
How do software ecosystems evolve?
A quantitative assessment of the R ecosystem.

Konstantinos Plakidas
Software Architecture

Research Group
University of Vienna, Austria

konstantinos.plakidas@univie.ac.at

Srdjan Stevanetic
Software Architecture

Research Group
University of Vienna, Austria
srdjan.stevanetic@univie.ac.at

Daniel Schall
Siemens Corporate

Technology
Vienna, Austria

daniel.schall@siemens.com

Tudor B. Ionescu
Siemens Corporate

Technology
Vienna, Austria

tudor.ionescu@siemens.com

Uwe Zdun
Software Architecture

Research Group
University of Vienna, Austria

uwe.zdun@univie.ac.at

ABSTRACT
In this work we advance the understanding of software eco-
systems research by examining the structure and evolution
of the R statistical computing open-source ecosystem. Our
research attempts to shed light on the following intriguing
question: what makes software ecosystems successful? The
approach we follow is to perform a quantitative analysis
of the R ecosystem. R is a well-established and popular
ecosystem, whose community and marketplace are steadily
growing. We assess and quantify the ecosystem throughout
its history, and derive metrics on its core software compo-
nents, the marketplace as well as its community. We use
our insights to make observations that are applicable to eco-
systems in general, validate existing theories from the liter-
ature, and propose a predictive model for the evolution of
software packages. Our results show that the success of the
ecosystem relies on a strong commitment by a small core of
users who support a large and growing community.

CCS Concepts
•Software and its engineering→ Software architectures;
•Human-centered computing→ Empirical studies in
collaborative and social computing;

Keywords
software ecosystems, R, empirical study, predictive model

1. INTRODUCTION
A software ecosystem is a cooperative model of software

development and market featuring complex interaction dy-
namics between the participating actors. Modelling of soft-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’16, September 16-23, 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4050-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2934466.2934488

ware ecosystems is a widely recognized challenge in the field
of software architecture.

The move from monolithic, vertically integrated product
development to more open, modular, and collaborative mod-
els in recent decades is a well-documented trend in software
engineering and the business practice of software compa-
nies [13]. The concept and practice of software product lines
(SPLs) emerged as part of this trend. As a result of global
alliances and the demand for rapid innovation cyles, com-
panies employing SPLs increasingly expand their platform
outside their organizational boundaries, thereby transition-
ing to a software ecosystem (SECO) [4, 9].

Popular examples for such ecosystems are Android, iOS,
and Eclipse, to name a few. In addition to these company-
driven ecosystems, many r open source ecosystems have emerged,
such as R, Python, and Ruby. A number of definitions for
the SECO concept have been proposed in the literature [4,
16, 17]. Despite their differing emphasis, they all consider
a SECO as the sum of several elements: a common soft-
ware base upon which a network or community of users
with shared interests or values has built up a collection of
derivative software products (a software market) in order to
satisfy certain needs and accrue benefits, whether monetary
or otherwise. The evolution of the SECO is driven by the
motivation of individual users as well as by the social re-
lationships and interaction between them [10, 13, 15]. As
summed up by [9] — the ultimate objective for investing in
and working towards an ecosystem is that all members will
gain more benefits from being a part of it, as compared to
the more traditional approach for software product develop-
ment with segregated roles, a low level of collaboration, and
closed processes.

Transitioning from an SPL company to a SECO com-
pany or building up a new SECO is indeed challenging for
a number of reasons. Opening up a platform for a wider
community demands for a careful design of the platform
core elements versus the application specific extensions. A
broader set of nonfunctional requirements (NFRs) needs to
be considered including both development NFRs as well as
operational NFRs. Important NFRs with regards to open
SECOs are evolvability, composability, and maintainability,
enabling the SECO and its developers to establish a healthy
offering of user applications. Building up a new SECO is

often seen as a ‘chicken-egg’ problem — how to attract plat-
form users if a limited set of applications is available for the
platform and how to attract developers to implement ap-
plications if only a limited number of users are part of the
SECO community? Thus, it is important to understand the
general principles of how successful ecosystems evolve over
time.

In this paper we analyze a popular SECO specimen in
the form of the R ecosystem. We perform a quantitative
analysis of the characteristics of the ecosystem as a whole
and its members, especially regarding their evolution over
time. The resulting metrics are then used to gain a picture
of the ecosystem’s current state and history, and to compare
it with other similar studies in literature.

The remainder of this paper is structured as follows. In
Section 2 we present a brief overview of the main character-
istics of SECOs and the areas where research has focused in
the past. Section 3 presents the R ecosystem and our ap-
proach and motivation in examining it. Section 4 presents
the results of our survey of the ecosystem, the analysis we
performed on it, and our attempt to construct a predic-
tive model from the data gathered. Section 5 sums up our
insights and compares R with similar studies in literature.
Section 6 discusses the problems we encountered gathering
our data and the limitations of our research, and Section 7
discusses the future direction of our work.

2. RELATED WORK
The field of SECOs has been the object of several stud-

ies examining ecosystems from the perspective of architec-
ture, business and management issues, and the social rela-
tionships evidenced in their communities [15, 1]. Attempts
have been made to construct a framework for a comprehen-
sive SECO taxonomy [4, 13]. SECOs are generally distin-
guished by the nature of the software base, ranging from a
complete software platform or set of platforms to services
and software standards, or by the focus of their platform
from complete operating systems to specific applications;
the ecosystem’s accessibility, depending on the existence of
any barriers or vetting process before participating in the
ecosystem; the ecosystem’s ownership by a managing entity,
which determines its business model, ranging between free
and community-owned ecosystems to proprietary company-
owned ones; and the existence, number, and nature of the
ecosystem’s software markets [13, 15].

