosystems

Srdjan Stevanetic’, Konstantinos Plakidas?, Tudor B. Ionescu’, Daniel Schall', and Uwe Zdun?

!Siemens AG , Vienna, Austria , name.surname@siemens.com

2Software Architecture Research Group , University of Vienna, Vienna, Austria , name.surname@univie.ac.at

ABSTRACT

System quality attributes (QAs) are often considered as the
most important decision drivers. In this paper, motivated by
the decision making in a smart-city software ecosystem, we
extend our previous approach that integrates reusable archi-
tectural design decisions (ADDs) with the QAs, by integrat-
ing tactics that support quality-driven decision making. In
addition, we present an approach that enables system evolu-
tion, based on controlled and adaptable decision making and
utilizing real data obtained during system monitoring. The
approach integrates the previous approach that uses tactics
with the existing model-driven development paradigm and
the corresponding tools.

1. INTRODUCTION

Architectural design decisions (ADDs) are often consid-
ered to be the most important part in documenting soft-
ware architectures [10]. ADDs are usually driven by sev-
eral influencing factors including the system requirements,
current technical and business environment, and the archi-
tect’s experiences [1]. By the system requirements we refer
to both functional and non-functional requirements [1]. The
non-functional requirements reflect specific system QAs [1].
Implementing a specific system functionality might often in-
fluence the QAs that can further influence other QAs. For
example, implementing a solution that enables authorisa-
tion or adaptability might negatively influence performance.
Therefore, even though many ADDs concern functionalities
of the system, the QAs are often considered as the most
important decision drivers [20, 2].

Even though several approaches in the literature, such as
the Architecture Trade-off Analysis Method [2], the Cost
Benefit Analysis Method [11], and the Attribute Driven De-
sign [3], aim to support architectural design and evaluation
driven by quality goals and scenarios, the majority of ADD
methods and tools consider other aspects, such as reducing
architectural knowledge (AK) vaporization [9], reusability
of ADDs [20], and knowledge sharing decisions [6]. Methods
for enabling systematic and efficient quality-driven decision-
making process are still missing. Creating such methods is
very challenging because of different reasons: the exact eval-
uation of the QAs at the early stage of development such as
making ADDs is difficult, making ADDs often implies deal-
ing with competing requirements that must be satisfied for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW '16, November 28-December 02, 2016, Copenhagen, Denmark
(© 2016 ACM. ISBN 978-1-4503-4781-5/16/11... $15.00
DOI: http://dx.doi.org/10.1145/2993412.3003383

different stakeholders’ concerns, different stakeholders often
interpret the QAs in a different way depending on the con-
text, some QAs need to be evaluated above others, etc.

In our previous work [14], we proposed to integrate reusable
ADDs with the QAs in order to enable quality-driven deci-
sion support for recurring design problems. In this paper,
we propose to extend the previous work by integrating tac-
tics as design decisions that improve the individual QAs. In
addition, we propose an approach that supports automated
system evolution based on controlled and adaptable quality-
driven decision making process. In particular, the impacts
of the selected design solutions on the QAs are measured us-
ing real data obtained from both design-time and run-time.
The obtained measures are then fed back to the decision
making process in order to enable controlled and adaptable
quality-driven decision-making. The approach is based on
the model-driven development paradigm.

This paper is structured as follows. In Section 2, we de-
scribe the motivation for our work. In Section 3, we present
the details of our approach for quality-driven decision mak-
ing using tactics. In Section 4, we present the details of our
approach for controlled and adaptable quality-driven deci-
sion making. In Section 5, an example of a reusable archi-
tectural decision model that uses tactics is presented and,
finally, we draw conclusions and outline future work in Sec-
tion 6.

2. MOTIVATION

The approach presented in this paper is derived from the
needs of an industrial case study on a large-scale smart cities
software ecosystem. A smart city ecosystem is a huge infor-
mation system comprising of several smaller communicat-
ing components. Smart city components are integrated us-
ing service-oriented architecture that provides interoperabil-
ity among different platforms by supporting modular design
and software reuse and integration. Different services such
as healthcare, education, transportation, water supply net-
works, waste management, etc. need to be integrated with
each other. Because of the large diversity of many interact-
ing players in a smart city, many applications that need to
considered during decision making, and changes that may
appear in all constituting components, various recurring de-
sign situations need to be addressed. Therefore, in a smart
city ecosystem, the quality-driven decision making support
is of crucial importance.

