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In the context of software development, models provide an abstract representation of a software
system or a part of it. In the software development process, they are primarily used for documenta-
tion and communication purposes in analysis, design and implementation activities. Model-Driven
Engineering (MDE) further increases the importance of models, as in MDE models are not only
used for documentation and communication, but as central artefacts of the software development
process. Various recent research approaches take the idea of using models as central artefacts one
step further by using models at runtime to cope with dynamic aspects of ever-changing software
and its environment. In this article we analyze the usage of models at runtime in the existing re-
search literature using the Systematic Literature Review (SLR) research method. The main goals
of our SLR are building a common classification and surveying the existing approaches in terms
of objectives, techniques, architectures and kinds of models used in these approaches. The contri-
bution of this article is to provide an overview and classification of current research approaches
using models at runtime and to identify research areas not covered by models at runtime so far.

1 Introduction

In traditional software engineering, the development process is divided into several activities or phases
reaching from requirements specification over software construction to deployment and maintenance.
These software development phases and software execution are strictly separated from each other,
and modification of running software is done by re-deployment of the changed software components,
e.g. in binary or bytecode form. However, in recent years, the distinction of software development
and execution blurs, for example because modern applications have to adapt themselves according to
changing requirements and execution environments while they are up and running [104]. A key idea
to overcome limitations in flexibility is to reuse model artefacts from the software development phases
at runtime [22, 36]. Information of the running system is fed back to the software models to support
reasoning at runtime and to take corrective actions at the model level. Furthermore, performing changes
at the model level of those models at runtime improves the synchronization between design artefacts
and the implementation of the software system [109]. To realize such a connection between a running
system and its models, the running system needs a self-representation of itself based on models which
are causally connected to it [36, 167].
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Based on the mentioned utilization of models, a runtime model is defined as abstraction of a run-
ning system that is being manipulated at runtime for a specific purpose [29]. An alternative definition
is given by Blair et al. [36] as causally connected self-representation of the associated system that
emphasizes the structure, behavior, or goals of the system from a problem space perspective.

Different challenges might arise when using software models at runtime to realize dynamic soft-
ware system behaviour. For instance, one might be required to choose an adequate adaptation strategy,
apply introspection mechanisms to running systems, check the formal correctness of models, compare
models to calculate adaptation operations, or transform models to simplify reasoning, to name just a
few issues that must be addressed. Since there is a wide range of different software models and many
application scenarios for models at runtime, a need for classification in terms of objectives, techniques,
architectures and kinds of models used at runtime arises.

In this article we inspect the existing research literature which tackles the topic of models at run-
time and extract information regarding the aforementioned classification. We accomplish this by per-
forming a Systematic Literature Review (SLR) [152,153] consisting of an initial search phase, multiple
filter phases with well-defined selection criteria and a final classification phase. For each classification
we present relevant approaches found in our literature review to provide a self-contained overview of
the topic. Regarding selection criteria, we categorized the approaches into included, non-detailed and
excluded literature, where approaches of the non-detailed category are presented only in short form
for the sake of completeness. The result of our SLR is an overview of current research approaches
using models at runtime, as well as a common classification scheme focussing on the objectives, tech-
niques, architectures and kinds of models used in these approaches. We also categorize the actions
after runtime model analysis documented in the literature, as an important aspect of runtime model
architectures (i.e., how runtime models are connected to the running system). Finally, we summarize
the existing empirical evidence provided for models at runtime in the literature and identify research
areas not covered in detail by models at runtime so far.

This article is structured as follows: In the next section we will describe our research method to
identify the relevant literature using models at runtime. In Section 3 we present our research results
by explaining the identified classification and describing relevant approaches according to this clas-
sification. In addition, we discuss possible actions after model analysis as well as empirical evidence
of our identified runtime model approaches. In Section 4 we discuss our literature research method
and results in terms of possible inaccuracies, precision of the results, possible distortions by selection
criteria, perspectives and limitations of this study. Finally, we conclude in Section 5.

2 Research method

The Systematic Literature Review (SLR) method is a well-defined and rigorous method of identifying,
evaluating, and interpreting all available research relevant to a particular research question, topic area,
or phenomenon of interest [152]. SLRs aim to present a fair, unbiased, and credible evaluation of a
particular research topic [152]. This research has been conducted as an SLR by following the guide-
lines of Kitchenham et al. [152, 153], who propose three main phases: Planning the review (identify
the main rationale for undertaking the review and develop a review protocol), executing the review
(conduct the review by executing the planned review protocol from the previous phase) and reporting
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the review (present the results of the review and its dissemination to the interested parties). Phases
involved in the SLR appear to be sequential but they are usually iterative, e.g., search terms, inclusion
criteria, and exclusion criteria can be refined while the review is in progress. In this section, the review
plan (first phase) and the review execution (second phase) of our SLR are described. The outcomes of
the third phase, the reporting phase, are presented in Section 3, where we report our research results,
and in Section 4, where we discuss these results.

We first introduce our general search strategy and then the research questions to be answered by
our literature analysis. Next we define our literature selection criteria to extract relevant publications
regarding models at runtime. We then give a detailed insight into our literature selection process. The
key idea of finding relevant literature is to perform an initial search, filter the results, check references
of selected publications and finish the search by grouping and duplicate elimination.

2.1 Search strategy

Our SLR is based on an electronic search in two publication databases: The Association for Comput-
ing Machinery (ACM) Guide to Computing Literature (accessed through the ACM Digital Library1)
and the IEEE Xplore Digital Library2. It aims to provide a comprehensive coverage of bibliographic
citations from all major publishers in the field of computing. At the time of this SLR, the ACM Guide
to Computing Literature contained 2,150,450 and the IEEE Xplore Digital Library 3,511,057 biblio-
graphic records. The methodology, which is exploited for comprehensive coverage, is to perform an
advanced search in these databases for accumulating bibliographic citations from the major publishers
in computing. The search was based on the titles and abstracts of the articles. The rationale behind us-
ing this particular method is to find the biggest share of scientific citations that are relevant to answer
the specific research questions listed below.

This search strategy might inevitably miss some useful citations, for instance because some minor
publishers are not included in these databases and some (especially) older publications have a very
short or not very meaningful abstract. In response to this problem, so-called “snowballing” [44] (i.e.,
following the references of articles found during the search) is performed in an iterative way to identify
additional citations. That is, the bibliographies of every selected publications are checked for useful
articles that are missed in the initial search. Snowballing is performed until a convergence is reached
and no more new relevant articles are found.

2.2 Research questions

By performing a systematic literature review consisting of multiple phases we are looking for answers
to the following research questions:

• For what purposes are models used at runtime?
• Which techniques and kinds of models are used when processing models at runtime?
• Which problems are addressed by using models at runtime?
• Which architectures exist for processing models at runtime?

1see: http://dl.acm.org/
2see: http://ieeexplore.ieee.org/
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• Which research methods are most frequently used for evaluating runtime model approaches?
Which empirical evidence has been reported?

Answers to these research questions help us to provide an overview of current research approaches and
to identify research areas not covered in detail by models at runtime so far. Furthermore, answering
the aforementioned questions enables us to build a common classification for objectives, techniques,
architectures and kinds of models used at runtime. We introduce our resulting classification in Section 3
when presenting our research results.

2.3 Literature selection criteria

To conclude efficiently about our research questions, we defined selection criteria which help to decide
if a publication will be excluded, included (covered in detail), or covered in less detail when apply-
ing our search process. Table 1 gives an overview of these selection criteria. Regarding snowballing
mentioned in the table, we included related work from all publications which are covered in detail.

Inclusion criteria (covered in detail)

• Articles found in the ACM Guide to Computing Literature or IEEE Xplore Digital Library.
• Articles found through snowballing till August 2013, the time this study was conducted.
• Articles published in peer-reviewed journals, conferences, and workshops.

Inclusion criteria (covered in less detail)

• Doctoral dissertations.
• Publications that use models at runtime but do not discuss the runtime aspects of them

(e.g., execution of a static state machine model).
• Publications that contain models not related to software development

(e.g., mathematical models, thermal models of hardware).
• Summary or survey publications because of their reduced level of detail

(we discuss those in Section 3.9, if appropriate).
• Publications focussing on user interface generation/adaptation, as they are too specific.

Exclusion criteria

• Books, web sites, technical reports and master theses.
• Publications without abstracts.
• Publications in which the usage of runtime models is not clearly understandable

(e.g., they have a different focus and the model usage is covered in insufficient detail).

Table 1: Overview of the applied literature selection criteria
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2.4 Literature search process

The literature search process is divided into six steps: An initial search phase, two filtering phases, a
snowballing phase, an elimination phase and a finalization phase. The process is depicted in Figure 1
and shows all interim results between the phases.

In the initial search phase an appropriate search string had to be found, capturing all relevant pub-
lications regarding models at runtime. Our search string is based on the Models@run.time workshop
proceedings [26–31], the publications presented in the Dagstuhl Seminar 11481 [15] and the publica-
tions in special issues concerned with models at runtime (the last from March 2013 [46]). Our goal
was that every relevant paper presented in this workshop would be covered by our search. As a result,
the following search terms either in abstract or title of a publication led to an immediate inclusion in
the search results:

P = {models at runtime, models for runtime, runtime models}

Alternatively, a conjunction of the following terms in the abstract led also to inclusion:

Q = {model, metamodel}

R = {runtime}

S = {dsl, model-driven, metamodel-driven, model-based, dsml, system at runtime, application

model, abstract model, engineering model, architectural model, feature model, behaviour model,

model of system, inferred model, dynamic model, runtime state}

Hence, the overall search string can be combined in the following way:

Result = P ∨ (Q ∧ R ∧ S)

We were aware of multiple spellings of words and abbreviations when applying our search string
(e.g., runtime, run-time, run time). This led to a search string with a total length of 1495 characters.
The initial search ended on 7th August 2013 and yielded 754 publications in the ACM Digital Library
and 465 publication in the IEEE Xplore Digital Library.

Initial
search

August 2013
ACM: 754 hits
IEEE: 465 hits

Abstract
filtering

215 remaining

Detailed
filtering

119 detailed
75 not detailed

21 dismissed

Snowballing
100 new:
- 16 not detailed
- 27 dismissed

Elimination Remove duplicates
Strict selection

Finalization

Classification,
Grouping:
- 122 detailed
- 87 not detailed
- 33 dismissed

Figure 1: The literature search process
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The second phase addressed the elimination of duplicates introduced by the two publication
databases and the filtering of the publications by applying the aforementioned selection criteria on
their abstracts (as far as possible). In case of uncertainty regarding inclusion/exclusion, articles were
included for further analysis in subsequent phases. In this phase a first classification was created
as a basis for further refinement throughout the literature search process. The filtering yielded 215
remaining publications.

In the next phase a more detailed filtering was applied by inspecting the whole content of the
remaining 215 publications, applying the literature selection criteria and classifying them into three
groups: 119 detailed (clearly fitting the topic), 75 not detailed (fitting the topic, but insufficiently
detailed or too specific) and 21 dismissed (not fitting the topic). Furthermore, the initial paper classifi-
cation of the previous phase was updated for further refinement.

The fourth phase addressed the analysis of the references of the publications inspected in detail.
This snowballing phase added 100 new papers to our search results, out of which 16 where categorized
as not detailed and 27 as dismissed.

The first step of the next phase was to remove duplicates introduced by the snowballing phase.
In the second step we revised our aforementioned group clustering by strictly applying the selection
criteria to papers included under uncertainty before.

In the last phase we organized our overall search results by grouping same approaches which were
published multiple times, leading to distinct groups consisting of 122 detailed, 87 non-detailed and
33 dismissed publications. Studies having multiple published descriptions (collected in one distinct
group) are included only once by using the most detailed and up-to-date version of the study. After
applying elimination and finalization only 15 out of the 100 papers added by snowballing remained in
the results, giving us confidence that our search string captured the majority of the relevant literature.