Business and management issues are particularly impor-
tant for any company deciding to move towards the SECO
model [4], and any such move opens the challenge of ecosys-
tem governance. The platform developer and maintainer
acts as a central coordinator and exercises a degree of con-
trol over the course of the ecosystem, but it must also col-
laborate with and adapt itself to the ecosystem community.
As the ecosystem’s surplus value is generated by the com-
munity, the platform developer and the community acquire
a shared responsibility for the ecosystem’s development and
must find ways to collaborate [9]. Thus some attention has
been given to the roles played by the actors within a SECO
and their interactions. The platform maintainer and/or a
small group around it act as the keystone organization which
drives the overall development of the SECO, and the SECO
community is formed on the one hand of end-users and on
the other of third-party actors who build their own products
on the platform [9]. Another important governance-related

issue concerns the assessment of ecosystem health, which as
been studied at some depth as a theoretical modelling prob-
lem with several indicator metrics proposed [15, 12].

The R ecosystem has grown from a niche tool for statisti-
cians in academia to a popular solution in the broader data
mining community. The R ecosystem in its state of March
2011 has already been the subject of an empirical study,
having been analyzed by [6]. This study examined the code
characteristics and dependency relationships between the R
platform and externally developed products and contained
an analysis of the user community via the impact of the
publication and evolution of externally developed packages
on mailing lists. The study used a sample of 52 users to
determine the popularity (or rather the frequency of use) of
these packages, considering the more “popular” packages as
a distinct category from the rest. Our approach goes into a
similar direction, but examines the evolution of the ecosys-
tem in greater breadth and over a far greater period of time.
We also examine additional parameters such as downloads
and individual authors, and include the “spin-off” Biocon-
ductor repository in our study. This is important because
we can follow the co-evolution of two different marketplaces
with different orientations and practices, and their respec-
tive communities, on top of the same platform, as well as
the interaction between them.

3. OBJECTIVES AND METHODS

3.1 Research Design
We aim to extract metrics that will allow us to determine

the specific characteristics of an ecosystem and to compare
it, based on approaches found in literature, with other eco-
systems. This will assist in the formulation of a common
concept model for SECOs, by determining general principles
applicable to all ecosystems, clarifying the main areas of and
reasons for differentiation between ecosystems, and assessing
the impact of various factors intrinsic to ecosystems in gen-
eral or specific to each particular ecosystem on the software
products offered. Our aim is not only to improve our un-
derstanding of ecosystem behaviour, but also to determine
a set of recommended practices both for the design of a new
ecosystem from scratch as well as for application within an
existing ecosystem, and provide tools and metrics that will
allow the assessment of an ecosystem’s state and health for
governance purposes.

As discussed in Section 1, a SECO comprises three main
components: the software platform, the community of users,
and the marketplace(s) where additional software products
are offered. As a result, the main Research Questions we
posed and looked to answer was:

RQ1: How does the R software ecosystem evolve? We
quantify and assess the R ecosystem, not only at a specific
time, but across its 18-year lifespan. The quantification will
allow comparisons with other ecosystems, while the time
aspect allows observations on the lifecycle and health of the
ecosystem as a whole as well as of its components.

RQ2: How do the community members collaborate, and
how does this impact the software marketplace? Since a
SECO is a business and social network, it is necessary to
consider the activity of the community, with the aim of de-
tecting behaviour patterns and modes of activity that can
be said to have a direct impact on the ecosystem.

RQ3: What makes a SECO marketplace product “success-

Figure 1: Overview of the R ecosystem

ful”? Here we aim to define “success” of an externally de-
veloped product as part of a SECO, and determine metrics
that can explain or even predict a package’s success.

3.2 The R Ecosystem
As with similar empirical studies in the field, we chose

a free, open-source ecosystem as it allows us to examine it
in a depth unmatchable for closed or commercial, propri-
etary ecosystems [15]. R is a programming language and
free open-source (GNU-licensed) environment derived from
the earlier S language developed at Bell Labs. The R core
began its existence in 1997, and is maintained since by the
R Foundation and the R Core Team [11]. Its main applica-
tion fields are statistical computing and graphics. In addi-
tion to the native R code, it makes extensive use of C, C++,
and Fortran code, and it is available for all three major OS
platforms, Windows, MacOS, and UNIX-derived platforms
like Linux [11]. The main repository for software products
developed by the R community, known as packages, is the
Comprehensive R Archive Network (CRAN1). In addition
there is a number of related projects2, chiefly the Biocon-
ductor repository, which focuses on Bioinformatics packages,
and RForge3. A large number of packages also exists inde-
pendently on code repositories like GitHub. As many of
the packages found on RForge and GitHub are also listed
in CRAN or Bioconductor, we limited our study to the two
latter.

R can be used either via the command line, or via GUIs
and IDEs, of which RStudio4 is one of the main representa-
tives, developed under the supervision of Hadley Wickham,
one of the main contributors to R.

3.3 Methods and Tools
To gather data, we built crawlers in Java that downloaded

and parsed the entirety of the packages hosted on the CRAN

1https://cran.r-project.org/
2https://www.r-project.org/other-projects.html
3https://R-Forge.R-project.org/
4https://www.rstudio.com/

and Bioconductor repositories, as well as the versions of the
R core, and extracted information from the package docu-
mentation files and their code files. A problem was encoun-
tered in that the two marketplaces follow different versioning
strategies. CRAN offers a repository where the package au-
thors can upload new versions at will, and old versions are
archived and still accessible. The only editorial oversight by
CRAN is the removal of packages that are no longer main-
tained or have failed to incorporate changes to accommo-
date the latest R versions from the “current” package list,
although they remain available in the archive. Bioconduc-
tor on the other hand bundles its marketplace in semi-annual
releases, and hosts on its repository only the latest package
version within each release. This impacted our research as
we had access only to the last version committed before each
Bioconductor version release, and no data on any intervening
versions and changes (cf. Table 3, where the update periods
for Bioconductor are practically identical to the semi-annual
Bioconductor release cycle). To have a common ground, and
as our focus is on software, we furthermore distinguished
between those versions showing changes in the code from
versions with changes in documentation files.

To determine package use (“popularity”) within the ecosys-
tem, we utilized the collected download data5 from RStu-
dio’s CRAN mirror for the period from 01.10.2012 to 30.11.2015.
For Bioconductor the download statistics provided on-site
for the period from 01.01.2015 to 30.11.2015 were used. Again,
while CRAN data distinguish between individual versions of
each package, Bioconductor data refer to each package re-
gardless of version.

