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ABSTRACT
Case models in Adaptive Case Management (ACM) are business
process models ranging from unstructured over semi-structured to
structured process models. Due to this versatility, both industry and
academia show growing interest in this approach. This paper dis-
cusses a model checking approach for the behavioral verification of
ACM case models. To counteract the high computational demands
of model checking techniques, our approach includes state space
reduction techniques as a preprocessing step before state-transition
system generation. Consequently, the problem size is decreased,
which decreases the computational demands needed by the subse-
quent model checking as well. An evaluation of the approach with
a large set of LTL specifications on two real-world case models,
which are representative for semi-structured and structured process
models and realistic in size, shows an acceptable performance of
the proposed approach.

CCS Concepts
•Applied computing → Business process modeling; Business
process management systems; •Software and its engineering
→Model checking; Software verification;

Keywords
Case Management, Business Process Management, Verification,
Model Checking, State Space Reduction

1. INTRODUCTION
Many software vendors offer Adaptive Case Management (ACM)
as their business process management solution [9]. A case model in
ACM is a business process model that describes the basic structure
and behavior of the case instances (aka business process instances)
that originate from it. Consequently, a case model must neither
contain structural errors (e.g., inaccessible elements) nor undesired
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behavior (e.g., non-compliance with laws, standards or best prac-
tices) since all case instances derived from this model would be
affected.

Case modeling is emerging as a major approach for business pro-
cess modeling (cf. e.g., [9, 15, 17]. While there exist ways to detect
structural inconsistencies in case models (cf. [5]), the behavioral
verification of case models has not yet been considered. A pow-
erful, yet computationally expensive approach for detecting unde-
sired behavior is model checking [4]. Model checking is a verifica-
tion technique that explores all possible execution traces of a (busi-
ness process) model. Any undesired behavior is detected, provided
the specification is correctly defined. However, model checking has
a downside as well, namely its computational complexity, which is
PSPACE-complete [23]. That is, the runtime of model checking
grows exponential with the problem size. The work presented in
this paper addresses the following research questions: (RQ1) Since
model checking is known to be computationally expensive, how
can case models be model checked efficiently? (RQ2) Can model
checking be applied to real-world case models that are realistic in
size and structure?

This paper discusses a model checking approach for detecting un-
desired behavior in case models. The presented approach com-
prises four steps: (1) Case elements that are not required for the
detection of undesired behavior are removed (Case Element Reduc-
tion). (2) Conditions are abstracted by pre-computing all possible
outcomes (Condition Reduction). (3) A case model is transformed
to a state-transition system for model checking (Model Transfor-
mation). (4) Model checking is performed to find out whether the
system meets a specified desired behavior (Verification by Model
Checking). Steps 1 & 2 aim at improving the performance of model
checking by reducing the state space that is to be considered in
model checking of a case model. The approach is applied to two
real-world case models that are representative for different degrees
of structuredness, and both are realistic in size.1 The applied re-
duction techniques and the overall approach enable the verification
of those real-world case models within reasonable response times.

2. MOTIVATION
Let us consider an example from health care regarding the treat-
ment of a fracture, shown in Figure 1. The case model is described
1Completely unstructured case models are not considered since a
design time verification of those would be pointless due to the un-
constrained order of execution of the elements of such a process.
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Figure 1: Case model for the treatment of a suspected fracture

in Case Management Model and Notation (CMMN) [19] which can
be used to model the essential structures of ACM case model (cf. [5,
17, 15]). In total, this case model has ten tasks, seven dependen-
cies (dotted lines) and seven entry criteria (diamond symbols). We
will use this simple example to discuss our approach. Please note
that the approach is able to handle complex case model (i.e., nested
stages, goals) as well. Examine Patient, Prescribe Analgesics and
Establish Venous Access are not dependent on any other element
and can be started as decided by the business users. Other elements
are dependent: For example, Perform Surgery is dependent on the
completion of Perform X Ray and can only be started if the condi-
tion “diagnosis == ‘compound fracture’ ” (note: displaying con-
ditions of criteria is omitted in the diagram for reasons of clarity)
of the entry criterion is met, and Prescribe Fixation is dependent
on the completion of Perform X Ray and can only be started if the
condition “diagnosis == ‘contusion’ ” of the entry criterion is met.