3. META-MODEL EXTENSION

In our previous work [14], we proposed an approach and a
corresponding tool called CoCoADvVISE that supports archi-
tectural decision making and documentation base on reusable
ADDs. We modelled ADDs using the Questions, Options,
and Criteria approach [16]. The result of a made ADD is
captured by the established AK, such as existing software
patterns [5] or other well-documented AK, which impact on
the QAs is evaluated as positive or negative. In this pa-
per, we extend the CoCoADvVISE meta-model with tactics

to further support systematic quality-driven decision mak-
ing. The integration of tactics is pursued by systematically
studying the existing work on the interactions of tactics with
other related artefacts (i.e. software patterns, QAs, and
other relevant AK). In the text below, we refer to the exist-
ing related work and explain our approach in more detail.

Tactics are design decisions that specifically concern QAs
[2]. Each tactic aims at improving one QA but it can also
have side effects, usually negative, on other QAs. Tactics
concerning the same thing are grouped into categories which
are called design concerns. For example, the group of tac-
tics for security includes resisting attacks, detecting attacks,
and recovering from attacks. The resisting attacks category
contains the following tactics: authenticate users, autho-
rize users, maintain data confidentiality, maintain integrity,
limit exposure, and limit access. Tactics can be design-time
or run-time [2]. Design-time tactics represent overall ap-
proaches for design and implementation, such as hide infor-
mation to improve modifiability. Run-time tactics represent
approaches that refer to the specific aspects of the QAs, such
as ping-echo for improving the reliability. In this paper, we
refer to run-time tactics because design-time tactics mostly
cut across all design partitions and are implemented im-
plicitly in the code [2]. Therefore, they are not as suitable
for modelling at the architecture level as run-time tactics
which have well-defined effects with patterns (see below for
details).

The impact of tactics on architectural patterns has been
studied by several authors (see for example [7, 8]). They
have found that tactics affect patterns in different ways. In
some cases, a tactic is compatible with a pattern, meaning
that it can be easily integrated in the pattern’s structure
and has compatible behaviour. In other cases, a tactic may
require significant changes to the pattern’s structure and be-
haviour. Harrison and Avgeriou [7] have found the following
types of changes that describe how difficult is to implement
a tactic in some pattern:

¢ Implemented in: implemented within a pattern com-
ponent with minor changes

¢ Replicates: a pattern component is duplicated

e Add, in the pattern: a new component that follows
the structure of a pattern is added

e Add, out of the pattern: a new component that
does not follow the structure of a pattern is added

e Modify: the structure of several pattern components
changes to a lesser or greater extent

e Delete: a component is removed

As mentioned above, each solution for an ADD in the Co-
CoADVISE approach implies the application of the related
AK, mostly captured by software patterns but also other
kinds of AK like technology specific AK. Each solution can
have positive, negative, or neutral impact on the observed
QAs. Of course, it is often the case that chosen patterns
and other AK cannot satisfy all desired QAs, that need to
be improved using corresponding tactics.

To further support quality-driven ADDs, we propose to
integrate tactics in the previous CoCoADVISE approach. In
that sense, for each obtained ADD solution, we propose to
provide a list of tactics that are applicable in the context
of that solution and that can be used to improve the ob-
served QAs. The explanation of the impacts of the provided
tactics on observed QAs will be also provided (see an exam-
ple below). As mentioned above, that impact can be either
positive, negative, or neutral. Furthermore, for each added
tactic, we propose to add how difficult is to implement it in
the context of the obtained solution (e.g. a selected software
pattern). To do that, we adopt the five-point scale defined
in the work by Harrison and Avgeriou [7] (see above).