The primary metrics extracted from our tools (cf. Table 1)
concerned release date, identity and number of authors (in-
cluding people whose code was re-used, in so far as they
are included in the documentation) and of package main-
tainers, size of code in logical lines of code, dependencies to
the R core or other packages, and the number of downloads.
This data was then evaluated to create an image of the evo-
lution of the individual packages, of the two marketplaces,
and of the ecosystem as a whole, from 1997 until the end
of 2015. CRAN6 as well as Bioconductor7 group their con-
tent by views by the functionality offered by each packages.
Whereas the related documentation in Bioconductor tends
to be complete, the reverse is true in CRAN, and views were
not taken into account in this study.

In order to assess the quality of our data and confirm
the validity of the metrics we selected for quantifying the R
ecosystem, we created and compared prediction models for
package popularity (expressed in downloads per day) based
on the metrics we have gathered.

4. RESULTS

4.1 Platform Characteristics
The R core platform comprises the 14 base packages of

R—the R base and compiler packages, as well as basic func-
tion, graphic, and programming support packages—and 15
“recommended” packages offering additional functions and
datasets, as well as graphics support [11].

5http://cran-logs.rstudio.com/
6https://cran.r-project.org/web/views/
7https://bioconductor.org/packages/release/BiocViews.
html

Table 1: Metrics directly measured or extrapolated from the data

Description Unit Range
Avg. number of downloads per day (Popularity or Frequency of use) Download 0 – 2389
Number of authors Author 0 – 170
Number of dependencies Dependency 0 – 29
Number of reverse dependencies Dependency 0– 690
Max. depth of dependency chain Dependency 0 – 12
Number of versions Version 1 – 182
Avg. time between two consecutive versions (Update frequency) Day 0 – 1539
Number of versions w. changes to the source code Version 1 – 174
Avg. time between consecutive versions with source code changes Day 0 – 2064
Code size difference between current and original version LLOC -16160 – 185400
Current/Historical package code size LLOC 0 – 185400
Time between first release and last releases (Lifespan) Day 0 – 6437

0

50

100

150

200

250

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Figure 2: Evolution of the R core by code content
(top: C, middle: Fortran, bottom: R)

We analyzed the composition of all R core versions avail-
able at CRAN, from 0.49 (23.04.1997) to 3.2.3 (10.12.2015)
based on logical lines of code (lloc), i.e. excluding blank
lines, comments, and logical arguments split across several
lines. We observed the steady growth of the R core (ex-
cluding the “recommended packages”) to the order of 1084%
(from ca. 52,400 lloc to 568,137 lloc), and the expansion of
the share of both R and especially Fortran in the code files
of the R core. In the first versions, C code comprised almost
90% of the R core packages, with the remainder taken up
by Fortran, and R almost non-existent. By version 1.0 of
the R core, code written in R had expanded to 15.77% and
Fortran-written code to 9.5%, in an overall expansion of the
R core size of 228%. The proportion of R-written code has
remained relatively stable despite the R core’s growth by
473.7%, with the latest examined version at 16.54%. The
major change has taken place in the Fortran code, which
now comprises 36.17% of the R core packages. This is an
expected result, since the R core naturally stresses perfor-
mance, and C/C++ and Fortran are more suitable for such
tasks [19]. The core team currently comprises 14 developers,
with 32 having participated over the project’s history8,9.

8https://www.openhub.net/p/rproject/factoids
9https://www.r-project.org/contributors.html

4.2 Marketplace and Package Characteristics

4.2.1 Marketplace Overview
Both CRAN and the RForge repository reference individ-

ual packages and smaller repositories such as Omegahat, the
R Extras repository10, which contains several older packages
that are now archived in CRAN, or the Rmetrics Compu-
tational Finance group11. These were judged as too small
(ca. 100 packages in total) and niche-oriented to consider
fully in our survey, although we did consider them in terms
of package dependencies. Many Omegahat and Rmetrics
packages are also hosted in CRAN, and these were included
in our analysis as part of the latter repository. As of the
date of our data collection, the CRAN marketplace hosted
8,943 individual packages and 54,490 versions (cf. Table 2).
Out of these, 7,690 packages were displayed on the “current”
list. 5,881 of the “current” packages had previous “archived”
versions, while 1,809 were single-version packages, the oldest
going back to March 2006. Of the 46,800 versions marked as
“archived”, 5,300 belong to 1,253 packages not on the “cur-
rent” list, because they are no longer maintained or have
failed to incorporate changes of the latest R versions.

The Bioconductor marketplace hosted 3,891 individual
packages and 27,024 versions. 2,255 packages were included
in the latest version (3.2, 14.10.2015). Of these, 1104 were
function packages, 894 were annotation data packages (e.g.
genome data on various organisms), and 257 were experi-
ment data packages. Out of these “current” packages, 2,152
had previous“archived”versions, while 103 were single-version
packages, the oldest dating to April 2014. 1,636 packages
with 4,197 versions were only “archived” with no “current”
versions, of which about 86% were annotation packages, and
only 14% function packages (most of them having their last
release with Bioconductor version 2.9, November 2011 or
earlier). While the high deprecation rate of annotation data
packages (1556 or 63% of all such packages published in the
repository) is expected as the old annotation packages are
frequently discarded when they become obsolete, for the
function packages this affects only 71 or 9% of the total,
somewhat less than the approximately 14% of equivalent
packages in CRAN.