Formal verification of models is a recurring research interest. While
flow-driven business processes models have already been studied
extensively (cf. e.g., [8, 13, 22, 21]), the verification of case mod-
els to detect undesired behavior has not yet been investigated to
this extent. In this paper, we employ a well-established verifica-
tion technique, namely model checking [4], which requires us to
define the semantics of case models as a state-transition system.
This state-transition system is then checked against a specification
in a formal temporal logic (cf. e.g., [3]) such as Linear Tempo-
ral Logic (LTL) or Computation Tree Logic (CTL). This paper is
concerned with finding an adequate state-transition system for case
models that enables their formal verification within acceptable re-
sponse times.

As regards this subject, we identify the following main issue: As
execution times in model checking grow exponentially with the
problem size, the problem must be kept small in size, which is chal-
lenging due to the rich semantics of case models.

We will use the example given in Figure 1 to discuss possible ways
for reducing the problem size as a preprocessing step before model
checking. Let us consider specifications that describe desired be-
havior. Here, we consider well-established patterns from software
verification [6] and business process compliance [7]. For instance,
the Exclusive pattern “P EXCLUSIVE Q” (where the presence of
P mandates the absence of Q) can be applied to express that Pre-
scribe Fixation demands the absence of Prescribe Rehabilitation.
This specification could help to avoid unnecessary costs when a re-
habilitation is medically not indicated. For the verification of the
specification “Prescribe Fixation EXCLUSIVE Prescribe Rehabili-
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Figure 2: Approach Overview

tation”, it is not necessary to consider each and every element of the
case. Only those elements that may have an influence on the out-
come of the model checking must be retained. By removing Pre-
scribe Analgesics, Prescribe Sling, Establish Venous Access, Apply
Ringers’ Solution, and Apply Cast, the case model can be reduced
in size considerably. Moreover, since Examine Patient must in-
evitably lead to Perform X Ray before Prescribe Rehabilitation and
Prescribe Fixation, they can be joined to a single activity, which
further reduces the problem size. What remains as a possible way
to reduce the problem size for model checking are the conditions
of the criteria. Since conditions are evaluated on basis of data, it
would require the inclusion of data in the state-transition system
for model checking of the specification, which would introduce
new variables and increase the state space. To avoid this, we pro-
pose to divide the problem into smaller pieces by precomputing the
behavior of conditions. For example, once Perform X Ray is com-
plete, the outgoing dependencies to the entry criteria of Prescribe
Fixation and Perform Surgery get triggered. Since the condition
“diagnosis == ‘contusion’ ” of the entry criterion of Prescribe Fix-
ation is contradictory to the condition “diagnosis == ‘compound
fracture’ ” of the entry criterion of Perform Surgery, only either
Prescribe Fixation or Perform Surgery is possible, but not both of
them. By applying these reductions, the model is reduced in size
and complexity, which improves model checking performance. The
given example will be revisited in Section 5 & 6 where the reduc-
tion techniques are discussed in detail.

3. APPROACH OVERVIEW
Figure 2 shows an overview of the approach. Case Element Re-
duction uses the provided Case Template (which is first checked
to be free of structural inconsistencies, cf. [5]) and Specification
to create a Reduced Model. Tasks, goals, stages, criteria and de-
pendencies that are not needed to model check the given specifi-
cation have been removed from this model. Condition Reduction
preprocesses all the possible combinations of criteria that can be
activated at once. By this, the approach circumvents the explicit



modeling of these conditions, which would also require the explicit
consideration of all data attributes that are referenced in the con-
ditions of criteria. Model Transformation uses the Reduced Model
and the Possible Activation Combinations of Criteria to create a
State-Transition System for model checking. The Verification by
Model Checking uses this State-Transition System and evaluates it
against the provided Specification.