3 Research results

In this section we outline the problems tackled by models at runtime as well as the identified objectives,
techniques, kinds of models and architectures used in combination with runtime models. Furthermore,
we discuss summary and survey publications identified by our literature research in Section 3.9.

3.1 Problems

In our SLR, we identified several problems to be resolved by the usage of models at runtime. Figure 2
gives an overview of these problems by grouping them into different categories. The categories are
described top-down according to the picture in the text below. In the discussion of the approaches in
the subsections below, we explain for the individual approaches which of these problems they address.

Inaccurate predictions result from unknown requirements evolution [32, 215, 227, 274] and asso-
ciated change impacts as well as difficult performance predictions. In a changing environment, it is
no easy task to monitor and visualize the impact of adaptation rules which are applied when a system
should meet new requirements. Models at runtime help to visualize such change impacts by analyzing
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Problems addressed by models at runtime

Combinatorial explosion of system variants

Checking or enforcing
rules or constraints

Error localization

Hand-written artefacts,
manual human actions Low reusability

Low maintenance
Low abstraction

Changing/heterogeneous
environments

Inaccurate predictions

Performance

Change impacts
Requirements evolution

Figure 2: Problems addressed by models at runtime

affected software parts at the model-level and checking if specified application constraints have been
violated [261]. Furthermore, interconnected runtime models can be traversed to highlight influenced
models and their elements if one model changes at runtime [229]. Changing and heterogeneous en-
vironments also complicate predictions, as they add some level of uncertainty regarding stability and
satisfaction of context-related constraints. In addition, to cope with these changing and heterogeneous
environments, often flexible adaptation is needed by system engineers [119], but many approaches mix
adaptation logic with application behaviour by using conditional expressions and other low-level pro-
gramming features, leading to bad scalability. Models help to increase such needed flexibility in adap-
tation to tackle problems of inaccurate predictions and changing environments, e.g. by using queueing
models and Markov models to predict timing and future states [49,53,83,106,106,185], Dynamic De-
cision Networks for enhanced decision-making in self-adaptive systems [23,24] or architecture models
to analyze system-wide change impacts [103]. Increased adaptation is one main objective of models at
runtime and is discussed in Section 3.3.1.

Creating hand-written artefacts or performing other manual human actions is often time-
consuming as well as error-prone and leads to low abstraction, maintenance and reusability. A
common solution to solve these problems is to use MDE techniques to auto-generate software arte-
facts and reconfiguration scripts responsible for switching between runtime configurations [89, 183].
Architecture models are an example of information sources when calculating reconfiguration actions,
especially in combination with model comparison techniques to compare a target architecture model
with the model of the current system configuration. Model comparison and other model processing
techniques are discussed in Section 3.4.

As for error localization, it is hard to predict where errors will occur in highly dynamic envi-
ronments. Runtime models provide system operators with enhanced capabilities to localize faults in
behavioural models like workflows [196]. Beyond that, with runtime models faults can not only be
localized, but also eliminated by architecture-based self-repair [54].

A problem commonly addressed by models at runtime is checking or enforcing rules or constraints.
That is, the model contains or implies rules or constraints, such as consistency requirements with the
running system or other artefacts or business policies that should not get violated. Techniques operating
on runtime models are used to check (monitor) or even enforce these rules or constraints at runtime.
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Another problem addressed by models at runtime is the combinatorial explosion of possible sys-
tem configurations when calculating the most rewarding adaptation plan [179–182], which can further
be complicated when checking a great number of model elements at runtime because of increased
execution time and memory occupation [83]. Combinatorial explosion can be tackled by using aspect-
oriented programming to model system variation points instead of concrete configurations [179–182].
Feature models describe a hierarchical composition of system parts and declare them either as manda-
tory or optional, simplifying adaptation at runtime by reducing the set of possible system part combi-
nations. Filieri et al. [83] propose a pre-computation step regarding Discrete Time Markov Chains to
tackle the problem of state explosion which occurs in analyzing the model. They use transition vari-
ables that are the parameters of the model whose value becomes known only at runtime. The output
produced by the pre-computation step is a set of symbolic expressions which can easily be evaluated at
runtime by replacing the variables with the real values gathered by monitoring the system, thus shifting
the cost of model analysis to design time. Adaptation scenarios and strategies are discussed in detail
in Section 3.3.1.

3.2 Classification overview

Early approaches using models at runtime focussed on architecture-based mechanisms to realize mon-
itoring and adaptation [97,98,100]. The ideas further evolved from early middleware-based adaptation
approaches [65, 67, 76, 154, 211] to other topics like error handling [137, 147] and model execution
(see Section 3.4.6). Recent approaches focus on goal- and requirement-oriented aspects [55,215,260].
There has been a recognizable shift from simple adaptation interests to wider application fields and
more goal-oriented and user-centric approaches over the last years [32] (see Section 4.4). This shift
leads to a great variety of objectives (e.g., adaptation, monitoring, error handling) which are achieved
by using different kinds of models at runtime (e.g., architectural models, goal models). Architectures
and techniques must be selected accordingly to support the realization of the objectives with their
corresponding kinds of models.

Since we not only want to identify research areas not covered so far, but also provide a comprehen-
sive overview for researchers who are new to this topic, we decided to analyze the mentioned aspects
(objectives, techniques, kinds of models, architectures) because they bring answers to fundamental
questions:

• What do we need models at runtime for? (objectives)
• Which models can be used at runtime? (kinds of models)
• How can we realize systems using models at runtime? (techniques)
• Where must models reside to support the running system? (architectures)

A discussion about the interconnections of these aspects is given in Section 4.2. Figure 3 gives an
overview of the classification according to these aspects. Each shown aspect (architectures, kinds,
techniques, objectives) is further divided into several parts to refine the description of the associated
aspect. These parts are covered in detail in the subsequent subsections. That is, the figure serves as an
overview of our research results derived from our search phase described in Section 2.4.
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Model-aware
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Local
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Figure 3: Overview of objectives, techniques, kinds and architectures when using models at runtime

3.3 Objectives

In this section we observe the objectives pursued when using a system which utilizes models at run-
time. We extracted the objectives from approaches identified by our literature review by collecting the
objectives stated by the authors and grouping similar objectives into classes. This process resulted in
seven classes of objectives addressed by runtime model (see Figure 3):

• Adaptation: Change the system according to changing environment and requirements.
• Monitoring, simulation, prediction:

- Monitor the system by using models which help to trace application behaviour.
- Simulate changes at the model level to analyze their consequences.
- Predict system properties like performance by analysis at the model level.

• Abstraction: Interact with the system by using models which are closer to the problem space.
• Platform independence: Provide platform-independent views on the system under observation.
• Consistency and conformance:

- Avoid contradictions between different software parts and/or (development) artefacts.
- Ensure conformance to other models or integrity constraints in general.

• Policy checking and enforcement: Adhere to policies like (real-)time and security regulations.
• Error handling: Enable model-based debugging, fault localization, tracing and self-healing.

In the following sections we will discuss each of the classes in detail and conclude with an overview
of approaches related to each class of objectives (we put abstraction and platform independence into a
single section since they are closely related).
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Adaptation

Strategies
Parameter adaptation
Structural adaptation
Autonomic control loop

Scenarios

Change impact analysis
QoS enforcement
Contextual change
Requirements change
User interface adaptation

Figure 4: Adaptation scenarios and strategies

3.3.1 Adaptation

One main objective of using runtime models is to ease adaptation in environments with continuously
changing requirements. When adapting a system, one challenge lies in proving the correctness of the
adaptation within a composed system. Inverardi et al. [146] propose a theoretical assume-guarantee
framework which analyzes if certain invariant properties are violated. Their framework can be applied
at different levels of abstraction spanning from code to software architecture. For the development pro-
cess itself, Inverardi and Mori [142,145] propose a software development process to support consistent
evolutions with the help of context models, features models and a control loop (see Sections 3.5 and
3.4.1, respectively). Goldsby et al. [115] propose AMOEBA-RT, a model checker for adaptive systems
which collects run-time state information via aspect-oriented techniques and checks for violations of
formal specifications. Like many other approaches, AMOEBA-RT uses an automaton-based approach
to determine whether the runtime information satisfies certain properties specified in temporal logic
(model conformance is discussed in Section 3.4.3).

In our literature search we spotted five major scenarios addressed by adaptation through runtime
models: User interface adaptation, requirement changes, contextual changes, QoS enforcement and
change impact analysis. These scenarios and appropriate strategies to realize system adaptation are
depicted in Figure 4. The scenarios are described in subsequent paragraphs, while the strategies relate
to techniques and are discussed below in Section 3.4.1.

User interface adaptation

User interface adaptation addresses dynamic user interface interaction, layouting and management of
multiple system perspectives. Models at runtime help to realize such scenarios by describing pos-
sible interaction flows, layout constraints and system parts to be personalized by the user. Garzon
and Cebulla [101] use a combination of three models to support automatic adaptation by learning
from user interactions: A system model (describes internal behaviour), an interaction model (describes
human-machine-interaction) and a personalization model (links system and interaction model and sets
constraints for personalization). Other approaches use user interface adaptation for generation of mul-
timodal interaction [16, 80, 82, 195, 245], layouting/scaling/sizing [34, 81, 254], multiple system per-
spectives [237], user interface synchronization [37], self-explanation of user interfaces [91, 95] and
contextual user interface adaptation [38, 68, 96, 222, 236, 270]. As mentioned earlier, for these ap-
proaches we will not go into detail.
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Requirements and contextual changes

Requirements and contextual changes address needed modifications to meet requirement evolution
and changes in operational environments. Main challenges in triggering adaptation lie in finding out
alternative system configurations and analysis of found configurations regarding benefits compared to
the current system state. Models at runtime help to decrease the amount of possible system configura-
tions by modeling variable parts of the system at runtime [142, 145]. An example for such models are
feature models which describe a hierarchical composition of system parts and declare them either as
mandatory or optional, simplifying adaptation at runtime by reducing the set of possible system part
combinations. For the adaptation process itself, the strategies depicted in Figure 4 are used to drive the
transition between system configurations. Section 3.4.1 gives detail descriptions of these strategies.

A requirements-aware system needs a formal representation of the requirements to process them at
runtime. The requirements language RELAX [3, 267] is a declarative requirements language for self-
adaptive systems which supports the explicit expression of environmental uncertainty in requirements.
RELAX is based on fuzzy branching temporal logic and provides modal, temporal and ordinal oper-
ators to express uncertainty. Example operators are SHALL to define functionality the system must
always provide (invariants) and MAY/OR to define alternatives.

To manage runtime adaptation, Georgas et al. [103] build a graph of a system that captures his-
torical configurations and corresponding behaviours of a system. The adaptive process is augmented
with meta-data such as frequency of entered configurations and how long a system remained in par-
ticular configurations. An architecture runtime model supports the system and is responsible for the
initial instantiation of the system and its future evolution. The historical graph consists of system con-
figurations (nodes) and transitions (edges) between these configurations whereas the transitions store
architectural differences between configurations in a bidirectional way, thus enabling rollback and
rollforward operations. A similar rollback mechanism is proposed by Barbier [18].

To meet requirements and contextual change scenarios, Floch et al. [85] use a middleware-based
approach in combination with architecture runtime models to control the adaptation mechanism. The
middleware transforms architecture models into runtime representations and finds all alternative com-
ponents that can be plugged into component frameworks, building a set of possible system variants.
The utility of each variant is calculated and reconfiguration is triggered if a variant shows higher profit
than the current configuration. This enables the application to adapt itself to changing user needs and
operating environments, demonstrated by the authors with mobile applications. A similar approach is
used by Taconet et al. [246] which uses new context data collectors dynamically. Context-awareness
models are used and updated at runtime to fulfil new application requirements. MDE is used for guid-
ing context-aware designers in the specification of the monitoring of distributed context sources.