10https://www.stats.ox.ac.uk/pub/RWin/
11https://www.rmetrics.org/

Table 2: Overview of marketplaces
CRAN Bioconductor

Packages total 8941 3891
of which in “current” release 7690 (86%) 2255 (58%)
Versions total 54490 27024
of which include code changes 48950 (90%) 12124 (45%)
Packages written only in R / C / Fortran 6324 (70.7%) / 68 (0.7%) / 62 (0.7%) 3525 (90%) / 115 (3%) / 115 (3%)
Packages with dependencies 4825 (54%) 2571 (66%)
Packages used as dependencies 2043 (22.8%) 505 (13%)

Table 3: Package statistics (for Bioconductor, only function packages were considered)
CRAN Bioconductor

“Average” (median values) package in each repository
lloc/package (R / C / Fortran) 474 / 530 / 945 361 / 591 / -
number of dependencies 0 1
depth of dependency chain to the R core 2 3
number of subsequent versions 4 8
number of subsequent versions w. code changes 4 4
package age 2012-10-29 2012-03-19
release time between versions in days 129 159

“Average” package in the top 5% most downloaded packages in each repository
lloc/package (R / C / Fortran) 1128 / 1094 / 1403 1878 / 1930 / -
number of dependencies 1 3
depth of dependency chain to the R core 1 3
number of subsequent versions 17 17
number of versions w. code changes 15 11
package age 2008-02-07 2007-12-21
release time between versions in days 118 168
“Average” package among those contributed by the most active 1% of contributors in each repository
lloc/package (R / C / Fortran) 583 / 719 / 1019 1040 / 1023 / -
number of dependencies 1 2
depth of dependency chain to the R core 2 4
number of subsequent versions 7 15
number of versions w. code changes 6 7
package age 2010-06-23 2008-05-10
release time between versions in days 150 170

4.2.2 Code Characteristics
Our tools parsed the online package documentations and

downloaded and examined the documentation and code files
of the packages of both repositories. The data gathered was
then analyzed to extract metrics on the code characteristics
of the packages (code size and composition, evolution over
time), their versioning (frequency of updates and type of
changes), package dependencies, and the package authors.
We then used these metrics to acquire an overview of the
characteristics of the “average” package in each repository.
In addition, we examined separately the characteristics of
two special groups: the top 5% of the “popular” packages,
as determined by number of downloads, and the packages
contributed by the top 1% of the most involved community
members (cf. Table 3), under the assumption that popular
and well-established packages, as well as packages written
by frequent and involved contributors, would display better
qualities than the “average” package.

In contrast to the R core, the two marketplaces are domi-
nated by packages written in R, with C playing a secondary
but important role in both CRAN (25.5% of current releases,
and 44.7% of the “popular” releases, include C content) and
Bioconductor (28.7% of all function packages include C con-
tent, representing 96% of C use in the repository). A very

small percentage. Fortran has a small presence (4.4%) in
CRAN and a very marginal one in Bioconductor, and is
predominantly used by older packages.

The tendency for R code content per package in CRAN
overall displays a peak around the year 2006, and has been
slightly, but steadily declining since. This is in contrast to
Bioconductor, where it has slightly but steadily increased
since 2004. The same slight but steady increase in R code
content per package is observed in the popular packages in
CRAN and the popular function packages in Bioconduc-
tor. Average C code content per package in CRAN also
peaked around 2006, and has been very slightly declining
since, whereas in Bioconductor it has been virtually steady.
Again the picture is different for the most popular packages,
where both CRAN and Bioconductor function packages dis-
play a small but steady growth. The picture for Fortran is
similar, with overall use in CRAN declining, but a slightly
increasing use in the most popular packages; in Bioconduc-
tor its use is too limited to be of value for comparison. The
most popular packages are also larger on average than “or-
dinary” ones; the first, second, and third quartiles (Q1, Q2,
Q3) of “popular” CRAN packages are 391, 1128, and 3443 R
lloc/package, while for the repository overall they measure
190, 474, and 1132. The same holds true for C content and

Fortran content, and for the packages contributed by the
most prolific authors, although here the difference is not so
marked. The same findings are replicated in the Bioconduc-
tor repository for function packages (cf. Table 3).

A notable feature across both marketplaces is a proportion
of about 20%-25% of packages where the current versions
have less code content than their maximum code size; this
could be attributed to the overall decline in package code
content over time parallel to the increase in the number of
packages, but is also present, and in a markedly higher pro-
portion, among the “popular” packages, ranging from 34%
for CRAN R packages to 49% for CRAN Fortran packages.
Given that the “popular” packages are mostly older (slightly
more than 50% in both marketplaces were first published
before 2008) and therefore mostly unaffected by the large
number of recent packages, this feature can be explained ei-
ther as code refactoring or as the removal of features offered
by the R core or by other packages; the exact reason is left
to be determined in our future work. Somewhat counter-
intuitively, in both repositories we observed an almost lin-
ear increase of R code content per package in relation to the
number of dependencies per package.

4.2.3 Dependency Structure and Density
Dependency structure is of particular importance, since

the increased interdependency of various software elements
evident in SPLs and SECOs increases complexity and devel-
opment overhead, and reduces the efficiency and the com-
posability of the resulting software [5]. Only 54% of CRAN
packages have a dependency to other packages of the repos-
itory, and only 34.8% have more than one. The figures
remain approximately the same among the most popular
CRAN packages (50% and 31.3%), and for the packages of
the top authors (54% and 36.6%). In Bioconductor, the
overall numbers are 66% and 32% for one and more than
one dependency overall, but reach 79.2% and 59.2% for func-
tion packages respectively. This rises to 83% and 63.4% for
“popular” packages and 80.4% and 68% for “popular” func-
tion packages. Similarly, for the packages contributed by
the most active authors, 61% overall have dependencies and
only 20.1% have more than one dependency, while the pro-
portion is respectively 92.5% and 71.6% for function pack-
ages. CRAN packages depend on 1,738 individual packages,
of which 93.1%, representing 97.8% of all dependency refer-
ences, are from within CRAN itself, 5.4% are from Biocon-
ductor, and the rest from Omegahat etc. 46.9% of all these
dependencies occur only once and only 21% more than five
times. In Bioconductor, there are 383 individual packages
referenced as dependencies, of which 56.8% are from within
Bioconductor, representing 77.4% of all dependency refer-
ences, and 42.7% from CRAN. 53.4% are used once, and
only 15.4% are used more than five times.