4. FORMALIZATION
A case model M is a tuple (Ta, T ,G,S, E ,X , C, D, ζE , ζX , η,
α, TF ,F , φ, δ, ED, ρ, CE , σCE) where

• Ta ⊇ T ∪
⋃

p∈F p.R is a set of all tasks, T is a set of case
tasks, G is a set of goals, S is a set of stages, E is a set of entry
criteria,X is a set of exit criteria, C = E∪X is a set of criteria,
D is a set of dependencies (where d = (ds, dt) ∈ D means
that dt is dependent on ds),

• ζE : E 7→ T ∪ G ∪ S is a total non-injective function which
maps an entry criterion to a task, goal2, or stage,

• ζX : X 7→ T ∪S is a total non-injective function which maps
an exit criterion to a task or stage,

• η : G 7→ G is a partial non-injective function which maps a
goal to a parent goal,

• α : C 7→ G is a total non-injective function which maps a
criterion to a goal as an initialization criterion of that goal,

• TF ( T is a set of process tasks, F is a set of subprocesses,

• φ : TF 7→ F is a total function which maps a process task to
a subprocess,

• δ : T ∪ G ∪ S 7→ S is a partial non-injective function which
maps a task, goal, or stage to a parent stage,

• ED = {mandatory, optional} is a set of execution direc-
tives for tasks, goals, and stages,

• ρ : Ta∪G∪S 7→ ED is a total non-injective surjective function
which maps a task, goal, or stage to an execution directive,

• CE = {immediate, listening} is a set of evaluation modes
for entry criteria where immediate is possible for e ∈ E iff
∃d | d = (ds, dt) ∧ dt = e ∧ (ζE(e) = t | t ∈ T ),
• σCE : E 7→ CE is a total non-injective surjective function

which maps an entry criterion to an evaluation mode,

5. CASE ELEMENT REDUCTION
Since a specification usually contains merely a small amount of
case elements (cf. [7, 6, 26]), those elements that are not con-
tained in a specification are candidates for removal to reduce model
complexity. However, since case element reductions might have
a disturbing impact on the evaluation of formulas containing next
operators, the approach is limited to next-free temporal logic for-
mulas. The resulting reduced model must preserve the behavior of
the original model, so not every case element which is not part of
the specification can be removed. In this section we will discuss
the Case Element Reduction approach which is taken as the first of
two reduction steps (the second reduction step will be discussed in
Section 6).
2The entry criterion of a goal is also called completion criterion.
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Figure 3: Example for Reduction of Structures

5.1 Reduction of Non-Relevant Structures
As a first reduction of case elements, those connected structures
can be removed that do not contain any of the case elements of the
specification formula. For this reason, a graph called flattened case
graph is created in a first step:

A flattened case graph GMf = (V,E) is a directed graph rep-
resentation of M, where V = T ∪ G ∪ S ∪ C ∪ D is a set of
vertices. E = Ee ∪ Ex ∪ Edf ∪ Edt is a set of edges where
Ee = {(e, ζE (e)) | e ∈ E}, Ex = {(ζX (x) , x) | x ∈ X}, Edf =
{(f, d) | d = (f, t) ∈ D} and Edt = {(d, t) | d = (f, t) ∈ D}.

By this, structures of a case model that are connected through de-
pendencies are identified. In a next step, those structures that do
not contain elements of the specification formula and are just con-
tained in a stage but not dependent in any other form on a stage can
be removed from the case model because they do not have any in-
fluence on the verification of the given specification. Consequently,
all elements Vs of a connected component s of GMf are removed
fromM iff @v | v ∈ Vs ∧ (v ∈ specification ∨ v ∈ S).

In Figure 3, Reduction of Structures is applied to the motivational
example. After the identification of connected structures, all ele-
ments contained in structures that do not contain the elements of
the specification are removed.