Figure 1 shows a new, extended CoCoADvVISE meta-model.

has p»

1 *

Decision Question
Technology
1 1.*
A
*

has first p» 1 |
triggers

*

enforces P

1
A s related to

1
Decision
Context

triggers

Technology-
related AK

Architectural
Pattern

leads tof

0.1

ap;&es on I_ _I

1 :
* | | 1
1
1

Design has impact on affects through
Guidance implementation
has impact on
*
1
has impact on p» " * Design
L Quality Concern
* Attributes
1 implements
* d alternate of
1 A has side
Design effect on * ,_ A
Pattern with respect
1
1 Tactic
*
«improves 1 1
implements p» I |
*

Figure 1: A New Reusable Architectural Decision
Meta-Model

To enable the integration of tactics in our previous ap-
proach, the interactions between them and the QAs as well
as the AK resulted from the obtained ADD solutions must
be systematically studied in order to crate a reusable model
(i.e. an instance of the given meta-model) that can be used
as input to the CoCoADVISE tool. Creating the reusable in-
put model is the most demanding task in making ADDs with
CoCoADvVISE. However, the existing approaches and tools
can facilitate it to a large degree. For example, as mentioned
above, the interactions between architectural patterns and
tactics have already been studied in the literature and they
can be used as a good basis for creating the model. Regard-
ing the interactions between tactics, QAs and other AK,
like design patterns and technology-related AK, there also
exist some work. For example, several authors investigated
the relationships between some design patterns and tactics,
and found that design patterns implement different tactics
[1, 19]. Technology-related AK such as concrete technology
solutions (e.g. frameworks) to implement the architecture
might differ with regard to several QAs [13]. Therefore,
technology-related solutions can influence some decisions by
supporting or limiting some QAs. However, beside exist-
ing knowledge, each model is related to a specific decision
context, e.g. the context of a smart-city software ecosystem.
Therefore, the relationships between the model elements (i.e.
tactics, QAs, patterns, etc.) have to be considered within
that context which may require certain changes or adap-
tations of the existing work solutions. For example, the
impacts of tactics or patterns on some QAs might differ in
different contexts because QAs are always viewed within the
specific context: given a system state and input, the output
is required to be within specific limits [2]. Please note also
that the order of integrating patterns and tactics in the fi-
nal architecture is important. For example, some tactics can
take advantage of some patterns that are compatible with
them or some already made changes (e.g. a new integrated
component) required to integrate some previous tactic (see
[7] for more details). To further facilitate and accelerate
the creation of a reusable input model for CoCoADVISE, we
proposed in our previous work an approach that enables cap-
Eur]ing and reusing acquired knowledge using a set of tools
17].

MDE automatic
transformation tools
(e.g. constraint-based
consistency checking
proposed by Lytra et

al))

Architecture Views

Architectural
Design Decisions

OO

(Tools for supporting

ADDs (e.g. the
combination of tools |
for creative decision
making proposed by

/~ MDE automatic
transformation tools
(e.g. View-based
Modelling Framework
proposed by Huy et

Pattern-Tactic-QA
Repository

SS

_ Stevaneticetal.) / g al.) J
Monitoring and a Tools for run-time Executable Code

Analysis monitoring (e.g.

- extensible modelling |«
/\/—\ framework proposed

by Becker et al.)
&)

Figure 2: Adaptable and Controllable Decision-
Making - An Overview

4. ADAPTABLE DECISION-MAKING

In this section, we present an approach that supports au-
tomated system evolution based on controlled and adaptable
quality-driven decision-making using real data obtained dur-
ing system monitoring. The approach is based on the inte-
gration of the previously explained approach for enabling
quality-driven decision making using tactics with the ex-
isting model-driven development (MDE) paradigm and the
corresponding tools. The MDE paradigm enables (semi-
Jautomatic transformation and mapping between different
application artefacts starting from architectural decisions
and designs until system implementation. Based on the feed-
back obtained from monitoring the desired QAs both during
design-time and run-time, architects can get a precise pic-
ture on how the chosen ADD solutions, i.e. patterns and
tactics, impact the desired QAs.