As is evident from Table 3, in comparison to CRAN, Bio-
conductor have a consistently higher number of dependen-
cies to other packages as well as finding themselves more
often at the end of a longer dependency chain of packages be-
tween themselves and the R core. Furthermore, 16 of the top
20 Bioconductor dependencies, which represent 54.7% of all
dependency references in the repository, are from within Bio-
conductor, including the Biobase and BiocGenerics function
packages that are the equivalent to the R core’s base pack-
ages for the Bioconductor releases, biology-specific tools,
and database interface packages like AnnotationDbi.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

19961997199819992000200120022003200420052006200720082009201020112012201320142015

Figure 3: Evolution of number of dependencies per
package in CRAN (red) and Bioconductor (blue)
compared

0

1

2

3

4

5

6

7

8

9

10

19961997199819992000200120022003200420052006200720082009201020112012201320142015

Figure 4: Evolution of max. depth of dependency
per package in CRAN (red) and Bioconductor (blue)
compared

The technical dependency of the Bioconductor repository
from CRAN is thus limited to a few“big”packages (RSQLite,
ggplot2, MASS, RColorBrewer, XML, Rcpp, etc), which un-
surprisingly are also among the most common dependencies
referenced within CRAN, while the rest of the CRAN pack-
ages are used sparsely (slightly more than 50% of CRAN
dependencies in Bioconductor are only used once and 83.3%
less than five times). This is also indicated through the max-
imum depth of the dependency chain of each package, i.e.
the maximum distance between it and the platform through
intervening dependencies. In CRAN, this is relatively low
on average, but clearly higher on Bioconductor, as many
packages of the latter depend on CRAN packages.

Of further interest is the evolution of the (average) num-
ber of dependencies and the depth of dependency as depicted
in Figures 3 and 4 which shows that on the one hand the
average number of dependencies increases over time in both
repositories, albeit very slowly, and on the other that the
max. depth of dependency is stable and even slightly de-
clining, indicating once again that the “food chains” in R
are relatively short, and that the the dependency structure
is shallow rather than deep.

4.2.4 Highly Accessed Packages
In order to determine the driving factors of the CRAN

repository, we focused particularly on the 50 most down-
loaded packages in CRAN. We found that they concern well-
established (33 of them are older than 2012) packages that
offer a major extension in R capabilities; e.g. the most pop-
ular package, Rcpp, offers integration of C++. Graphics
packages (8), web technology integration packages (8), and
of course mathematical packages also have a significant pres-
ence. 39 of them have no other dependency other than the R
core, and the longest chain of dependency between a pack-
age and the core comprises 3 links. Of interest is also the
fact that this subset includes both packages which strongly
support the ecosystem as dependencies to other packages
(e.g. the graphics package ggplot2 with 271 dependencies,
or Rcpp with 235), as well as others that are not reused at
all (7) or have a single dependency (7).

We also examined the top 50 Bioconductor packages. 39
packages were older than 2012, the most popular among
them being Bioconductor infrastructure packages and the
most common annotation/database interfaces. 11 of them
had no dependencies, but 10 had five and more, and 17 had a
chain of dependency greater than 3, with the longest being
6. Again in contrast to CRAN, only three packages had
zero or one reverse dependency, and in general are far more
interconnected with the rest of the marketplace, including
all but four of the 20 Bioconductor top packages in terms of
reverse dependencies.

4.3 Community Characteristics
Using the same tools we used to extract information on the

packages, we also parsed the documentation files to extract
information on the identity of the authors who contributed
in them. Both CRAN and Bioconductor boast an expo-
nentially growing community of authors. The CRAN com-
munity comprises ca. 11,000 people or entities, while the
Bioconductor community comprises ca. 1860. About 400
authors participate in both repositories. As the author iden-
tities are real-life identities, we examined their behaviour
and tried to gain insights on any structures, categories, or
classification groups forming within the community.

In CRAN, the overwhelming majority of all authors have
contributed to one (71.2%) or two (14.8%) packages. The
majority of packages likewise has one (46.7%), two (24.7%),
or up to three (13.6%) authors. Likewise, in Bioconductor,
66.3% of authors have contributed to one package and a fur-
ther 15.4% to two packages, and most packages have one
(56.4%), two (18.9%), or three (11.3%) authors. The most
notable difference in terms of simple numbers is the degree
where the most active authors contribute to the ecosystem.
In CRAN, the top 1% of most active authors contributed in
1634 packages or 18.3% of the total, whereas on Bioconduc-
tor they contributed in no less than 2342 packages or 60% of
the repository total. This is partly explained by the fact that
most of the Bioconductor packages are annotation packages
which as described experience a very high deprecation rate,
but also because a few authors disproportionately dominate
the repository: the top 10 authors account for 43.5% of all
author references in the repository, in contrast to ca. 2.5%
for their counterparts in CRAN.

In CRAN, as the main marketplace for R, we observe that
most of the top active authors are the same as the members
of the R Foundation. Our examination also shows that the

same members have contributed to 30 of the 50 most down-
loaded packages in CRAN, 11 of which were written by a
single author. Given the fundamental nature of these pack-
ages for expanding the ecosystem’s functionality, this indi-
cates a high degree of involvement of the platform develop-
ment team, both in quantity and quality, in the marketplace
built around the platform. A similar picture emerges also
in Bioconductor, where the “Bioconductor Core Team”12 is
the second-most frequent author, and three of its members
occupy places 1, 3, and 4 as individuals. A group of 378
people was detected participating in both repositories, but
it is notable that the most active among them focus their
activity disproportionately on one of the two repositories.