This reduction can be considered as a macro reduction because it is
able to remove larger structures of a case model. After this first re-
duction step, it makes sense to perform micro reductions that try to
decrease the number of case elements in remaining structures. We
propose two micro reduction techniques, namely Rear Reduction
and Melting Reduction.

5.2 Reduction of Non-Relevant Rear Elements
A rear reduction of a task, stage or goal tgs ∈ T ∪ G ∪ S is per-
formed as follows:

• A task or goal t ∈ T is removed fromM iff
t /∈ specification ∧ ρ(t) 6= mandatory ∧ (@x | (x ∈
X ∧ ζX (x) = t∧ (@d | d = (ds, dt) ∈ D∧ds = x)))∧ (@d |
d = (ds, dt) ∈ D ∧ ds = t).

• A goal g ∈ G is removed fromM iff
g /∈ specification ∧ ρ(g) 6= mandatory ∧ (@d | d =
(ds, dt) ∈ D ∧ ds = g).
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Figure 4: Example for Rear Reduction

• A stage s ∈ S is removed fromM iff
s /∈ specification ∧ ρ(s) 6= mandatory ∧ (@x | (x ∈ X ∧
ζX (x) = s∧ (@d | d = (ds, dt) ∈ D∧ds = x)))∧ (@d | d =
(ds, dt) ∈ D∧ds = s)∧(@tgs | tgs ∈ T ∪G∪S∧δ(tgs) =
s).

A rear reduction by removal of tgs also causes the removal of all
d | d = (ds, dt) ∈ D ∧ ζE(dt) = tgs, c | c ∈ C ∧ (ζX (c) =
tgs∨ ζE(c) = tgs) and d | d = (ds, dt) ∈ D ∧ dt = tgs from the
case modelM.

That means, if no case element is dependent on a specific task or
goal, and if this specific task or goal is not part of the specification
and not mandatory, then it can be removed. Stages are treated sim-
ilarly, with the additional condition that the stage must not contain
any elements.

In Figure 4, Rear Reduction is applied to the case model from Fig-
ure 3. Tasks Prescribe Sling and Apply Cast which are not con-
tained in the specification “Prescribe Fixation EXCLUSIVE Pre-
scribe Rehabilitation” and do not have a successor are removed
since they do not have any influence on the result of the model
checking.

5.3 Melting
A melting reduction between two case elements e1 and e2 is per-
formed iff

• ¬(e1 ∈ specification ∧ e2 ∈ specification), and

• @d | d = (ds, dt) ∈ D∧ ds = e1 ∧ (dt 6= e2 ∨ ζE(dt) 6= e2),
and

• @x | x ∈ X ∧ ζX (x) = e1 ∧ (∃d | d = (ds, dt) ∈ D ∧ ds =
x ∧ (dt 6= e2 ∨ ζE(dt) 6= e2)),

• @d | d = (ds, dt) ∈ D∧dt = e2∧ (ds 6= e1∨ ζX (ds) 6= e1),
and

• @e | e ∈ E ∧ ζE(e) = e2 ∧ (∃d | d = (ds, dt) ∈ D ∧ dt =
e ∧ (ds 6= e1 ∨ ζX (ds) 6= e1)),

and

• ∃d | d = (ds, dt) ∈ D∧ ds = e1 ∧ (dt = e2 ∨ ζE(dt) = e2),
or

• ∃x | x ∈ X ∧ ζX (x) = e1 ∧ (∃d | d = (ds, dt) ∈ D ∧ ds =
x ∧ (dt = e2 ∨ ζE(dt) = e2)),

and

• (e1 ∈ T ∧ e2 ∈ T ) ∨ (e1 ∈ G ∧ e2 ∈ G) ∨ ((e1 ∈ S ∧ e2 ∈
S) ∧ (@s | δ(s) = e1 ∨ δ(s) = e2)), and

• ρ(e1) = ρ(e2).
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Figure 5: Example for Melting Reduction

Then, the melting reduction can be realized as follows:

1. All rd | rd = (rds, rdt) ∈ D ∧ rds = e1 are to be removed
fromM and substituted by all d | d = (ds, dt) ∈ D ∧ ds =
e2, so that ds = e1, and

2. all rx | rx ∈ X ∧ ζX (rx) = e1 are to be removed from
M and substituted by all x | x ∈ X ∧ ζX (x) = e2, so that
ζX (x) = e1, and

3. e1.label = {e1.label, e2.label}, and e2 is removed fromM.