The development processes usually used today are highly
iterative and incremental such as the Rational Unified Pro-
cess (RUP) [12]. Following the logic in these approaches,
our approach aims at enabling continuous adaptations of the
system by adapting its ADDs with regard to the observed
QAs.

Figure 2 shows an overview of the approach. The Pattern-
Tactic-QA repository represents a wikilike repository for col-
lecting related knowledge about patterns, tactics, and QAs
together with their relationships. We have already created
one such repository described in our previous work men-
tioned above [17]. The repository currently contains records
for over 200 design patterns, over 50 tactics, and about 80
QAs. The Pattern-Tactic-QA repository is used as a knowl-
edge base for creating a reusable input model for the Co-
CoADVISE tool, that is then used for capturing and docu-
menting concrete ADD solutions. For that purpose, our pre-
viously explained approach (see Section 3) can be used, i.e.
an architect can utilize the provided impacts of the selected
ADD solutions on the desired QAs as well as the informa-
tion on how difficult is to implement selected patterns-tactics
combinations. For making ADDs the first time, the im-
pacts of selected patterns-tactics combinations on the QAs
are only coarsely assessed as positive, negative or neutral
(as explained in Section 3). When all required decisions are
made, model-driven techniques can be utilized to transform
the obtained ADD solutions into architectural views, auto-
matically and in a reusable way (for example using the ap-
proach by Lytra et al. [15]). Furthermore, high-level views
such as component and connector models can be refined and
enriched to generate lower level views such as technology
and platform-specific views. For that purpose a technique
such as View-based Modelling Framework (VbMF) proposed
by Tran et al. can be used [18]. In VbMF, based on the
view models, source code and configuration artefacts are

automatically generated for some common constructs. The
hand-written code can be added to the generated code in
order to complete the implementation. To deploy the gener-
ated source code, as usual for the service-based applications,
deployment descriptors and configuration files are created.
During the system execution, the desired QAs can be mon-
itored. Of course, we refer here to variable and dynami-
cally changing QAs that are hard to compute at design-time.
Other, static QAs can be verified at design time. Run-time
monitoring frameworks like the one proposed by Becker et
al. [4] can be used for monitoring dynamically changing
QAs. In particular, services can be run in some runtime
monitoring engine that is used for measuring the dynam-
ically changing QAs. The obtained measurements can be
analysed and then fed back to the Pattern-Tactic-QA repos-
itory. Those measures precisely quantify the impacts of the
chosen ADD solutions on the observed QAs and can be used
by architects to adapt ADDs accordingly by comparing im-
pacts from different solutions.

So far, the part of the approach shown in Figure 2 related
to the Pattern-Tactic-QA repository and tools for support-
ing ADDs has been implemented. The MDE transformation
tools as well as the tool for run-time monitoring need to be
integrated.

The approaches presented in the previous two sections
are general enough and can in principle be applicable for
other types of systems (or ecosystems) beside those that are
service-based. However, the approaches and tools considered
in the adaptable decision making approach are specifically
related to the service-based systems. Additional investiga-
tions are necessary to better explain how the approach can
be concretely applied for other types of systems.

S. DECISION MODEL EXAMPLE

In this section, we provide an example of a reusable archi-
tectural decision model for data processing. The example is
shown in Figure 3. As explained in Section 3, for each solu-
tion represented by the design or architectural guidance, a
set of tactics with regard to the considered QAs is added. In
our example, we provide only three tactics because of space
limitations: Authorization (Security), Ping-Echo (Availabil-
ity), and Introduce Concurrency (Performance). After each
solution, a set of directly affected QAs from that solutions
is shown in square brackets (see the figure). Then, the given
tactics are provided, describing the effort required to inte-
grate them in the given solution (based on the scale provided
in Section 3) and their impacts on the considered QAs. The
Authorization and Ping-Echo tactics generally require a sin-
gle central component where other components need to be
appropriately adapted, therefore they have the MODIFY +
ADD-OUT impact [7]. The Introduce Concurrency tactic
can be implemented in the first filter for Pipes and Filters
(ADD?2 in the figure) and probably need to be implemented
in each component for linear processing of dependent pro-
grams (ADDS3 in the figure). Please note that all tactics
cannot be implemented for all solutions, which depends on
the solution. Also, the effort to integrate tactics is provided
without considering the order of tactics integration. For
example, when the Authorisation tactic is already imple-
mented, the Ping-Echo tactic can be added using the same
central component.