We also examined the number of authors in each pack-
age and collaboration between the community members. In
CRAN, we counted 104,426 pairs of collaborating authors
from 9,431 individual authors (85.7% of the total) in 4,612
packages (51.6% of the total). It must be noted however that
one single package (spatstat) with 170 authors accounts for
28,056 pairs, and five more for further 21,424. Removing
the top 1% as outliers, the numbers are reduced to 41,996
pairs involving 8,800 authors across 4,566 packages. In Bio-
conductor, we counted 17,248 pairs between 1,471 authors
(87.4% of the total) in 1,692 packages (43.5% of the total).
After likewise removing the top 1%, 14,906 collaboration
pairs between 1,429 authors in 1,675 packages remain. It is
certainly of importance that 99% of the 1092 authors of the
most popular CRAN packages and 98% of the 191 authors
of the most popular Bioconductor packages were engaged in
collaboration with other authors, or that (disregarding out-
liers) the mean number of authors for popular packages was
3.26 in CRAN and 3.4 in Bioconductor, compared to 2.15
and 2 across the respective repositories overall. A very small
proportion (0.98% in CRAN and 0.3% in Bioconductor) of
packages contained no authors.

4.4 Prediction Models
One of the concerns driving our analysis of the R ecosys-

tem was whether the behaviour of individual packages could
be reliably modelled and predicted. Any such prediction
would naturally rely on and reveal underlying structures
among the data we have gathered. As the only relatively
“objective” common metric that allowed packages to be di-
rectly compared with each other, we chose “popularity” in
the form of downloads per day. In this section, we aim to
identify the effect strength of individual package character-
istics (i.e. the collected package metrics shown in Table 1)
as independent variables on the “popularity” of packages as
a dependent variable. We limited our examination to pack-
ages published until the end of 2013 in order to only examine
only well-established packages. In Bioconductor we only in-
cluded function packages in our analysis as annotation and
experiment data packages display qualities (in terms of code
content and lifecycle) that rendered them unsuitable for a
direct comparison with most of the CRAN packages.

First we carried out a collinearity analysis according to [2]
to exclude from the metrics we collected (cf. Table 1) those
variables that were highly correlated with other variables
Thus in CRAN the number of versions featuring code changes
was found to be highly correlated with the number of over-
all versions and was excluded; in Bioconductor the lifespan
variable was removed as it is highly correlated with the num-

12https://www.bioconductor.org/about/core-team/

ber of overall versions. This is no surprise, since as described
in 4.2.2, CRAN packages are usually updated when there is
a code change, whereas in Bioconductor due to the way we
gathered our data the version numbers are in direct propor-
tion to the package’s age. We then performed a multivariate
regression analysis using the Eureqa tool13, which identifies
the simplest mathematical formulas that can describe the
underlying mechanisms in a specific data set. A goodness of
fit measure was calculated based on the absolute deviation
of the median (assuming Xi is the prediction and Yi is the
actual value):

A(accuracy) =

∑
i |Yi −Xi|∑

i |Yi −median(Yi)|

The smaller A, the better the prediction. Based on the
work of [14], the value (1-A) represents the proportion of
the variation in the Y variable explained by the predictions.
(1-A) values in the range 0 to 0.0372 represent a small effect
size, values in the range 0.0372 to 0.208 represent a medium
effect size, and values in the range 0.208 to 0.753 represent
a large effect size. Furthermore, for good prediction models
the residuals have to be normally distributed, which indeed
is the case with our data. The influential points are the
data points whose removal will cause a large change in the
fit. They can be detected using Cook’s distance contour lines
[7]. When some points have a Cook’s distance that is larger
than 1, it suggests that the model is poor or might have out-
liers. In this case, our models do not have influential points.
We have additionally validated our models using the cross-
validation analysis to overcome the over-fitting problem [8].
Eureqa internally applies the cross-validation by diving data
into a training and a validation set, but we applied a slightly
more rigorous 5-fold cross-validation technique ([18]) that
corroborated the results obtained by Eureqa.

Table 4: CRAN prediction models
Prediction Models 1-A

532.18 + 9.29 ∗ 2
√
nV er + 2.48 ∗ e−23 ∗ aV er3 ∗ nV er4 0.12

657.27 + 0.0002 ∗ nV er2 0.08

Table 5: Bioconductor prediction models
Prediction Models 1-A

max(2.02∗e3+9.37∗e−7∗nRevDep∗dDep∗aCV er, 5.15∗
e−12∗nAut3∗nCV er2)−4.02∗dDep−4.96∗e−13∗nDep∗
nV er ∗ nCV er ∗ nRevDep2

0.42

max(nAut + 8.1 ∗mod(nRevDep, 1.13 ∗ e4), 2.7 ∗ e−15 ∗
nAut4 ∗ nCV er2)

0.35

1.51 ∗ nRevDep + 5.76 ∗mod(1.51 ∗ nRevDep, 9.99 ∗ e3) 0.31

The two best models we obtained for CRAN (Table 4)
were found to be dependent solely on the number of pack-
age versions (nVer) and the update frequency (aVer), with
a medium effect size. We also ran the analysis with the nVer
and aVer metrics excluded from the set, in which case the
best model obtained had a small effect size of 0.03. In Bio-
conductor, we obtained three models (Table 5). From these,
and particularly from the third model, which depends only
on it, it is evident that the number of dependencies on a
package (nRevDep) metric is the most relevant here. We
also examined subsets with only the “current” packages in
both repositories, or with packages that have more than one

13http://ccsl.mae.cornell.edu/eureqa

version; in both cases, we obtained very similar prediction
models in terms of accuracy and included metrics as those
already presented above. In addition, we also analysed the
subset of all packages published after 2013 for both repos-
itories. We found that the results obtained did not change
for packages published in early 2014, but that the prediction
quality becomes increasingly worse after that.

From the above results we see that the metrics found to
be relevant for CRAN do not appear to be so for the Biocon-
ductor packages and vice versa. We can only speculate why
the two repositories display such different behaviour. One
plausible reason for why versioning is not relevant to Biocon-
ductor may be the fact that we do not have access to the full
number of versions per package, which means that we cannot
reliably use the number of versions or the update frequency
to compare packages with each other, as for most packages,
these numbers coincide with the Bioconductor releases. The
strong connection between the popularity and the number of
reverse dependencies among Bioconductor packages, is also
likely to be found in the more homogeneous and structured
nature of the Bioconductor repository, which is character-
ized by a very large number of packages contributed by a
small group of authors, and by a large degree of interdepen-
dency between the most important packages and the rest of
the repository. CRAN displays a wide variety in the char-
acteristics of its member packages, so that intrinsic charac-
teristics like code size or number of (reverse) dependencies
are unable to reliably predict the popularity. A prediction
model for the behaviour of a random package in such a di-
verse marketplace as CRAN therefore appears to be unfea-
sible. Nevertheless, it is also clear that versioning can serve
an indicator of whether a package is actively maintained,
which is most often the case with relatively “successful” and
long-living packages.