The idea behind the melting reduction is the aggregation of ele-
ments, which we illustrate in Figure 5 by applying Melting Re-
duction to the case model from Figure 4. For the verification of
‘Prescribe Fixation EXCLUSIVE Prescribe Rehabilitation, Exam-
ine Patient and Perform X Ray as well as Perform Surgery and Pre-
scribe Rehabilitation can be aggregated to joint activities.

6. CONDITION REDUCTION
To avoid the explicit consideration of conditions and their data at-
tributes, we propose to precompute the possible combinations of
criteria that are satisfiable altogether at the completion of a case ele-
ment. When a case element (i.e., a task, goal or stage) is completed,
it depends on the current state of data which criteria are fulfilled.
In a first step, all the possible combinations of exit criteria that are
satisfiable at once are computed (Algorithm 1). In Line 5 of Algo-
rithm 1 the power set of all exit criteria is created. Line 6 defines
a loop to iterate over this power set. Line 9 checks whether this
combination of criteria is satisfiable at once (Algorithm 3). If this
is the case, then the combination is added to a set, which is returned
by this function (Line 9). Algorithm 2 is similar to Algorithm 1 as
it computes which other combinations that include dependent cri-
teria are satisfiable with the already identified exit combinations,
so power sets are created and Algorithm 3 is called again to find
all possible criteria combinations. Please note that power sets grow
exponential with the size of their sets. However, the created sets
of interdependent criteria are rather small (i.e., in case models very
few criteria are interdependent). Consequently, the computation
times remain acceptable, and there is a large performance improve-
ment compared to the explicit consideration of conditions in model
checking.



Algorithm 1 Compute all possible satisfiable combinations of exit
criteria at the completion of a case element
1: function COMPUTEPOSSIBLEEXITCRITERIACOMBINATIONS(ce ∈

T ∪ S)
2: initialize satisfiableExitCriteriaCombinations
3: if ∃ζX (x) = ce then
4: allExitCriteria = {x | x ∈ ζX (x) = ce}
5: powerSet = P(allExitCriteria)
6: for all cs in powerSet do
7: if |cs| > 0 then
8: complement := allExitCriteria \ cs
9: if IsSatisfiableCombination(cs, complement, allExitCri-

teria) then
10: satisfiableExitCriteriaCombinations.add(cs)
11: return satisfiableExitCriteriaCombinations

Algorithm 2 Compute all possible satisfiable combinations of exit
criteria and dependent criteria at the completion of a case element
1: function COMPUTEPOSSIBLEEXITANDDEPENDENTCRITERIACOM-

BINATIONS(ce ∈ T ∪ S)
2: initialize satisfiableExitAndDependentCriteriaCombinations
3: satisfiableExitCriteriaCombinations := ComputePossibleExitCrite-

riaCombinations(ce)
. cf. Algorithm 1 for function

‘ComputePossibleExitCriteriaCombinations’
4: for all satisfiableExitCriteria in satisfiableExitCriteriaCombina-

tions do
5: initialize criteriaDependentOnCeOrExitCombination
6: criteriaDependentOnCeOrExitCombination.addAll(∀c | c ∈

C ∧ ∃(ce, c) ∈ D);
7: for all x in satisfiableExitCriteria do
8: for all d = (ds, dt) | d ∈ D ∧ ds = x ∧ dt ∈ C do
9: criteriaDependentOnCeOrExitCombination.add(dt)