Elkorobarrutia et al. [78] use state machine models as a basis for component reconfiguration to
enable self-healing mechanisms. In their approach, state machine models serve as interfaces between
a state machine interpreter and the component (seen as blackbox), enabling manipulation of the model
at runtime to alter component behaviour. McQuiggan and Lester [175] realize intelligent tutoring sys-
tems by using dynamic self-efficacy models containing data from a special feedback process. Nguyen
and Colman [192] use feature models at runtime to enable web service customization for customers,
leading to a manageable number of system configurations and flexibility in requirement changes.
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Non-functional requirements

Performance Reliability Efficiency Effectiveness Security Interoperability Usability

Figure 5: Excerpt from non-functional requirements that are tackled by models at runtime

Inverardi and Mori [143, 144] propose a framework to augment a system with new requirements
arising at run-time. A requirement evolution is declared inconsistent whenever new requirements do
not interact correctly with currently deployed ones. At design time, a context model is defined which
describes the environment that is beyond the control of the system but may influence future system
evolutions. An automatic process updates the model at runtime to reflect the current environmental
situation. When a new requirement is specified, a new system variant is compiled. By using reflection,
the new variant is loaded and the entry method invoked to put the new variant in action.

As pointed out in Section 3.2 and discussed in Section 4.4, recent research approaches use high-
level goal- and requirements models to drive the adaptation of the system. Section 4 gives an overview
of approaches using these kinds of models to cope with requirements changes during runtime.

Quality-of-Service enforcement

In the scenario of Quality-of-Service (QoS) enforcement, the satisfaction of non-functional properties
is addressed, e.g. a certain level of performance or reliability. This is especially required when dealing
with volatile operating environments and concrete timing constraints. By using models at runtime,
possible future states of the system can be predicted when environment changes occur, and such states
serve as a basis to analyze if required conditions can be met in case of environmental change. QoS-
related models often rely on stochastic calculations and outline data flows between system components
and dynamic system behaviour to enable simulation and point out possible bottlenecks. Examples of
such models are queueing models (predict timing properties), Markov models (analyze probability
of future states) and runtime representations of architecture models. Figure 5 gives an excerpt from
non-functional requirements which are satisfied through system adaptation. The satisfaction of these
non-functional requirements is discussed in the following paragraphs.

In case of the non-functional property performance, Caporuscio et al. [49], Ardagna et al. [14]
and Ghezzi and Tamburelli [106] use Queueing Networks as models to manage performance satis-
faction. In the approach of Ardagna et al. [14], a monitor collects data of the executing system and
checks the model if non-functional requirements are violated. Based on the collected results, the ap-
proach supports reasoning on adaptation strategies. To ensure reliability, Cardellini et al. [51] meet
QoS requirements in volatile operating environments by using a behavioural model of the system up-
dated at runtime by a monitoring activity. This model is used to calculate a re-arrangement of available
services to fulfil performance and reliability requirements. Parameters for such a re-arrangement are
derived from Service-Level-Agreements (SLAs) negotiated with service clients and providers. Cali-
nescu et al. [47] propose the framework QoSMOS which utilizes Markov models within a feedback
loop (see Section 3.4.1) to determine quantitatively the reliability and performance quality metrics of
service-based systems. The monitoring part of the loop determines performance, reliability and work-
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load of services and updates Markov models accordingly. The results are analyzed with the help of
specified QoS requirements and changes are planned in terms of changing the implemented workflow
or modifying resource allocation. These changes are then executed by modifying parameters, starting,
stopping or migrating virtual machines or using dedicated resource management mechanisms.

For efficiency and effectiveness, an example is the MADAM middleware which automates adap-
tation decision-making in reflective component-based systems to maximize the utility of an applica-
tion, e.g. through minimum resource consumption, maximum resource consumption (likely to be best
performance) or maximum efficiency (ratio utility to resource consumption) [7, 8]. The approach is
described in more detail in Section 3.6.3. Security policies can be enforced with runtime models like
graphs [198] or safety models [219, 220] which help to manage the adaptation of the running system
so the policies stay enforced in evolving system configurations. Policy checking and enforcement is
further discussed in Section 3.3.5.

Interoperability can be achieved through adaptation by dynamic generation of mediators which
translate actions of a networked system to actions of another networked system [25, 132]. Reflec-
tive middleware like OpenORB [12, 67] or ReMMoC [118, 120] enable inspecting and adapting com-
munication and interoperability functionalities to cope with distributed changing environments. Star-
link [41, 166] and OverStar [121] offer similar interoperability mechanisms by using abstract network
messages and overlay networks. Dynamic code generation and middleware approaches are further
discussed in Section 3.7.4 and 3.6.4, respectively.

Usability improvement is mainly achieved by dynamic adaptation of user interfaces. As described
in Section 2.3, we are not going into detail about these approaches. Table 2 gives an overview of
approaches relying on user interface adaptation.

To improve tool support for non-functional requirements management in general, Röttger and
Zschaler [213] propose the use of context models to make the specification of non-functional mea-
surements independent of their application in concrete system specifications. Context models allow
an independent person – the measurement designer – to provide measurement definitions at different
levels of abstraction. A measurement is a non-functional dimension that can be constrained to describe
a non-functional property. Transformations between context models (that is, refinement of the models)
together with measurements and the context models themselves can then be used by the application
designer who is able to focus on the business logic when developing an application.

Other approaches use models in combination with dynamic service selection [186], QoS mode
switching [63], parameter/component variation [7, 8, 50], OCL constraints [139], negotiation of QoS-
aware components [176] and distributed resource measuring [283] to cope with QoS requirements.
Furthermore, Calinescu et al. [47] give a detailed overview over various QoS-related approaches in
general.

Change impact analysis

Change impact analysis addresses detecting affected system parts in case of requirements or environ-
mental changes as well as the consequences arising from transitions to future states (e.g., check if
predefined constraints will still hold or if the system needs to perform a structural adaptation). Further-
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more, changes within models (i.e., changes of the models’ elements and their relationships) are also
target of impact analysis. Runtime representations of design models can be used to identify connected
components in order to detect affected components, especially when using architecture models and
information about service compositions. Our research identified various approaches which tackle this
problem of difficult impact predictions. Sindhgatta et al. [229] introduce a framework to automati-
cally identify possible changes in MOF-compliant models. At runtime, this framework performs fine-
grained analysis to identify impacted models and their elements if model changes occur. Users have the
option to apply or reject adaptation suggestions and view incremental impact of their decisions on af-
fected artefacts. Selected changes are analyzed and propagated across the models. A similar approach
of impact analysis is introduced by Waignier et al. [261] where each adaptation is first tested at the
model level to check that no application property is broken. The reconfiguration is executed by a six-
step control loop where events are propagated to the model level and analyzed. Adequate adaptations
are then executed on an architecture description model, analyzed and applied to the running system
by adding or removing components or bindings. Another approach uses graph-based application-level
performance models and online history-based models instead of an autonomic control loop to ana-
lyze impacts [204] (the autonomic control loop technique is discussed in Section 3.4.1). Goldsby et
al. [112,114] generate models of possible target systems for different environmental conditions. These
models help developers to identify the functional and non-functional trade-offs between the models
when adapting the system.

As a summary, relating to the problems introduced in Section 3.1, adaptation is mainly used to
solve the problems of inaccurate predictions and changing environments. In the discussed approaches,
architecture models and prediction models like queueing and Markov models are used to tackle inac-
curate predictions (e.g., change impacts and performance) and changing environments. For addressing
the combinatorial explosion problem, feature models are used to tame numerous possible system con-
figurations.

3.3.2 Monitoring, simulation and prediction

Beside adaptation, runtime models can also be used for monitoring a system, simulating future evolu-
tions by analyzing impacts on the model level and predicting system properties like performance and
reliability in case of system reconfiguration. Models enable monitoring, simulation and prediction at a
higher abstraction level (closer to problem space), addressing the problem of low abstraction resulting
from hand-written artefacts (see Section 3.1). This is especially true when using architecture models at
runtime to monitor system behaviour from a global perspective. Monitoring is also related to the prob-
lem ‘checking or enforcing rules or constraints’ introduced in Section 3.1, if systems are monitored
for checking specific rules or constraints. More specifically, monitoring, simulation and prediction are
closely related to adaptation since most adaptation techniques require monitoring of the running sys-
tem. In addition, simulation and prediction are used as input for adaptations, for instance in the analysis
and planning phases of the autonomic control loop technique described in Section 3.4.1. Monitoring,
simulation and prediction are discussed in individual sections below.
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Monitoring

Le Duc et al. [160] propose an adaptive monitoring framework named ADAMO that tackles different
quality of information (QoI)-aware data queries over dynamic data streams, whereas QoI encompasses
lifespan, precision, granularity and types of monitoring data. The framework allows access to dynamic
data streams for multiple clients with different QoI needs as well as generation and configuration of ap-
propriate elements in the monitoring system according to QoI constraints. Furthermore,the monitoring
system is adaptable to resource constraints and able to manage data queries in a static or incremental
way. ADAMO relies on a QoI model which formalizes data sources, monitoring queries and system
resources and uses constraint solving to configure data sources according to clients needs and resource
constraints.

Various approaches use the tool SM@RT (Supporting Models at Run-Time) [138, 231–235, 278]
to maintain the causal connection between the system and an architecture model. In this tool, system
changes lead to corresponding architectural changes in a bidirectional way. This is achieved by creating
a runtime architecture infrastructure (RAI, [199,200]) without modifying the target system, using QVT
(Query-View-Transformation) bidirectional model transformations. The resulting architecture model
enables monitoring and controlling of the system at a high abstraction level.

Bidirectional model transformation is also used in approaches by Giese et al. [107–110] and Vogel
et al. [255, 257, 258] where Triple Graph Grammars (TGG) are used for supporting adaptation and
architectural monitoring. In the TGG approach, a source model (low-level, for monitoring or adapting
the system) is causally connected to one or more target models (high-level, specific views on the
system) while synchronization is declaratively specified by TGG rules at the meta model level for the
source and target models. Lehmann et al. [162] describe meta-modeling of runtime models and present
an adequate meta-modeling process.

A similar three-layered approach is proposed by Cheng et al. [64] and Garlan et al. [100]: A runtime
layer observes system properties and performs low-level adaptation operations, a model layer interprets
observed data with the help of analyzable architecture models and checks for constraint violations,
and a task layer determines QoS requirements as high-level representations of computational needs by
using desired performance profiles of required services. Architecture models are represented as graphs
of interacting components, increasing the monitoring to a higher-level of abstraction.

Other approaches use OCL-based monitoring with protocol state machines [129, 131], consider
software components as blackboxes with behavioural equivalence checking [105, 178], use Petri Nets
to recognize interleaved patterns of runtime events [217] or introduce dynamic monitor configuration
by machine-processable quantitative and qualitative properties [33]. Furthermore, models are also used
to examine execution traces in order to monitor and visualize system status [169, 170].

Simulation

Compared to monitoring approaches, only a few simulation and prediction approaches have been pro-
posed in the models at runtime literature. With regard to simulation, Beltrame et al. [21] enable ef-
fective simulation and debugging through model switching at runtime, which means that less accurate
system models are used for uninteresting sections of the simulation and accurate system models for
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system parts under more precise analysis. Tan et al. [247] use automata and code generation to monitor
the system and use a simulator to run a system model together with a monitor model for design-level
validation in addition to code-level runtime validation. In the approach of Redlich and Gilani [208]
a performance model together with runtime performance parameters of business processes (measured
by events) are fed into a simulation engine. The simulation performs better prediction than techniques
using historical data because structural business process information is taken into account. With the
results, new business process models can be composed which are independent from a specific business
process execution environment. Weiss et al. [264] propose embedding adaptation-related information
in software components. The components of the design model are enriched with self-descriptions
which provide information at runtime that is necessary for adaptation decisions. An iterative develop-
ment based on model transformation with simulations and model feedback enables the definition of
the adaptation and the refinement of the design of the self-adaptive system.