5. DISCUSSION
Our examination leads to a number of insights, which are

partly confirmed by similar empirical studies in open-source
ecosystems.

Regarding RQ1 we observed that the R ecosystem con-
tinues to grow strongly, in both size and variety. In CRAN
for instance, in 2013 there were 1,113 new packages rep-
resenting in their “current” versions 1,545,387 lloc (or 10%
of the total size of the repository at the time of measure-
ment), 1379 packages with 2,322,550 lloc (15.9%) in 2014,
and 1,660 with 2,010,562 lloc (13.8%) in 2015. Thus 40% of
the marketplace’s new content was created in the last three
years alone. A similar development is discernible in Bio-
conductor as well, although not quite as pronounced due to
the high turnover of packages. At the same time, over half
of CRAN authors have joined since 2013, and over half of
Bioconductor authors since 2012. Based on the ecosystem
health metrics defined in [12], the R ecosystem displays a
high degree of productivity. It is also a good example of niche
creation ([12]), as it offers a large variety of solutions, con-
nections to many other software products and ecosystems,
and the ability to establish niche-oriented subsidiary market-
places, of which Bioconductor is a very good example. In
terms of “robustness” ([12]), we observe that although con-
tinually growing, the ecosystem has a relatively stable and
old foundation of essential components (e.g. the 50 most
used CRAN packages) which support and extend the actual
R core. We note that although the latter has also continu-

ally grown in size, it has remained relatively stable in terms
of content since the refactoring of its base package in version
2.0, and has not incorporated any marketplace packages into
the limited set of recommended packages [11]. It is around
this stable foundation that a community has emerged. In
CRAN in particular, the resulting marketplace is relatively
“shallow”, with most packages depending directly on the R

core or at most one other package; this is an indication of
the heterogeneous nature of the CRAN marketplace, with a
variety of authors and functionalities on offer. Bioconductor
offers a far more homogeneous picture, with strong interde-
pendencies between its packages. Its versioning system and
the high degree in which it is dominated by comparatively
few authors make it also closer to a separate and complete
“spin-off” product rather than simply an aggregation of its
component parts, as is the case with CRAN.

Comparing our results with a similar comparative study of
five major open-source SECOs ([3]), several interesting ob-
servations arise. Of the ecosystems under discussion (eCos,
Linux, Debian, Eclipse, and Android), the R ecosystem is
most similar to Android, in terms of organization—both
representing a tightly controlled platform with a very free
and open marketplace—as well as in terms of platform-to-
marketplace ratio: as of the date of our measurement, the R
core comprised 568,137 lloc, which represents about 3,25% of
the aggregated lloc of the“current”CRAN and Bioconductor
packages. It is also far closer to Android in its dependency
structure, with a lower percentage of packages with depen-
dencies, and a much lower percentage of reverse dependen-
cies, than any of the five ecosystems mentioned above. In
terms of package characteristics, our findings generally repli-
cate these of the earlier study ([6]). Our data reconfirms the
dominance of R code in the community-contributed pack-
ages, the greater average size of “popular” over “average”
packages, and the low number of dependencies

Concerning RQ2, our major insight is the crucial role
played by the keystone teams in supporting the marketplace
by providing packages that extend the functionality of the
R core, as it confirms that active and early involvement by
“insiders” is beneficial to the growth of the ecosystem while
allowing to keep the platform itself to a relative minimum.
Beyond this small core of dedicated editors, the great major-
ity of the community consists of single-package participants.
Of interest is also the community’s division between two
marketplaces. While there is a considerable number of users
contributing to both marketplaces, there is a clear tendency
for the two marketplaces to be maintained/driven by sepa-
rate communities, or at least for authors to concentrate their
attention more on the one than the other.

In determining the criteria for a “successful” package, in
answer to RQ3, we settled on three characteristics that, in
combination, might provide suitable indicators: popularity
(indicated by the number of downloads), reuse (indicated
by the number of dependencies from the package and/or the
existence of spin-offs), and maintenance (indicated by a reg-
ular update schedule and of course the package’s survival).
As in the previous study of the R ecosystem ([6]), a strong
correlation between package popularity and its number of
versions is also evident (and strengthened further through
the results of our prediction model presented in Section 4.4),
while average package size appears to be relatively stable.
As described above, we have found a strong relationship be-
tween maintenance and popularity.

1

100

10000

1 10 100

Figure 5: Downloads/day per number of dependen-
cies upon a package in CRAN

Figure 5 also indicates a link between popularity and the
number of dependencies on a package, which is expected as
these packages are necessarily downloaded whenever another
package dependent on them is installed. Although there
are outliers in both directions, “popular” packages also tend
to be significantly larger, and presumably feature-rich, in
comparison to “average” packages. No definite assertions
regarding RQ3 can be made, but there are clear indications
that well-established, frequently updated packages written
by experienced and involved authors tend to dominate the
field.

6. THREATS TO VALIDITY
The main threat to the validity of our conclusions de-

rives from the limited nature of our data. Documentation
was often missing or contained format and content errors,
which we tried to address by spot-checking our data set and
applying corrections for the errors and variations thus dis-
covered. The automated parsing of author names in partic-
ular is likely to have missed some names or counted some
variants of the same name as different authors, and was un-
able to distinguish the scale and importance of each author’s
contribution to a package. For this, a more extensive study
incorporating e.g. commit data from GitHub would be re-
quired.