10: for all d = (ds, dt) | d ∈ D ∧ ds = ce ∧ dt ∈ C do
11: criteriaDependentOnCeOrExitCombination.add(dt)
12: powerSet = P(criteriaDependentOnCeOrExitCombination)
13: for all cs in powerSet do
14: initialize satisfiableSet
15: satisfiableSet.addAll(satisfiableExitCriteria)
16: satisfiableSet.addAll(cs)
17: initialize allSet
18: allSet.addAll(satisfiableExitCriteria)
19: allSet.addAll(criteriaDependentOnCeOrExitCombination)
20: unsatisfiableSet := criteriaDependentOnCeOrExitCombi-

nation \ cs
21: if IsSatisfiableCombination(satisfiableSet, unsatisfiableSet,

allSet) then
. cf. Algorithm 3 for function ‘IsSatisfiableCombination’

22: satisfiableExitAndDependentCriteriaCombina-
tions.add(cs)

23: return satisfiableExitAndDependentCriteriaCombinations

Algorithm 3 Compute whether a combination of criteria is satisfi-
able
1: function ISSATISFIABLECOMBINATION(satisfiableSet (

C, unsatisfiableSet ( C, set ( C)
2: dataEnumerationMap := CreateEnumerationValues(set)
3: dataModel := CreateDataModel(dataEnumerationMap)
4: specification := EF (

∧
c∈satisfiableSet(c.bf) ∧∧

c∈unsatisfiableSet(¬c.bf))
5: return performVerification(dataModel, specification)

Algorithm 3 creates a model (in Lines 2 & 3) of the criteria com-
bination (Line 3) and checks whether this model meets the CTL
formula in Line 4. For the model, it is necessary to analyze the con-
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ditions of the criteria to build up a proper enumeration set which is
an abstraction of the possible values of the variables used in con-
ditions. For example, for integer attributes it is sufficient to add
the preceding and the succeeding integer values to the enumeration
set. Attributes of other data types may require a more comprehen-
sive treatment. For example, the treatment of strings is dependent
on the string functions that a condition may contain.

In Figure 6, Condition Reduction is applied to the model from Fig-
ure 5. To find out, what the possible combinations of criteria are
at the completion of Examine Patient & Perform X Ray, the power
set of {Criterion1,Criterion2} and the complement of each set of
the power set is created. For each element of the power set and
its complement, Algorithm 3 is called. The data model contains
just a single attribute, namely diagnosis which has an enumeration
set {COMPOUND_FRACTURE, CONTUSION, OTHER}, where
OTHER is added representatively for values different from those
present in conditions. Figure 6 illustrates the evaluation of two cri-
teria combinations in greater detail. The question is whether it is
possible at the completion of Examine Patient & Perform X Ray
that (1) Criterion2 is satisfied and Criterion1 is not satisfied, (2)
both Criterion1 and Criterion2 are satisfied. Since the CTL for-
mula for (1) is satisfiable, it is a possibility that Criterion1 is met
while Criterion2 is not met at the completion Examine Patient &
Perform X Ray. Consequently, this is a satisfiable combination.
The CTL specification for (2) is not satisfiable since the conditions
of the two entry criteria are contradictory. Consequently, Criterion1

and Criterion2 are not satisfiable at the same time, so this is not a
satisfiable combination.



7. EXPERIMENTAL RESULTS
For the evaluation of the proposed approach, a representative set
of LTL (Linear Temporal Logic) patterns and case models is taken
into account. As sources for LTL patterns, we make use of the
property specification patterns by Dwyer et al. [6, 1] and the com-
pliance patterns by Elgammal et al. [7]. Sources for case models are
real-world process models that are either available from customers
or from public sources. Here it is important to consider the degree
of structuredness and size of such a model. For the evaluation of
the approach, we select the largest to us available case models, one
from a sales company (cf. [25]) with a high degree of structured-
ness ( |D|

|T ∪G∪S| ≈ 1.07) and a total size of |T ∪G∪S∪C∪D| = 80

(where |T | = 23, |G| = 3, |S| = 3, |C| = 20, |D| = 31) which we
will refer to as highly-structured case, and another from health care
(cf. [11]3) with a medium degree of structuredness ( |D|

|T ∪G∪S| =

0.5) and total size of |T ∪ G ∪ S ∪ C ∪D| = 75 (where |T | = 26,
|G| = 6, |S| = 4, |C| = 21, |D| = 18) which we will refer to as
semi-structured case.