With regard to the approach described in Section 4, each
solution in the example would need to be further trans-
formed to the corresponding architecture view using the
given MDE tools. For example, an architectural component
model for the solution with Pipes and Filters and Ping-Echo
would have filter components together with an additional
central component for supporting Ping-Echo. Architectural
views would be then further processed as explained in Sec-
tion 4.

6. CONCLUSIONS

In this paper, we propose an approach for quality-driven
architectural decision making and documenting, by inte-

Context: A data processing task or set of data processing tasks

Considered QAs: Development Effort (DE), Performance (P), Flexibility (F), Availability (A), Security (S)

ADD1: Are multiple different processing steps needed to process the data?
e Yes->ADD2
e No ->Single Data Processing Component
[DE +, P-, F-, A - (single point of failure), S -]
o MODIFY + ADD-OUT: Authorization [DE -, P-, S+, A-]

o MODIFY + ADD-OUT: Ping-Echo [DE -, P-, S -, A + (Ping-Echo), A - (single point of failure)]

ADD2: How the different data processing steps are interconnected?

e They need to be flexibly composed for different data processing tasks ->
Pipes and Filters [DE -, F+, A+, P-,S-]
o IMPLEMENTED-IN: Introduce Concurrency [P +, DE -]
o MODIFY + ADD-OUT: Authorization [DE -, P-, S+, A -]

o MODIFY + ADD-OUT: Ping-Echo [DE -, P-, S -, A + (Ping-Echo), A - (single point of failure)]

e They follow mostly a fixed linear order -> ADD3
ADD3: Are the data processing components independent programs?
® Yes->Use Batch Sequential [P-, F-, DE-, A-, S -]
o Isit possible to modify the independent programs?
YES
e MODIFY + ADD-OUT: Authorization [DE -, P -, S+, A-]
e MODIFY + ADD-OUT: Ping-Echo [DE -, P -, S -, A + (Ping-Echo),
A - (single point of failure)]
NO

e No ->Use programming logic to interconnect multiple processing components [DE-, P -, F-,A-, S -]

o MODIFY: Introduce Concurrency [P+, DE -, A-, S -]
o MODIFY + ADD-OUT: Authorization [DE -, P-, S+, A-]

o MODIFY + ADD-OUT: Ping-Echo [DE -, P-, S -, A + (Ping-Echo), A - (single point of failure)]

Figure 3: An Instance of a Reusable Architectural
Decision Meta-Model from Figure 1

grating tactics with reusable ADDs together with their im-
pacts (from both tactics and ADDs) on the system QAs. A
new meta-model describing the relationships among reusable
ADDs (modelled as Questions, Options, and Criteria), es-
tablished AK (e.g. existing software patterns) that captures
the ADD solutions, tactics, and QAs is presented. In ad-
dition, we propose an approach for supporting automated
system evolution based on controlled and adaptable quality-
driven decision making using real data obtained during sys-
tem monitoring. The approach is based on the integration
of the given approach that uses tactics with existing model-
driven development paradigm and the corresponding tools.
In our future work we plan to fully implement the given
approaches and test them in the context of a real software
ecosystem.

7. REFERENCES

[1] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2 edition,
2003.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley Professional,
2003.

[3] L. J. Bass, M. Klein, and F. Bachmann. Quality
Attribute Design Primitives and the Attribute Driven
Design Method. In Revised Papers from the 4th Int’l
Workshop on Software Product-Family Engineering,
PFE’01, pages 169-186, London, UK, 2002.
Springer-Verlag.

[4] C. Becker, H. Kulovits, M. Kraxner, R. Gottardi, and
A. Rauber. An Extensible Monitoring Framework for
Measuring and Evaluating Tool Performance in a
Service-Oriented Architecture, pages 221-235. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[5] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns,
volume 1. John Wiley & Sons, 1996.