The use of downloads as a “popularity” metric is also less
than ideal, as many packages are downloaded as dependen-
cies to other packages. However, as demonstrated, R pack-
ages have few dependencies and few of them are used as
dependencies to other packages, meaning that this concern
does not apply to a very large number of packages. In addi-
tion, most of the dependencies are to the“essential”packages
that offer some major extension of functionality, meaning
that these packages are likely to have been downloaded al-
ready with the very first additional packages installed by
any R user.

For dependency analysis, we considered only the (non-
core) packages explicitly mentioned in the “Depends” and
“Imports” fields of the documentation and needed for the
package to work, and not“soft”dependencies like“Suggests”,
which include a packages that might be required for addi-
tional features. In addition, we did not examine the code

content in depth by implementing a parser to determine
functions, but only recorded changes in code size.

The main limitation on our work came from the narrow
origin of the data obtainable for Bioconductor, where our
version data is incomplete due to the repository’s versioning
system. A more complete picture could have been obtained
by consulting the package source in repositories like Github
or the package homepage, but as the great majority of pack-
ages did not contain such information we decided to leave
this for a more detailed study of the packages in the future.
In addition, Bioconductor download data were limited to
the previous 12 months, and did not distinguish between
versions.

7. CONCLUSIONS AND FUTURE WORK
In this work, we presented a detailed analysis of the R

ecosystem and analysed key success factors for success. The
main conclusion is the crucial role of the keystone, even in
so open and decentralized an ecosystem as R, in facilitat-
ing the expansion of the ecosystem and laying much of the
groundwork for the marketplace and community to grow on.
We also have seen that despite a huge increase of the ecosys-
tem in size over time, the basic characteristics of the ecosys-
tem components (dependency connectivity, popularity, etc.)
tend to remain stable, and that the degree of connectivity
between ecosystem members is proportional to (and indica-
tive of) the homogeneity of the ecosystem. Even though our
results derive from the study of a free, open-source ecosys-
tem, we consider these insights generally applicable even for
more closed, company-driven ecosystems.

Based on our presented work, we will extend our research
to cover other similar free, open-source ecosystems (for ex-
ample, Ruby or Python) as well as commercial ecosystems
and closed industrial ecosystems. In this way we will be able
to compare our findings across a variety of paradigms and
determine which factors impact the evolution, structure and
NFRs of an ecosystem as a whole and of its software com-
ponents in detail. These insights will be helpful in testing
the various SECO models proposed at times in literature,
and in gathering a variety of strategies and recommended
practices, based on real-life practice and experience, to be
applied in ecosystem governance.

8. REFERENCES
[1] O. Barbosa and C. Alves. A systematic mapping

study on software ecosystems through a
three-dimensional perspective. In M. A. C.
Slinger Jansen and S. Brinkkemper, editors, Software
Ecosystems: Analyzing and Managing Business
Networks in the Software Industry, pages 59–81.
Edward Elgar Publishing, 2013.

[2] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression
Diagnostics: Identifying Influential Data and Sources
of Collinearity (Wiley Series in Probability and
Statistics). Wiley-Interscience, 2011.

[3] T. Berger and S. Nadi. Variability models in
large-scale systems: A study and a reverse-engineering
technique. In Software Engineering & Management
2015, Multikonferenz der GI-Fachbereiche
Softwaretechnik (SWT) und Wirtschaftsinformatik
(WI), FA WI-MAW, 17. März - 20. März 2015,
Dresden, Germany, pages 80–81, 2015.

[4] J. Bosch. From software product lines to software
ecosystems. In Proceedings of the 13th International
Software Product Line Conference, SPLC ’09, pages
111–119, Pittsburgh, PA, USA, 2009. Carnegie Mellon
University.

[5] J. Bosch and P. Bosch-Sijtsema. From Integration to
Composition: On the Impact of Software Product
Lines, Global Development and Ecosystems. Journal
of Systems and Software, 83(1):67–76, 2010.

[6] B. A. Daniel M. German and A. E. Hassan. The
evolution of the r software ecosystem. In Proceedings
of the 2013 17th European Conference on Software
Maintenance and Reengineering, CSMR ’13, pages
243–252, Washington, DC, USA, 2013. IEEE
Computer Society.

[7] J. J. Faraway. Practical Regression and Anova using
R. July.

[8] A. Field, J. Miles, and Z. Field. Discovering Statistics
Using R. SAGE Publications, 2012.

[9] G. K. Hanssen. A longitudinal case study of an
emerging software ecosystem: Implications for practice
and theory. J. Syst. Softw., 85(7):1455–1466, July
2012.

[10] G. K. Hanssen and T. Dyb̊a. Theoretical foundations
of software ecosystems. Proceedings of IWSECO,
pages 6–17, 2012.

[11] K. Hornik. R FAQ.
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html,
2015.

[12] S. Jansen. Measuring the health of open source
software ecosystems: Beyond the scope of project
health. Information and Software Technology,
56(11):1508–1519, 2014. Special issue on Software
Ecosystems.

[13] S. Jansen and M. A. Cusumano. Defining software
ecosystems: A survey of software platforms and
business network governance. In M. A. C.
Slinger Jansen and S. Brinkkemper, editors, Software
Ecosystems: Analyzing and Managing Business
Networks in the Software Industry, pages 13–28.
Edward Elgar Publishing, 2013.

[14] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, and D. I. K.
Sjøberg. Systematic review: A systematic review of
effect size in software engineering experiments. Inf.
Softw. Technol., 49(11-12):1073–1086, Nov. 2007.

[15] K. Manikas and K. M. Hansen. Software ecosystems -
a systematic literature review. J. Syst. Softw.,
86(5):1294–1306, May 2013.

[16] D. G. Messerschmitt and C. Szyperski. Software
Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, 2005.

[17] A. F. Slinger Jansen and S. Brinkkemper. A sense of
community: A research agenda for software
ecosystems. In Software Engineering - Companion
Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, pages 187–190, May
2009.

[18] J. Starkweather. Cross Validation techniques in R: A
brief overview of some methods, packages, and
functions for assessing prediction models. 2012.

[19] H. Wickham. Advanced R. Chapman & Hall/CRC The
R Series. CRC Press, 2015.