The prototype is written in Java. It uses JGraphT4 for graph-based
parts of the approach, and it invokes NuSMV5 (version 2.5.4) for
model checking. The experiment was carried out on a common
notebook computer with 8 GB RAM, Intel i5-4200U CPU (up to
2.6 GHz) and SATA II SSD on Windows 7, as we wanted to test
our approach in the usual setting of a software developer or knowl-
edge worker. The data of this evaluation was collected from 30000
model checks on the semi-structured case and structured case. LTL
specifications for those model checks are based on 15 distinct tem-
poral logic patterns [6, 7]. For each combination of pattern and case
model, 1000 LTL formulas are generated from the states of tasks,
goals and stages of the case model to create a huge set of specifi-
cations, which simulates verification runs carried out by a user in a
large quantity.

Figure 7 shows the size reduction that is achieved by the Case El-
ement Reduction step. The approach performs better on the semi-
structured model than on the highly structured model. The com-
putation of the Case Element Reduction step is finished between
0.1 and 0.5 milliseconds. Condition Reduction takes several orders
of magnitude longer for the highly-structured case (about 500 mil-
liseconds) than for the semi-structured case (0.005 milliseconds).
The majority of the overall computation time is spent on model
checking (Figure 8). Here, the semi-structured case model is veri-
fied within few seconds (in most cases even in a fraction of a sec-
ond). It is not at all surprising that verifying the semi-structured
case takes less time because the reduction techniques have a higher
level of efficiency on semi-structured models. Obviously, more
structures must remain in highly-structured models to preserve its
semantics. Most of the verification runs terminate within 10 sec-
onds, but there are also runs that take up to about 1000 seconds
(i.e., when more structures must be preserved due to the properties
of the LTL formula), which is still a good results when we consider
the computational expensiveness of model checking in general.

We deliberately do not compare against the situation in which the
proposed reductions are not applied because without the reduction
techniques, the state space explodes and results are not to be ex-
3We slightly had to adapt the model from [11] because some goals
did not have any completion criteria, so we added criteria to those
goals.
4http://jgrapht.org
5http://nusmv.fbk.eu/

pected within acceptable response times.
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Figure 7: Achieved size reduction after applying Case Element
Reduction to the (a) Highly-Structured Case and (b) to the Semi-
Structured Case

8. DISCUSSION
Although the proposed approach has a strong focus on ACM case
models, it is to a large extent applicable to CMMN (Case Manage-
ment Model and Notation [19]) models. However, not all parts of
the CMMN standard are yet considered (e.g., flow-driven subpro-
cesses). The presented work focuses on case management model
elements and their semantics intentionally. Flow-driven subpro-
cesses (e.g., BPMN processes) of case models are unfortunately
out of scope of this paper. Nevertheless, the approach is capable to
include flow-driven subprocesses of case models as well. This in-
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Figure 8: Computation time of Model Checking for (a) the
Highly-Structured Case and (b) the Semi-Structured Case

volves applying reduction techniques for flow-driven processes [2],
and conditions, such as present as guard conditions after exclusive
and inclusive gateways in BPMN, can be precomputed and reduced
in similar manner as described in Section 6.

By applying the approach to case models, it becomes possible to
verify their behavior at design time. Nonetheless, it is impossi-
ble to guarantee compliance of a case instance by model checking
of case models at runtime because runtime-specific circumstances,
such as ad hoc actions and data adaptations, might introduce non-
compliance. Consequently, it is not sufficient to provide only a tool
support for design time verification. To keep cases compliant, run-
time monitoring [16] of case instances is required. In particular,
adequate tools must support business users to stay compliant.