Prediction

With regard to prediction, Mos and Murphy [185] give performance predictions based on UML models
created dynamically by monitoring and analyzing a running system. UML models are enhanced with
performance indicators and are based on static and dynamic data to identify performance hot spots.
Created models can be simulated and predictions derived for different workloads using Queueing Net-
works and Markov chains. Models are also used to increase the efficiency of the monitoring process by
activating monitoring only for those components that are responsible for performance problems, and
deactivate the monitoring of the other components. Muskens and Chaudron [189] use resource models,
behaviour models and scenario specifications to predict the resource consumption of executable com-
ponents. Their approach is applicable for component based embedded systems and supports diagnosis
and repairing. Götz et al. [116,117] propose an approach which optimizes energy efficiency of software
systems running on multiple resources. Optimization of more than one resource leads to higher energy
savings since communication costs can be taken into account. Prediction of energy consumption is
achieved by deriving all possible distributions of the software on a given set of hardware resources.
The system is then able to reconfigure itself to achieve the lowest energy consumption possible. QoS
properties like CPU consumption are the basis for optimizing energy efficiency at runtime. Epifani et
al. [79] use models dealing with reliability and performance at runtime and feed a Bayesian estimator
with runtime data to produce updated parameters. Analyzing the runtime models enable to predict if
a desired property will be violated by the running implementation. Nguyen et al. [193] use Coloured
Petri Nets to predict performance in component-based systems.

The approach introduced by Mathis and Kerbyson [172] uses an executable SAGE (SAIC’s Adap-
tive Grid Eulerian hydrocode) model for dynamic performance prediction of an adaptive mesh appli-
cation. We will not go into detail about this approach as it focusses on High Performance Computing
(HPC), outside of the scope of this article, but the approach demonstrates the broad field of meanings
and use cases of runtime models.
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Figure 6: Simplified view of the TGG approach introduced by Vogel et al. [257]

3.3.3 Abstraction and platform independence

An important objective of software models is raising the abstraction level, regardless of whether used
at design time or runtime. With the advent of model-driven development, platform independent models
gained considerable attention. Similar to monitoring, simulation and prediction, approaches described
in this section tackle the problems of low abstraction, maintenance and reusability resulting from hand-
written artefacts and manual human interventions as described in Section 3.1.

One attempt to raise the abstraction level is depicted in Figure 6 which shows a simplified ver-
sion of the aforementioned TGG approach [107–110,255,257,258]. It achieves higher abstraction and
independence of concrete model instances by declaring TGG rules at the level of meta models for
the source and target models. This makes it easier to analyze and plan corrective actions by applying
a Monitor-Analyze-Plan-Execute (MAPE) loop (see Section 3.4.1) to high-level target models, e.g.
architecture models. Adaptive actions are propagated to the running system by a bidirectional trans-
formation between target models and the source model which is responsible for modifying system
parameters.

Other forms of raising the abstraction level are introduced by Thonhauser et al. [248, 250] to
support adaptation of virtual organizations and Ingstrup and Hansen [141] to support architectural
reflection by creating queryable runtime models out of distributed architectures. Abstraction can also
be achieved by tracing system execution with behavioural models, as described by Maoz [168].

3.3.4 Consistency and conformance checking and enforcement

Consistency and conformance checking and enforcement address the problem ‘checking or enforcing
rules or constraints’ introduced in Section 3.1. In this context, consistency ensures that there are no
contradictions between the different parts of a software system and/or software (development) arte-
facts related to the system. Conformance ensures that a software system meets a specified standard.
Consistency and conformance requirements come from different kinds of sources, such as consistency
with or conformance to design artefacts, valid feature combinations, other models (e.g., model syn-

17



chronization) or system integrity policies, existing software standards, to name just a few sources.
Models at runtime can help to check or enforce consistency or conformance requirements, as they can
make model information available at runtime, either about the consistency and conformance rules or
the system artefacts to be checked. They might also address the combinatorial explosion problem from
Section 3.1: For example, using feature models at runtime, which express valid feature combinations,
can help to tackle the problem of combinatorial explosion regarding possible feature selections.

Arcaini et al. [13] analyze undesirable behaviours of implementations and incorrect specifications.
The conformance check is done by using Java annotations to link the concrete implementation to its
formal model. The operational specification - an executable Abstract State Machine (ASM) - describes
the desired system behaviour by providing a model implementation or model program of the system.
An AspectJ-based monitor observes the behaviour of the application and determines its correctness
with respect to the ASM specification working as an oracle of the expected behaviour. The monitor
checks conformance between the observed and the expected state and produces debugging traces.

Bodenstaff et al. [39] use runtime models to ensure and maintain consistency between the running
system and underlying models for inter-organizational cooperations. Consistency is ensured across
different models and within models. First consistency is checked between the running system and an
interpretation of the models. Consistency can then be maintained by adapting models or implementa-
tions when contradictions are detected. The check between the model and the running system is done
by event logs which are said to be consistent if essential parts of the model do not contradict. The event
log is thus an abstract representation of the correct runtime behaviour.

Hoehndorf et al. [133] introduce an approach using three kinds of ontologies: A task ontology
serves as the conceptual model for the software, a domain ontology provides domain-specific knowl-
edge and a top-level ontology integrates the task and domain ontologies. Types and relations of the
domain ontology are combined with elements of the conceptual model through the top-level ontology.
Transforming the model of an online shop into an online library then requires only a change in the do-
main ontology and its mappings. Instances of software models are verified against both the conceptual
model and the domain ontology during runtime. This can be used to verify constraints on data that is
processed by the software.

Rosenmüller et al. [212] present an approach that integrates static and dynamic feature binding
seamlessly, ensuring consistency so that only valid feature combinations can be selected at compile
and runtime. At deployment time, features are declared to be bound statically or dynamically. Features
that are always bound together are merged into a binding unit. A feature model is then transformed
according to the binding units, yielding a feature model that encompasses only dynamic variability.
This model is used to verify a given dynamic feature composition before it is used.

Other approaches check conformance and consistency in user interface adaptation [16, 81], by
recording messages exchanged between components and services [42, 158] and by clustering normal
data to detect data anomalies [94].
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3.3.5 Policy checking and enforcement

Policy checking and enforcement encompass models used at runtime to cope with policies, such as
(real-)time constraints, access control and security regulations, or other compliance rules, thus tackling
the problem ‘checking or enforcing rules or constraints’ introduced in Section 3.1. Different runtime
models help to satisfy such policies: Safety models describe safety properties of systems, role-based
access control (RBAC) models define access management policies, and Real-Time-UML (RT-UML)
models support the modelling of timing constraints to be preserved at runtime.

Holmes et al. [134–136] introduce an approach where monitored information is interactively in-
terpreted and analyzed with respect to compliance to regulations, using models as first-class citizens.
These models describe a service-based system and its system requirements and are used at runtime
to trace back violations. This way this approach also addresses the problem ‘error localization’ from
Section 3.1. Information described in models can be queried and developers are able to perform modifi-
cations on-the-fly and add new model versions to the running system so newly created model instances
can immediately use the corrected version. Multiple versions of models are maintained in parallel so
that old model versions can be used until all of their model instances are deleted or migrated to new
versions. Modifications are done via Web services while consistency is maintained by artefact rela-
tionships and compliance annotations expressed via dedicated Domain Specific Languages (DSLs).
Services can be generated with basic create, retrieve, update, delete and query operations.

In the approach of Schneider and Trapp [219, 220] dynamic changes in a system or environment
are reflected based on safety runtime models. They consist of configuration models (describe con-
figurations, required/provided services of a component), an adaptation model (rules to determine the
best configuration), models describing non-functional service properties (required/provided QoS and
mappings), and safety models (required/provided safety properties and their mappings). Required and
provided safety properties are matched throughout a composition tree holding all required services.

Hummer et al. [140] realize identity and access management (IAM) in the context of service-
oriented architectures by using model information at runtime. RBAC models are specified by us-
ing a DSL and are mapped to source code artefacts of the software platform via automated model-
transformations. Business processes – annotated with DSL elements – are instrumented with special
activities to ensure compliance to IAM policies at runtime.

RBAC policies can also be modelled as graph to reason on architectural changes and maintain en-
forced policies [198]. A mapping between RBAC policies and a component-based architecture allows
to transform policies into an architecture enforcing them and to analyze the policy enforcement on the
architecture. Furthermore, an access-control reasoner can listen for architectural changes in order to
manage the adaptation of the running system so the policies stay enforced in the system.

Halfond and Orso [127] use a model-based approach to detect illegal queries before they are exe-
cuted on the database. A model of legitimate queries that could be generated by the application is auto-
matically built at design time. At runtime, monitoring is carried out to inspect dynamically-generated
queries and check them against the built model. In case of violation, queries are prevented from exe-
cuting on the database and reported to developers and administrators. Figure 7 shows an SQL query
model extracted from [127] which defines allowed login queries for guests and users.
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SELECT info FROM userTable WHERE

login

login

= ’ guest ’

= ’ β ’ AND pass = ’ β ’

Figure 7: Example SQL query model by Halfond and Orso [127] to prevent illegal database queries

In the approaches of Rammig et al. [207] and Zhao et al. [279–281] a model-based acceptance
test is introduced where verification is performed at the level of RT-UML models representing the
systems under consideration. Checked properties are defined by the notation of RT-OCL (Real-Time
Object Constraint Language) while the overall system behaviour is specified by RT-UML statecharts.
RT-UML models and associated RT-OCL constraints are transformed into Kripke structures and Büchi
automata and then stored in a repository. At runtime, if a component replacement is requested within
the component architecture, the operating system sends a request to a verification service which starts
verifying by fetching related Kripke structures and Büchi automata from the repository. The service
answer is Yes, No or Unknown as decision about accepting or rejecting the requirement for substitution.

Other approaches perform model-based real-time and schedulability analysis for embedded sys-
tems [125], manage physical network equipment [177], ensure security in an agent-oriented way [272],
realize continuous quality assurance of Web services [17], use a model-based timing analysis engine
deciding whether a configuration is feasible to be executed [242], use aspect-oriented programming to
integrate security controls within the target system [9] and verify design models against high-level se-
curity requirements such as secrecy and authentication [20]. Threats can also be modelled as sequence
diagrams which are compared with system traces to detect undesirable threat behaviour [263].

3.3.6 Error handling

Runtime models can be used for more efficient error handling in form of debugging, fault localization,
tracing, self-healing and test case limitation and generation. Hence, problems like ‘error localization’,
‘inaccurate predictions’, and ‘changing/heterogeneous environments’ from Section 3.1 are addressed
by approaches reported in this section.

State machine models and workflow models are usable for many of these scenarios because of their
expressive nature in declaring execution and data flows which can easily be checked against given exe-
cution traces, obtained by emitted events or execution logs. Regarding testing, approaches exist which
use state machines for automatic iterative test case generation [273] and claim refinement models [265]
to estimate the probability of encountering predefined system states, thus reducing needed test cases.

Simmonds et al. [228] propose an approach for enhanced recovery in web service applications.
Behavioural correctness of conversations within the web service system is monitored and checked
against correctness properties specified by developers. Such properties are transformed into finite state
automata which enable conformance checking of execution traces of web services described in BPEL.
While traversing the automata, going back and re-planning of the conversation in case of a fault is
possible: Occurred actions are revoked until an alternative behaviour of the application is possible
(that is, backtracking the states of the automata).
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Figure 8: Model layer mappings introduced by Graf and Müller-Glaser [124]

Fuentes and Sanchez [92] implemented a dynamic model weaver that can be used for running
aspect-oriented models where aspects are woven and unwoven during model execution, leading to
reconfiguration of the system and taming combinatorial explosion by well-defined adaptation points.
Designers can also interact with the dynamic model weaver, loading and unloading pointcuts that
activate and/or deactivate aspects which results in a more interactive model simulation. Such weavers
enable the possibility to test and debug models before moving into an implementation which tackles
the problem of inaccurate predictions and error localization described in Section 3.1.