[6] R. Farenhorst, R. Izaks, P. Lago, and H. Van Vliet. A
Just-In-Time Architectural Knowledge Sharing Portal.
In Seventh Working IEEE/IFIP Conf. on Software
Architecture (WICSA), pages 125-134, Feb 2008.

[7] N. B. Harrison and P. Avgeriou. How do architecture
patterns and tactics interact? a model and

annotation. Journal of Systems and Software,

83(10):1735 — 1758, 2010.

[8] N. B. Harrison and P. Avgeriou. Implementing
Reliability: The Interaction of Requirements, Tactics
and Architecture Patterns, pages 97-122. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[9] N. B. Harrison, P. Avgeriou, and U. Zdun. Using
Patterns to Capture Architectural Decisions. IEEE
Software, 24(4):38-45, 2007.

[10] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Proceedings of the
5th Working IEEE/IFIP Conference on Software
Architecture, WICSA ’05, pages 109-120, Washington,
DC, USA, 2005. IEEE Computer Society.

[11] R. Kazman, J. Asundi, and M. Klein. Quantifying the
Costs and Benefits of Architectural Decisions. In 23rd
Int’l Conf. on Software Engineering (ICSE), pages
297-306, 2001.

[12] P. Kroll and P. Kruchten. The Rational Unified
Process Made Fasy: A Practitioner’s Guide to the
RUP. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[13] N. Lim, T. Lee, and S. Park. A comparative analysis
of enterprise architecture frameworks based on EA
quality attributes. In 10th ACIS International
Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed
Computing, SNPD 2009, in conjunction with 3rd
International Workshop on e-Activity, IWEA 2009,
1st International Workshop on Enterprise Architecture
Challenges and Responses, WEACR 2009, Catholic
University of Daegu, Daegu, Korea, 27-29 May 2009,
pages 283-288, 2009.

[14] 1. Lytra, G. Engelbrecht, D. Schall, and U. Zdun.
Reusable architectural decision models for
quality-driven decision support: A case study from a
smart cities software ecosystem. In Proceedings of the
Third International Workshop on Software
Engineering for Systems-of-Systems, SESoS ’15, pages
37-43, Piscataway, NJ, USA, 2015. IEEE Press.

[15] L. Lytra, H. Tran, and U. Zdun. Constraint-based
consistency checking between design decisions and
component models for supporting software
architecture evolution. In 16th European Conference
on Software Maintenance and Reengineering (CSMR),
pages 287-296, Szeged, Hungary, March 2012. IEEE
Computer Society.

[16] A. MacLean, R. Young, V. Bellotti, and T. Moran.
Questions, Options, and Criteria: Elements of Design
Space Analysis. Human-Computer Interaction,
6:201-250, 1991.

[17] S. Stevanetic, K. Plakidas, T. B. Ionescu, F. Li,

D. Schall, and U. Zdun. Tool support for the
architectural design decisions in software ecosystems.
In Proceedings of the 2015 European Conference on
Software Architecture Workshops, ECSAW ’15, pages
45:1-45:6, New York, NY, USA, 2015. ACM.

[18] H. Tran, U. Zdun, and S. Dustdar. View-based and
model-driven approach for reducing the development
complexity in process-driven soa. In Proceedings of
International Conference on Business Processes and
Services Computing, Leipzig, Germany, September
2007.

[19] J. Zheng and K. E. Harper. Concurrency design
patterns, software quality attributes and their tactics.
In Proceedings of the 3rd International Workshop on
Multicore Software Engineering, INMSE ’10, pages
40-47, New York, NY, USA, 2010. ACM.

[20] O. Zimmermann, T. Gschwind, J. Kiister,

F. Leymann, and N. Schuster. Reusable Architectural
Decision Models for Enterprise Application
Development. In 3rd Int’l Conf. on Quality of
Software Architectures (QoSA), Medford, MA, USA,
pages 15-32. Springer, 2007.