Model checking is a powerful verification technique. However, a
well-known limitation of model checking is the high demand on
computational resources. If a problem grows too large in size, then
model checking will become infeasible due to long computations
times. In this work, we propose reduction techniques to decrease
the size of the problem, which makes it possible to verify real-world
case models that are realistic in size. Consequently, that general
limitation of model checking is mitigated by the proposed reduction
techniques. We consider further improving the performance as an
important topic for future work.

The stage element enables nesting in case management models, and
the proposed reduction approach implicitly considers nesting by
performing reductions on each level. For that reason nested case
models do not require any additional treatment.

9. RELATED WORK
Many related studies on the verification of business processes focus
on flow-driven business processes, such as UML activity diagrams
and BPMN models. Eshuis proposes a model checking approach
using the NuSMV model checker for the verification of UML ac-
tivity diagrams [8]. Kherbouche et al. use the model checker SPIN
to find structural errors in BPMN models [13]. Sbai et al. use
SPIN for the verification of workflow nets, which are Petri nets
representing a workflow [22]. Köhler et al. describe a process by
means of an automaton and check this automaton by NuSMV [14].
An approach presented by Awad et al. aims at checking compli-
ance of flow-driven business process models using the visual query
language BPMN-Q to describe constraints and performing model
checking to assure constraints are met [2]. This approach reduces
the complexity of BPMN models by analyzing LTL specifications
before state space generation. Aforementioned approaches apply
model checking for verification of business processes, but there
also exist alternative approaches. For example, Raedts et al. pro-
pose the transformation of models such as UML activity diagrams
and BPMN2 models to Petri nets for verification with Petri net ana-
lyzers [21]. Declarative workflow approaches (such as Declare [20],
which has its origin in pattern-based LTL) are conceptually closer
to the specifications for model checking (i.e., LTL or CTL) in our
approach than the case model itself.

In 2014, the CMMN (Case Management Model and Notation) stan-
dard is released in version 1.0 by the OMG (Object Management
Group) as “a common meta-model and notation for modeling and
graphically expressing a Case, as well as an interchange format for
exchanging Case models among different tools”. Recent research
indicates that CMMN is suitable for modeling knowledge-intensive
processes and that the essential structural concepts of ACM cases
are covered or can be realized by CMMN elements [15, 17, 5].
CMMN draws many influences, such as case handling [27], busi-
ness artifacts [18], and the GSM language [12] for programming
artifact-centric systems. Despite similarity between GSM and ACM
case models, there are many conceptual differences (cf. Section 4
& [24]). Gonzalez et al. propose a specialized model checker for
the GSM language [10]. By using the proposed state space reduc-
tion techniques, our approach enables the verification of case mod-
els by non-specialized model checkers (e.g., NuSMV).

In summary, the verification of ACM case models has not yet been
sufficiently addressed in existing studies. Due to the increasing
industry adoption of ACM, this topic is highly relevant, not only
from a purely academic but also from a practical point of view.



10. CONCLUSION & FUTURE WORK
This paper presents a model checking approach for ACM case mod-
els. In particular, it discusses several techniques that aim at reduc-
ing the state space required for efficient model checking of case
models (answer to RQ1). Reductions are on the one hand con-
cerned with making use of a given specification to remove elements
from a case model that are not required for the verification run, and
on the other hand, conditions present in a case model are consid-
ered in an abstracted manner in the actual verification run. The
experimental evaluation based on 30000 model checking runs on
two real case models that are realistic in size and representative for
different degrees of structuredness shows an overall good perfor-
mance of the approach (answer to RQ2). As models in ACM are
predominantly semi-structured, the fast computation times that can
be achieved through the proposed reduction techniques are of great
interest for a potential industry adoption of the proposed approach.
In future work, it might be possible to further improve the perfor-
mance by directly focusing on the specific properties of temporal
pattern-based solutions (cf. e.g., [6]) instead of supporting arbitrary
LTL and CTL formulas.
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