Graf and Müller-Glaser [123,124] (see also Kordon [155]) describe an architecture that allows for
the definition of various debugging-perspectives independent of the actual execution-platform. Figure 8
shows their idea of mappings between different model layers. The basic idea is to extract runtime
information out of the executed binary from the target platform and transport this information back
through the abstraction layers to model level. Obtained runtime information on model level can then
be used to visualize the internal state of the executable. To achieve this, they extend the UML meta-
model with meta-classes that allow storage of data acquired by the mapper. This approach tackles the
problem of error localization as well as raising the abstraction level as introduced in Section 3.1.

Zeng et al. [275] follow a similar approach by targeting a model as the object of testing. A Graph-
ical Debugger Model (GDM) is established which performs the role of a server interacting with the
executable code. Once the application is running, GDM starts animating the system’s running be-
haviour at model level with help of an event-driven finite state machine which waits for commands
sent by target embedded code. If received actions are not consistent with system requirements, a bug is
reported. A similar approach is tackled by Spieker [239], Hooman and Hendriks [137] where a model
of the desired system behaviour is modelled by a state machine. At runtime, the system state is com-
pared to the model, possibly leading to errors. As a consequence, diagnosis and recovery phases are
applied and corrective actions are executed, thus solving the problem of finding errors in such dynamic
systems.
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Nordstrom et al. [196] introduce fault localization in workflows with future state determination, en-
abling impact analysis when dealing with unforeseen error occurrence. They use a workflow execution
engine simulator running in parallel with the system. A workflow model represents the current state of
the workflow by using a synchronizer or observer monitoring the progress of the workflow execution.
In case of an error, the model is updated and a simulation algorithm determines future states of the
workflow assuming no external intervention or future faults. Furthermore, jobs within the workflow
model are annotated as desired or undesired to be used as metric to determine the relative desirability
of a partial workflow.

A middleware-based approach is introduced by Haberl et al. [126] where a system model is sub-
sequently transformed into executable distributed code. The middleware is used for interaction within
the system by acting as global communication router between the generated software components. As
a result, the middleware is able to access the internal state of the system and store internal data of com-
ponents for later debugging. Captured runtime data enables debugging at a higher abstraction level by
mapping them back to the model while the handling of error occurrences is simplified by shifting the
analysis to the central middleware entity.

Other model-based approaches use model analysis to reduce or generate test cases [265, 273],
monitor events with concurrent Petri Net models [54], use stop-and-restart strategies of malfunctioning
services [243], gauge effects of partial failure in distributed systems [271] and classify errors based
on quality attributes [188]. Porcarelli et al. [206] realize fault tolerance by using Petri Net models to
drive decisions about reconfiguration actions in distributed systems. Krasnogolowy et al. [156] use
story diagrams to debug applications with the help of breakpoints, step-wise execution, control flow
visualization, variable inspection, variable modification and remote debugging. Another approach is
introduced by Occello et al. [197] to detect errors within adaptation processes. They propose a runtime
model which enables the verification of dynamic adaptation as described in Section 3.3.1. An overview
of using architecture models for problem diagnosis and repair is given by Garlan and Schmerl [98,99].

3.3.7 Overview of approaches

Table 2 gives an overview of approaches according to the classes of objectives introduced in Sec-
tion 3.3: Adaptation, monitoring/simulation/prediction, abstraction and platform independence, con-
sistency/conformance checking and enforcement, policy checking and enforcement and error handling.

3.4 Techniques

We classified our identified techniques used in combination with runtime models into autonomic con-
trol loop (analyze running system and plan corrective actions), introspection (extract data from a
running system), model conformance (ensure conformance and consistency against models), model
comparison (check differences between two models), model transformation (change representation of
models) and model execution (execute models with operational semantics).

22



Identified objective Related approaches
Adaptation User interface adaptation: [16,34,37,38,68,69,80–82,91,95,96,101,163,195,

210, 222, 230, 236, 237, 245, 254, 270]
Requirements and contextual changes: [18, 78, 85, 143, 144, 175, 192, 246]
Quality-of-Service (QoS) enforcement: [7, 8, 14, 47, 49–51, 63, 106, 139, 176,
186, 283]
Change impact analysis: [204, 229, 261]

Monitoring, simulation,
prediction

[21, 33, 64, 79, 100, 105, 107–110, 116, 117, 138, 162, 169, 170, 172, 178, 185,
199, 200, 208, 217, 231–235, 255, 257, 258, 278]

Abstraction and platform
independence

[107–110, 141, 168, 248, 250, 255, 257, 258]

Consistency/conformance
checking and enforcement

[13, 16, 39, 42, 81, 94, 133, 158, 212]

Policy checking and
enforcement

[17, 20, 125, 127, 134–136, 140, 177, 207, 219, 220, 242, 272, 279–281]

Error handling [54,92,98,123,124,126,137,155,188,196,197,206,228,243,265,271,273,275]

Table 2: Overview of approaches related to the classes of identified objectives

3.4.1 Autonomic control loop

In the existing literature, we identified three strategies to address the five adaptation scenarios described
in Section 3.3.1: Autonomic control loop, structural adaptation and parameter adaptation. Structural
and parameter adaptation are often used in combination with the autonomic control loop strategy, so
we decided to include them in this section as well. The characteristics and relationships between these
strategies are discussed in the following paragraphs.

Autonomic control loops, as in the approaches of Waignier et al. [261] and Pienaar et al. [204], are
a key concept when adapting systems at runtime [199]. The idea originates from the automatic com-
puting research community to enable self-management of systems according to desired goals [149].
Figure 9 illustrates the idea of autonomic control loops which is to measure system parameters, ana-
lyze them, plan corrective actions if necessary and execute them. This procedure is known as Monitor-
Analyze-Plan-Execute loop (MAPE/MAPE-K, with a shared knowledge component [149]) or Collect-
Analyze-Decide-Act loop [75]. The planning component of the loop needs to identify alternative con-
figurations (that is, an arrangement of system parts) that satisfy current contextual requirements and
constraints. There exist formal methods to compute solutions to such configuration problems and to
check if given requirements are not violated [43].

Running system

ExecuteMonitor

Analyze Plan

Figure 9: Idea behind an autonomic control loop
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Dubus and Merle [76] use models within this control loop as abstract representation of the sys-
tem to reconfigure applications. This model evolves with the system and describes deployment entities
and application components, helping to plan adequate reconfiguration actions. A similar approach is
introduced by Garlan et al. [97] where their framework uses abstract architecture models to monitor a
system, check constraint violations and trigger global- and module-level adaptation if necessary. The
abstract architecture model offers a global perspective on the system and exposes important system-
level properties and integrity constraints. Gamez et al. [93] use additional feature models in the control
loop to represent potential middleware configurations at runtime, shifting reconfiguration to the mid-
dleware level. The set of actions that must be executed to pass from one valid configuration to another
is specified in an OWL-S plan model compliant with feature and architecture models. Other approaches
include machine learning [253] and execution trace analysis [190] in the automatic control loop. One
benefit of such autonomic control loop lies in the reduced need for manual human interventions which
often lead to low abstraction, maintenance and reusability, as pointed out in Section 3.1. Another ad-
vantage are the improved self-management capabilities for running systems (self-configuration, self-
optimization, self-healing, self-protection [149]).

Within the autonomic control loop, the process of adaptation itself is accomplished either by struc-
tural adaptation (system component variability) or parameter adaptation (modification of variables to
alter program behaviour). Floch et al. [85] apply structural adaptation by plugging in different compo-
nent implementations whose externally observable behaviour conforms to a specific component type.
Together with parameter adaptation a mixture of coarse-grained (structural) and fine-grained (parame-
ter) adaptation is achieved. Approaches by Amoui et al. [10,11] and Derakhshanmanesh et al. [73,74]
use the framework GRAF (Graph-based Runtime Adaptation Framework) which also supports both
adaptation strategies. Structural adaptation is realized by replacing a block of the control flow with the
execution of an alternative behaviour with equivalent pre- and post-conditions at runtime. Blocks are
replaced in a behaviour description that is part of the runtime model and are executed by a model in-
terpreter when the control flow decides about the interpretation method. For parameter adaptation, the
application flow is redirected to an alternate action at a Turning Point which is a branch in the control
flow with a well-defined decision criterion. Such a criterion is a special variable that can be changed
in the runtime model, propagating values back to the adaptable software. Another approach using both
parameter and structural adaptation is introduced by Caporuscio et al. [50] where runtime performance
management is achieved by adapting the number of threads (parameter) or adding/removing compo-
nent or connector instances (structural).

3.4.2 Introspection

Introspection deals with extraction of runtime system data in order to apply model-based and con-
trol loop techniques on the analyzed behaviour. We subdivided introspection mechanisms into three
different groups:

• Event log checking
• Instrumentation
• Management API
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Event log checking accomplish the data extraction by scanning event log entries emitted by the
system under observation. Such event log entries have to follow a defined structure do be processed
externally and in further consequence to be related to runtime representations of models. The previ-
ously mentioned approach of Bodenstaff et al. [39] uses this technique to check a model against the
running system. The event log is assumed to be consistent with the running system and also with a
model if essential parts of the model do not contradict. In other words, it is assumed that the event log
reflects a correct representation of the running system. The challenge in this approach lies in identi-
fying relevant parts of the event log and abstracting them to enable consistency checking between the
running system and a model. To achieve this, either the system is adapted so that emitted events have
the proper format or the necessary format is reconstructed from raw event logs.

In case of instrumentation, monitoring functionality is inserted into the system under observation.
Insertion of monitoring code requires the source or byte code to be available and is often realized
by using aspect-oriented programming to weave data extraction code into the application. Extracted
data can then be related to runtime representations of models to enable reasoning on a higher level of
abstraction. On byte code level, Hamann et al. [130] propose monitoring of JVM hosted applications
by using a platform-aligned model (PAM) as link between the platform-specific model (PSM) and
the platform-independent model (PIM). A PAM is iteratively designed through assumptions which are
stated, checked and refined. A first iteration of the PAM can be described in a declarative way, reverse
engineered out of the implementation or derived from component specifications.

Nierstrasz et al. [194] use instrumentation at runtime in combination with an Abstract Syntax
Tree (AST) model as abstraction above the bytecode level. They introduce the concept of links to be
set as annotations to AST nodes which are transformed by a compiler plugin before execution. This
results in code to be inserted in the program at nodes where links are installed. Such links can also
be installed by other links or manipulated by themselves. A similar approach is tackled by Halfond
and Orso [127] where code instrumentation adds calls to a monitor to check for illegal SQL queries
at runtime. An example validation model for SQL queries is depicted in Figure 7. Other approaches
realize instrumentation by aforementioned aspect-orientation [261] or by planting special activities
into WS-BPEL processes to enforce compliance to IAM policies at runtime [140]. All approaches
tackle the problem of low abstraction introduced in Section 3.1 by shifting analysis to the model level.

In case of Management APIs, an interface on the target system exists which allows extraction of
runtime state information. An example of such an interface are reflection APIs of modern program-
ming languages which allow to query and modify the structure of a computer program at runtime. A
reflective architecture consists of two causally connected layers: A base-level realizes the functional
aspect of the system, whereas a meta-level realizes the non-functional aspect of the system and carries
out the evolution on a reification of the design information [56, 165].

Reflection is used in reflective middleware like OpenORB [12, 67] or ReMMoC [118, 120] to in-
spect and adapt communication and interoperability functionalities to cope with distributed changing
environments. The base-level of OpenORB consists of interfaces, components and bindings whereas
the meta-level is a type repository containing meta-information such as interface definitions, compo-
nent definitions and binding definitions [66]. Such reflective middleware is also able to utilize aspect-
oriented techniques to adapt or re-order advice behaviour to further increase adaptation capabilities of
the middleware architecture [122, 252] (see Sections 3.6.3 and 3.6.4 for details to these architectures).
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The key issue is to maintain a causal connection based on management APIs provided by target
systems. Such an approach is followed by Huang et al. [138] and Song et al. [231–235] by implement-
ing a synchronization between an architecture model and the system state with respect to consistency,
non-interference introspection, effective reconfiguration and stability. The authors utilize code gen-
eration for wrapping the low-level APIs, use a system-model adapter to support reading and writing
system state in a model-based way and thus solve the problem of low abstraction by manipulating the
system at the model level.

3.4.3 Model conformance

Model conformance addresses the conformance and consistency of data and processes according to
models. Model conformance is closely related to the previously described objectives of consistency
and conformance, policy checking/enforcement and error handling (see Sections 3.3.4, 3.3.5 and 3.3.6,
respectively) since extracted runtime information is checked against models to trace constraint vio-
lations and system behaviour. Model conformance requires introspection mechanisms introduced in
Section 3.4.2 in combination with runtime representations of the models, e.g. by using the common
XMI (XML Metadata Interchange) format. Tombelle and Vanwormhoudt [251] give an overview of in-
trospection and model scripting techniques to process these runtime model representations. Examples
of ensuring conformance and consistency against models are graph-based approaches (Petri Nets, state
machine model), the usage of Linear Temporal Logic (LTL) and the enforcement of OCL constraints.

A combination of the graph-based strategy and LTL is used by Rammig and Zhao et al. [207,279–
281]. LTL formulas are derived from RT-OCL constraints and transformed into Büchi automata. By
using such an automaton in combination with the source code and an abstract system model (expressed
as state machine), model checking shows if an execution trace conforms to the system model (consis-
tency checking) and if a partial state space of the system model conforms to the Büchi automaton
(safety checking). A similar aforementioned approach of combining LTL and Abstract State Machines
(ASMs) is introduced by Arcaini et al. [13]. Both approaches address the problems of low abstraction
and error localization during runtime by using models at runtime.

Another approach using LTL is followed by Zhang and Cheng [277]. They describe the need of
building a model for a source domain (the source model) and a model for a target domain (the target
model). The source and target models should be verified against local requirements for the source and
target domains, respectively. This verification is expressed via LTL formula to reason about adaptation
mechanisms in wireless networks. Other approaches include ReMMoC [118, 120], Starlink [41, 166]
and OverStar [121] which check conformance of communication processes to ensure interoperability
(see Section 3.6.4 for details to these approaches).

3.4.4 Model comparison

Model comparison addresses the comparison of two models, especially to yield information about their
differences and needed delta-operations to transform one model into another model. An often refer-
enced tool for providing model comparison functionality is EMF Compare (Eclipse Modeling Foun-
dation), although alternatives like KMF (Kevoree Modelling Framework) are developed to improve
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performance, reduce memory footprint and eliminate library dependencies [71, 88]. Model compari-
son is mainly used to calculate operations needed for transitions between system states.

An adaptation approach using model comparison is introduced by Fleurey and Morin et al. [84,
181, 182]. The key idea is to produce a reference model of the running system using aforementioned
introspection mechanisms. The resulting model represents the current configuration which is then com-
pared to a model containing the new configuration. The comparison yields another model that speci-
fies the differences and the similarities between the models. By analyzing this model, reconfiguration
commands are created which add and/or remove bindings and/or components to reflect the requested
adaptation. The same comparison principle is followed by Waignier et al. [261] where a new archi-
tecture description model is compared to the model of the running system to identify reconfiguration
actions and calls to the platform specific API. Both approaches address the problem of requirement
evolution and changing environments introduced in Section 3.1 by adapting the system according to
the new requirements.

3.4.5 Model transformation

Model transformation is used to change the representation of a source model into another form, called
the target model. Such transformations aim to reduce errors through automation while ensuring consis-
tency between the source and the target model. They are generally divided into Model-To-Text trans-
formation (converting a model into a textual representation, e.g. source code) and Model-To-Model
transformation (output is another model). Established methods to define such model transformations
are QVT (Query-View-Transformation) and TGG (Triple Graph Grammar). We already pointed out
approaches using TGG [107–110,255,257,258] (see Figure 6) and ones that use QVT [138,231–235].
The approaches tackle the problem of low abstraction by transforming low level representations of the
system into one or more models of higher abstraction to simplify monitoring and controlling of the
system under observation, mainly by targeting architecture models as transformation output to obtain
a basis for system-wide reasoning.

3.4.6 Model execution

By the time of writing, it is not entirely clear how model execution fits into the models at runtime
paradigm since its relationship to dynamic reflection and introspection needs (see Section 3.6) is de-
batable. It is a recurring question at the Models@run.time workshop [29]. We decided to include model
execution as separate technique since changes to an interpreted runtime model directly imply changes
in the behaviour of the running system - this property clearly falls into the definition of a causal con-
nection (see Section 1). Furthermore, we feel obliged to follow a holistic approach when conducting
a literature review, so we decided to include this topic in the article, although we are aware that the
ongoing discussions are not for no reason. Also, this technique is strongly related to the workflow
community since model execution is a common procedure in workflow execution engines.

Model execution attends to direct execution of models containing operational semantics. In other
words, one representation serves as both the model and the program which are necessarily at the same
abstraction level [111]. Muller et al. [187] introduce weaving of executability with static type checking
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and support for genericity into meta-data languages. The resulting combination eases simulation and
testing of operational semantics of meta-models. The OMG standard fUML introduces executable se-
mantics to a subset of UML where models can also be used at runtime in combination with execution
traces [173,174]. A popular example of executable models are state machines which are used through-
out our identified literature. They allow to specify execution flows at the model level independent of the
concrete implementation, solving the problem of low abstraction resulting from hand-written artefacts.

Arcaini et al. [13] use ASMs as executable specification and oracle of the expected system be-
haviour. A monitor checks conformance between the observed system state and the expected state by
executing the state machine. The aforementioned GRAF framework [10, 11, 73, 74] achieves adapta-
tion by redirecting the control flow of the software to a model interpreter component at points where
the need for adaptivity is expected. When such an interpretation point is reached during execution, the
model interpreter executes associated behaviour described in a runtime model.

In the approach of Pleumann and Haustein [205] domain models are directly executed to realize
dynamic web applications. Class diagrams with OCL annotations are the central elements to drive
database access, user interface generation and business logic interpretation in a three-tier architecture.
Database access is realized by a persistence layer to XML files or existing databases. Business logic
is interpreted with the help of UML state machine models linked to elements of the UML class dia-
grams. A model-driven runtime combines the class diagrams, state machine models and special HTML
templates to a working three-tier web application.

Other approaches realize executable task models describing a task life cycle [40], use model exe-
cution to guide test data generation [273], execute integrated behaviour models [151], interpret models
to ease development of multi-tier applications [226], interpret state machines of model-based compo-
nents [249], execute models to support adaptation and service delivery validation [52,184] and support
user interface development using executable models containing static structure, dynamic state and ex-
ecution logic information [161].

3.4.7 Overview of approaches

Table 3 gives an overview of approaches related to the different techniques introduced in Section 3.4:
Autonomic control loop, introspection, model conformance, model comparison, model transformation
and model execution.

Technique Related approaches
Autonomic control loop [10, 11, 50, 73, 74, 76, 85, 93, 97, 103, 190, 204, 253, 261]
Introspection Event log checking: [39]

Instrumentation: [127, 130, 140, 194, 261]
Management APIs: [56, 66, 138, 165, 231–235]

Model conformance [13, 41, 118, 120, 121, 166, 207, 251, 277, 279–281]
Model comparison [84, 181, 182, 261]
Model transformation [107–110, 138, 231–235, 255, 257, 258]
Model execution [10, 11, 13, 40, 52, 73, 74, 151, 161, 173, 174, 187, 205, 226, 238, 249, 273]

Table 3: Overview of approaches related to the identified techniques
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3.5 Kinds of models

In this section, we focus only on the kinds of models used in the publications after applying our
selection criteria of the literature search. Many more kinds of runtime models exist that we do not
discuss in detail, like Petri Net models [54,148,193,217,221,268,269], policy models [17], Probability
Fuzzy Cognitive Maps [262], quality models [188], physical models [4, 72], contracts [35, 62, 191],
Markov chains [83,106], Queueing Networks [53,106,185] and domain-specific languages in general
[3, 48, 214, 267]. The diverse kinds of models demonstrate how elastic the term model truly is.

We want to point out one kind of model which is frequently used in recent research: Goal models.
Goal models describe the relationships between a system and the environmental context [274]. With
contextual information, goal models enable to assess candidate solutions against high level criteria
for stakeholders to analyze system-wide trade-offs [260]. Using goal models (or requirement models)
at runtime takes the idea of runtime models one step further towards problem space. Welsh et al.
[266] use goal models to realize requirements-aware systems by checking assumptions made at design
time. If such assumptions do not to hold, system-wide adaptations are triggered to enable alternative
goal realization strategies. Goldsby et al. [113] use multiple goal models containing requirements
specified by different developers at different levels of requirements engineering. Alférez and Pelechano
[6] use requirement models in combination with various other models to support dynamic evolution
of context-aware systems: An architecture model which describes the architecture of the system, a
context model holding context knowledge, tactic models which describe strategies for preserving the
requirements at runtime and a variability model describing dynamic configurations of the system. Silva
Souza et al. [227] propose Awareness Requirements (AwReqs), requirements that inform about the
success or failure of other requirements. Such AwReqs are represented in a formal language and can
be directly monitored by a requirements monitoring framework. Furthermore, they propose a graphical
representation that allows to include the AwReqs in goal models to improve the communication among
system analysts and designers. Other approaches using goal/requirement models are listed in Table 4.

We decided to list our selected kinds of models in Table 4 instead of going into detail about ev-
ery other kind of model, as the majority of them has already been introduced above when discussing
the respective approaches. The table provides an overview about the purpose of each kind and their
usage in our identified literature. We classified the purposes according to our identified objectives of
runtime models. Kinds of models not explicitly mentioned in previous sections are business process
models, context models and observation models. Business process models describe sequences of busi-
ness activities and are used to check workflow conformance and guide adaptation through extensions
to BPMN (Business Process Model and Notation) elements [90]. Ontology-based context models are
used to model context information to enable monitoring of context changes and simplify adaptation
decisions. Serral et al. [223–225] use such context models in combination with task models to describe
user behaviour patterns and automate user routines. An observation model is an abstraction of the sys-
tem which consists of a hierarchy of monitored entities and includes a collection of metrics used to
measure the performance of business operations [276].
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Kind of model Objectives of runtime models Usage
Abstract syntax tree Adaptation [194]
Architecture model Adaptation, monitoring [85,103,128,138,231–

235]
Aspect model Adaptation, error handling [84, 92, 181, 182]
Business process model Adaptation, policy checking and enforcement [90]
Context model Adaptation, monitoring [142, 145, 223–225]
Feature model Adaptation, consistency [5,57–60,93,142,145,

150, 201, 212]
Goal/requirements model Adaptation [6,23,24,113,143,144,

214,227,260,266,274]
Observation model Abstraction, monitoring [276]
Performance model Adaptation [49, 164]
RBAC model Policy checking and enforcement [140, 198, 244]
Safety model Policy checking and enforcement [219, 220]
State machine model Adaptation, conformance, error handling [13, 19, 137, 275]
Task model Adaptation, monitoring [70, 223–225]

Table 4: Overview of kinds of models and their purpose

3.6 Architectures

Processing models at runtime requires an architecture with introspective capabilities to extract relevant
runtime information and to relate the collected data with models. This is very similar to reflection
where the system under observation is able to access its own structure which is causally connected to it
(modifications to this self-representation are reflected in its own status and computation) [167]. Models
at runtime differ from reflection mainly in terms of abstraction: While reflection is more solution space-
oriented, models at runtime operate on a higher level of abstraction towards problem space [36]. At
the model-level, model-driven techniques can then be utilized at runtime which is not considered in
traditional model-driven approaches [22, 36, 218].

While investigating our literature search results, we identified five main types of architectures when
processing models at runtime: Monolithic, local dataflow, model-aware middleware, communication
middleware and repository architectures. They differ mainly in terms of model access and level of
dynamics like adaptation or simulation capabilities. Monolithic architectures encompass functionality
in a single system component without separation of concerns. Local dataflow architectures use inter-
process communication or in-process communication between different components or threads to gain
flexibility through modularity. Middleware architectures enable distributed communication and use
middleware components for additional functionality such as improving control, monitoring and log-
ging. Repository architectures enable concurrent access to model data stored in a central repository
and archiving of different model versions. We discuss each of the architectures in detail in subsequent
sections.
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Figure 10: Model access examples when using a monolithic architecture

3.6.1 Monolithic architecture

In a monolithic architecture, the whole system functionality is captured in a single unit without sep-
aration into multiple system components. In case of runtime models, we speak of a monolithic archi-
tecture if a runtime model is either locally accessed and/or manipulated by the running system itself
or is directly integrated in a software component, e.g. as woven code or as meta-data of an assembly
file. The missing loose coupling of system components leads to a simple system design, but lacks
adaptability, scalability and reusability. Therefore, such an architecture is often used in combination
with direct model execution or interpretation (see Section 3.4.6) when dynamic aspects like adapta-
tion, simulation and debugging can be neglected. Figure 10 shows three examples of runtime model
access in monolithic architectures: (a) a system which consumes a local model file (e.g., in XMI for-
mat), (b) a system which has access to an in-memory model (e.g., through woven model code) and (c)
a component which has embedded model information with a provided communication interface. Ex-
ample approaches using monolithic architectures are introduced by Thonhauser et al. [249] (interpret
state machines of model-based components) and Elkorobarrutia et al. [78] (use state machine models
within components as basis for self-healing mechanisms).

3.6.2 Local dataflow architecture

Local dataflow architectures are used to decompose a local task into several subtasks with lower com-
plexity, thus compensating disadvantages of monolithic architectures introduced by missing loose cou-
pling. Dataflow between local subtasks can be implemented by inter-process and in-process communi-
cation mechanisms like sockets and threads, respectively. The Pipes and Filters architectural style [45]
is also a possibility to realize such an architecture [200], although we could not find a concrete ap-
proach in our literature search which uses Pipes and Filters. Figure 11 shows two examples of pipes
and filters and socket communications. In Figure 11a, the pipes and filters architecture is used for sub-
sequent transformation of observed system information into data to be visualized in a model, enabling
monitoring and simulation through a reusable component. Figure 11b shows the communication be-
tween a system and a model-aware controller part through sockets. Since socket communications are
bidirectional, this architecture qualifies for dynamic approaches with adaptation capabilities, as pointed
out by the double-headed arrow in Figure 11b. A socket-related approach is introduced by Hooman
and Hendriks [137] where a model executor is integrated into the controller part to check the runtime
system state against a state machine model, leading to corrective actions if errors are detected. Götz
et al. [116, 117] also use this kind of architecture to realize energy auto-tuning by optimizing multiple
resources in distributed systems.
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Figure 11: Inter-process communication to separate the model from the system under observation

3.6.3 Model-aware middleware architecture

Middleware architectures enable distributed communication and provide additional functionality such
as improving control, monitoring and logging. A model-aware middleware architecture consists of a
central entity responsible for processing model information and providing model access services within
a distributed system. Such architecture helps to maintain monitoring and adaptation mechanisms at
a central place, increasing reusability while compensating limitations of local machine boundaries
existing in monolithic and local dataflow architectures. Figure 12 shows an example model-aware
middleware which monitors and controls a system while collecting information from other data sources
(e.g. sensors or manual input data to drive reconfiguration actions).

Since there exists a variety of middleware approaches, we will not go into detail about all of
them. Instead we pick out approaches covering the class of model-aware middleware architectures
very clearly and will mention other approaches in short form.

One previously mentioned approach is introduced by Taconet et al. [246] which makes dynamic
use of new context data collectors. Their middleware CA3M (Context-Aware Middleware with context-
awareness Meta-Model) uses context-awareness models present at runtime which are updated to fulfil
new application requirements. CA3M dynamically constructs bridges between applications and dis-
tributed collectors to realize monitoring elements of the context-awareness model. Instances of the
models are updated at runtime, demonstrated by the authors as new plugins are added to a mobile-chat
application. CA3M offers two kinds of interactions: Observation mode (application initiates exchange
of collector data) and notification mode (the other way around, periodically or threshold-based). By
using the CA3M middleware, the authors tackle the problem of changing and heterogeneous environ-
ment pointed out in Section 3.1.

Controlled system

Model-aware middleware

Data
source 1

Data
source 2

Data
source n

... ... ...

Figure 12: Model-aware middleware for monitoring and controlling a system according to input data
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The MADAM middleware owns a planning framework that subsumes and automates adaptation
decision-making in reflective component-based adaptive systems [7,8]. Variability of the adaptive sys-
tem is modelled as variation points where component compositions are selected to build an application.
Utility functions evaluate the user benefit of a component at a variation point in the composition. Each
component has a type that defines its signature and externally observable behaviour. Components can
be plugged in at a variation point if the type conforms with the type specified for the variation point.
They are annotated with non-functional metadata (according to a given QoS model) which is asso-
ciated with component ports to specify the services provided or required at ports. This metadata is
then used to maximize the utility of the application: For example, minimum resource consumption,
maximum resource consumption (likely to be best performance) or maximum efficiency (ratio utility
to resource consumption).

Another approach is introduced by Haberl et al. [126] where a system model specified in COLA
(COmponent LAnguage) is subsequently transformed into executable distributed code. A middleware
acts as global communication router between generated software components and is thus able to access
internal system state, store internal data of components and record input/output values. This data is fed
back to the model, allowing debugging on a higher abstraction level and thus solving the problem of
reduced level of abstraction resulting from hand-written artefacts as described in Section 3.1.

Other approaches use feature models to represent potential middleware configurations at run-
time [93] or use architecture models to control adaptation and a middleware to identify all alternative
components pluggable into component frameworks [85].

3.6.4 Communication middleware

A communication middleware focusses on abstracting away complexity of network communication
between distributed components. As seen throughout this article, the usage of services is well es-
tablished in combination with runtime models. Many middleware-based approaches use services as
primary communication method between distributed components. The approach introduced by Ram-
mig and Zhao et al. [207,279–281] use service calls of a model-based service to verify reconfiguration
plans. The approach is depicted in Figure 13 in simplified form. Assuming a substitution of component
D with E of a given application, the question arises if real-time constraints will still be satisfied and if
the system still keeps safety and consistency after the replacement. To answer this question, RT-UML
models and associated RT-OCL constraints are transformed into Kripke structures and Büchi automata
which are accessible via a service. At runtime, if a component replacement is requested within the
component architecture, the Real-Time Operating System (RTOS) sends a request to this verification
service containing system state and timing constraints. The verification service then fetches related
Kripke structures and Büchi automata and immediately starts on-the-fly verification. The service an-
swers Yes, No or Unknown as decision about accepting or rejecting the component substitution.

A key challenge of distributed communication is interoperability between different network partic-
ipants. Grace et al. [118, 120] propose a reflective middleware ReMMoC that allows mobile clients to
be developed independently of both discovery and interaction mechanisms of web services. ReMMoC
uses a binding framework for interoperation with different interaction types (e.g. SOAP RPC, event
subscriber) and a service discovery framework for discovering services using a range of service dis-
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Figure 13: Simplified view of the case study introduced by Zhao et al. [280]

covery protocols. Similar interoperability goals are pursued by the frameworks Starlink [41, 166] and
OverStar [121]. Starlink uses abstract network messages paired with coloured automata that represent
the required interoperability behaviour between protocols. OverStar utilizes self-managing overlay net-
works with open access to the overlay nodes which enables additional flow logic. Another approach
is proposed by Bencomo et al. [25] where mediators are dynamically generated to translate actions
of one networked system to actions of another networked system. Such code generation strategies are
discussed in Section 3.7.4.

More approaches exist which use aforementioned model-based adaptation for dynamic service
selection [51, 90], use a diagnose service to request monitoring information [240, 241] and enforce
RBAC constraints in service-based business processes [140].

3.6.5 Repository architecture

Repository-based approaches use a central storage of models or model-related data. The advantage
of the repository-based approaches lies in the controlled access of model instances as well as the
centralized storage of model evolution information. Repositories are used to establish a distributed
architecture and ease access and management of model data by providing standardized interfaces for
model manipulation. Figure 14 shows a repository architecture which enables concurrent model access
and versioning. Repository updates can either be applied by manual actions or other systems which
have writeable access to the repository.

The aforementioned approach by Holmes et al. [134–136] interactively interprets and analyzes
monitored information with respect to compliance to regulations, using models as first-class citizens.
Models are stored in a central MORSE repository (Model-Aware Repository and Service Environment)
and can be queried and manipulated via web services while the system runs. Furthermore, the reposi-
tory is able to store multiple versions of models so that old versions can be used until their instances
are deleted or migrated to new ones. Thus the advantage of the repository lies in hot-plugging new
model versions so newly created instances are instantly able to use them. However, the challenge of
such a repository approach lies in maintaining consistency. The authors counter this problem by arte-
fact relationships via Universally Unique Identifiers (UUIDs) and compliance annotations expressed
via dedicated DSLs.
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Figure 14: Repository architecture which enables concurrent model access and versioning

A similar approach to MORSE is described by Amoui and Derakhshanmanesh et al. [10,11,73,74]
by using the already mentioned GRAF framework. One part of the framework is a model manager
which is responsible for interactions with three repositories: Schema and Constraints, Runtime Model
and Model History. The manager offers access to these repositories in form of query and transformation
operations. The Schema and Constraints repository contains a schema which describes allowed model
elements for a runtime model in GRAF. Constraints are declared both at schema-level and model-level.
The Runtime Model repository contains a runtime model represented by a graph that describes parts
of the adaptable state and a collection of behaviour descriptions. The Model history repository stores
versioning information of the runtime model to trace back past model transformations.

3.6.6 Overview of approaches

Table 5 gives an overview of approaches according to the architectures introduced in Section 3.6:
Monolithic, local dataflow, middleware and repository architectures. Approaches can occur multiple
times in the overview if they use more than one of the identified architectures (e.g., a repository in
combination with a communication middleware).

3.7 Actions after runtime model analysis

When models are processed at runtime, different actions are executed as a result of the performed
model analysis. In this section we summarize common actions performed after runtime model analysis
such as component replacement, code generation or manipulation of the analyzed model itself. We
discuss component and connector manipulation, service binding manipulation, management API in-
teraction and code generation as adaptation and reconfiguration possibilities triggered by requirement
and environment changes. Furthermore, we discuss model manipulation and model execution to update
model information for ongoing monitoring and to execute models with operational semantics.

Architecture Related approaches
Monolithic [19, 78, 127, 194, 248–250, 277]
Local dataflow [116, 117, 137, 200]
Model-aware middleware [7,8, 13,16,49, 57,59, 60,63,68, 76,85,93, 106–109,126,138, 195,199, 200,

217, 231, 232, 234, 235, 246, 255, 257, 258]
Communication middleware [16,51,76,90,106,134–136,140,192,200,207,217,226,240,241,279–281]
Repository [9–11, 50, 73, 74, 134–136, 192, 206, 226]

Table 5: Overview of approaches related to the identified architectures
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Figure 15: States of an OSGi Bundle

3.7.1 Component and connector manipulation

Component and connector manipulation focuses on adding/removing components or connectors at
runtime to adapt the system according to changes in requirements and the environment. It requires a
component model which defines the interfaces and elements of components to ensure compatibility.
To prove correctness of an adaptation, Inverardi et al. [146] propose a theoretical assume-guarantee
framework which analyzes if invariant properties are violated. Their framework can be applied at
different levels of abstraction spanning from code to software architecture. For mobile environments,
the MADAM project proposes a middleware-based solution to design and implement self-adaptive
component-based applications [102]. Variability is obtained by applying a component framework that
facilitates dynamic creation of application variants. The component configuration of an application
may change at runtime to get the most rewarding variant which is determined by utility functions.

An often used framework to perform such adaptation is OSGi (Open Services Gateway initiative)
as dynamic component system for Java where components can be installed, started, stopped, updated
and uninstalled remotely without reboot. A Bundle – the OSGi term for a modularization unit – can
be in different states according to its current usage, as depicted in Figure 15. Installed Bundles are
successfully loaded, Resolved are ready to be started or have stopped, Starting ones are being started
and wait for activation, Active ones are running, Stopping ones are being stopped and Uninstalled
Bundles have been uninstalled.

In approaches by Alférez and Cetina et al. [5, 57–60] the OSGi adaptation mechanism is used
in combination with feature models to determine the possible configurations of the system. Morin et
al. [181] use OSGi in combination with model comparison between source and target models to reason
about adaptation steps. Matevska [171] presents an approach called AVORR (Availability Optimized
Runtime Reconfiguration) which aims at maintaining continuous availability while maximising service
responsiveness during runtime reconfiguration of component-based systems. Welsh et al. [266] use
goal models to realize requirements-aware systems by checking assumptions made at design time.
If such assumptions do not to hold, system-wide adaptations are applied by swapping components
and bindings to enable alternative goal realization strategies. Other approaches use component and
connector replacement techniques as well [85–87, 128, 199, 200, 202, 203, 261].
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A special approach using runtime models in combination with component-based adaptation is
introduced by Thonhauser et al. [248, 250]. Applications are defined as an assembly of loosely cou-
pled Model-Based Software Components (MBSCs) which belong to different owners. They cover all
relevant domain-specific aspects (like behaviour or data) of a component by using multiple distinct
models. Such MBSCs reside in special containers and get executed directly at run-time. Furthermore,
these containers have a plugin mechanism to support additional kinds of models.

3.7.2 Service binding manipulation

Similar to component and connector replacement, manipulation of service bindings achieve adaptation
through structural change, especially when dealing with QoS requirement restrictions in distributed
systems. Cardellini et al. [51] meet QoS requirements in volatile operating environments by using a
behavioural model of composite services updated at runtime by a monitoring activity. Changes in the
composite service environment lead to a change of bindings between abstract services and the concrete
services that implement them. This means that swappable concrete services have to offer the same
functionality for a specific abstract service. Such re-arrangement is reasoned from SLAs negotiated
with service clients and providers.

Calinescu et al. [47] propose the framework QoSMOS which utilizes Markov models within a
feedback loop (see Section 3.4.1) to determine quantitatively the reliability and performance quality
metrics of service-based systems. The monitoring part of the loop determines performance, reliabil-
ity and workload of services and updates Markov models accordingly. The results are analyzed and
changes are planned in terms of changing the implemented workflow (that is, for example, the service
bindings) or modifying resource allocation.

Another form of dynamic service binding is introduced by Nguyen and Colman [192]. They use
feature models at runtime to enable web service customization for customers. Figure 16 gives a sim-
plified overview of their approach. First, the service provider publishes a service variability model to
a central service registry. The service consumer then fetches the variability model from the registry,
selects desired features and sends the feature compilation request to the provider. The provider com-
poses a service interface consisting of bindings to the requested features and publishes an appropriate
WSDL description. The consumer is then able to interact with the personalized service interface.

Variability 
model registry

Service 
consumer

Service 
provider

1. Publish2. Discover

3. Feature request

4. WSDL of generated service

5. Personalized communication

Figure 16: Simplified view of the service customization approach by Nguyen and Colman [192]
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Grace et al. [118, 120] propose the reflective middleware ReMMoC that allows mobile clients to
be developed independently of both discovery and interaction mechanisms of web services. Similar
interoperability goals are pursued by the frameworks Starlink [41, 166] and OverStar [121]. These
approaches are described in Section 3.6.4.

3.7.3 Management API interaction

After model analysis, required changes can also be applied by calling interface operations which are
directly exposed by the system under observation. Such management APIs provided by the system
also qualify for extraction of runtime system data in order to apply model-based and control loop
techniques on the analyzed behaviour, as described in Section 3.4.2. Possible realizations of system
management interfaces are reflection APIs and network-based mechanisms like sockets and services
(see Sections 3.6.2 and 3.6.4, respectively). The already mentioned approach by Huang et al. [138] and
Song et al. [231–235] utilizes code generation for wrapping low-level management APIs and uses a
system-model adapter to support reading and writing system state in a model-based way, enabling the
manipulation of the system at the model level.

3.7.4 Code generation

If model analysis detects adaptation needs and component, service or management API manipulation
are not available, reconfiguration can also be achieved by generating reconfiguration scripts or code
which adds additional functionality. Scripts are sent to the controlled system nodes which interpret
them to drive the transition from the current to the desired configuration. Because of their dynamic na-
ture, scripting languages like FScript3 qualify particularly well for writing such reconfiguration scripts,
although there is no strict limitation to scripting languages. As an example, in the already mentioned
approach by Fleurey and Morin et al. [84, 181, 182] reconfiguration commands responsible for struc-
tural adaptation are instantiated in case of context changes to meet the new requirements.

In case of code generation, Inverardi and Mori [143,144] propose a framework to augment a system
with new requirements arising at run-time. At design time, a context model is defined which describes
the environment that is beyond the control of the system. The model is updated at runtime to reflect
the current environmental situation. When a new requirement is specified, a new system variant is
generated. The new variant is loaded by reflection and the entry method invoked to put the new variant
in action.

Alternatively, code can also be generated to dynamically enhance interoperability between two
systems. Within the CONNECT project4, Bencomo et al. [25] introduce an approach where mediators
are dynamically generated which translate actions of one networked system to the actions of another
networked system developed with no prior knowledge of the former. Runtime models are used to
capture meta-information about these systems, including interfaces and additional knowledge about
their associated behaviour. Such mediators are also addressed by Hao et al. [132], their approach relies
on monitoring for runtime message mismatches and the semi-automatic generation and deployment of

3see: http://fractal.ow2.org/fscript/
4see: https://www.connect-forever.eu/
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behavioural mediators. Mismatch detection is prepared by generated and deployed interceptors which
rely on state machines. A monitor then logs the exchange of messages between different systems and
supports the detection of message mismatches.

3.7.5 Model manipulation

Direct model manipulation is the common procedure for monitoring approaches to display system
information at the model level instead of low-level traces [138, 194, 217]. Behavioural models enable
the possibility to trace system behaviour and workflow activities by extracted system data which is
fed directly into the models [78, 123, 124, 135, 169, 170, 275]. Monitoring, simulation and prediction
approaches are described in Section 3.3.2. Beside monitoring, model manipulation is also used for
incremental refinement of the model data, e.g. when using performance models to reflect the current
timing constraints given by contextual conditions [49, 50, 106]. Such refinement of model data can be
used for self-healing mechanisms where the system is able to update its own model dependent on the
current situation.

3.7.6 Model execution

Another possible action after runtime model analysis is the direct execution of the model. As de-
scribed throughout Section 3.4.6, model execution deals with direct execution of models containing
operational semantics. A popular example of executable models are state machines which are used
throughout our identified literature [13, 19, 78, 80, 82, 105, 127, 137, 158, 168, 178, 187, 207, 248, 249,
273, 275, 279–281].

3.7.7 Overview of approaches

Table 6 gives an overview of approaches according to the actions introduced in Section 3.7: Compo-
nent and connector manipulation, service binding manipulation, management API interaction, code
generation, model manipulation and model execution.

Action Related approaches
Component and connector manipulation [5, 49, 50, 57–60, 85–87, 102, 128, 171, 181, 199, 200, 202, 206,

207, 246, 248, 250, 261, 266, 279–281]
Service binding manipulation [41, 47, 51, 57, 58, 118, 120, 121, 166, 192]
Management API interaction [22, 93, 97, 98, 107–109, 138, 231–235, 255, 257, 258, 261]
Code generation [25, 84, 87, 126, 143, 144, 181–183, 199, 200]
Model manipulation [49, 50, 78, 106, 123, 124, 135, 138, 169, 170, 194, 217, 275]
Model execution [10,11,13,19,40,73,74,78,80,82,90,92,105,127,137,158,168,

178, 187, 196, 207, 226, 237, 248, 249, 273, 275, 277, 279–281]

Table 6: Overview of approaches related to the identified actions
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3.8 Research methods and empirical evidence of runtime model approaches

While extracting objectives, techniques, architectures and kinds of models, we also analyzed research
methods applied in literature to evaluate the presented approaches as well as the resulting empirical
evidence. The research methods are categorized into five different groups [77]:

• Controlled experiment
• Case study
• Survey research
• Ethnography
• Action research

A controlled experiment is “an investigation of a testable hypothesis where one or more indepen-
dent variables are manipulated to measure their effect on one or more dependent variables” [77]. An
example would be the measurement of productivity with and without the usage of a specific software.

We define case study as a practical demonstration of an introduced approach with a variable depth
of industrial relevance. Case studies can either be exploratory (observe some phenomena to obtain new
knowledge) or confirmatory (test approach against existing theories). In contrast to survey research,
case studies usually do not have representative sampling.

Survey research contains the “selection of a representative sample from a well-defined population,
and the data analysis techniques used to generalize from that sample to the population” [77]. An
example of such a survey research would be an analysis of the behaviour of selected developers to
derive information about developer behaviour in general.

Ethnography is a research method where social interactions between people of a specific com-
munity are examined through field observation, especially to gain knowledge about communication
culture within that community [209]. The researcher can either observe the community from an exter-
nal point of view or join the community to gain insight into the community behaviour.

Action research concentrates on solving problems while observing the process of problem solv-
ing itself. Researchers reflect over past, current and planned actions to evaluate their impacts on the
problem solving process in terms of efficiency and level of improvement.

In our research, only controlled experiments and case studies were conducted in the identified
literature, other forms of research methods listed above were not applied (at least not according to
the research method definitions given by Easterbrook et al. [77]). Our research yielded 10 controlled
experiments and 117 case studies within our literature search results, whereas 37 case studies are
applied in realistic and 80 in exemplary test scenarios.

In addition to the research methods, we took note of metrics used to evaluate the identified ap-
proaches, e.g. performance measurements, lines of code, resource consumption and model complex-
ity. Figure 17 gives an overview of identified metrics regarding absolute frequency of their usage.
Performance covers metrics like response/synchronization/execution time, latency, down time, reboot
delay and transactions per second. Resource consumption encompasses metrics like memory usage
and amount of disk I/O operations. Lines of code measurements involve code sizes when comparing
different approaches or implementation strategies. Utilization deals with resource occupation measure-
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ments, e.g. the utilization of network routers before and after reconfiguration [49,50] or node utilization
in case of virtual machine redeployment [139]. Evaluation regarding the number of model elements,
components, instances and object links are summarized in metric complexity. Overhead measures the
ratio of intervention efforts (e.g. reconfiguration/monitoring actions or execution of instrumentation
instructions) in comparison to the regular workflow. The file size metric describes the sizes of models
stored in files or components enriched with embedded data. Robustness deals with measurements of
fault tolerance, error distribution and anomaly detection rates. Scalability measurements encompass
analysis of system behaviour under various workloads as well as stress test scenarios. Comparisons
of estimated parameters with real data measurements are summarized in metric estimation quality.
The effectiveness metric covers the ratio of successful versus unsuccessful actions, e.g. the comparison
of successful and unsuccessful reconfiguration actions or preventions of SQL injection attacks [127].
Productivity deals with productivity improvements gained through usage of the respective approach in
a realistic, business relevant test scenario. As Figure 17 outlines, performance measurement is by far
the most often used method for evaluating approaches dealing with models at runtime.

Table 7 gives an overview of approaches according to the research methods described above. As
mentioned, none of the identified literature uses survey research, ethnography or action research to
evaluate the presented approaches.

3.9 Summary and survey publications

A number of publications provide summaries or surveys related to models at runtime, which we sum-
marize below. None of those publications provides a systematic literature review.

Bencomo [22] points out the importance of using models at runtime. The author argues that long-
living software systems need first-class representations of themselves to support dynamic changes.
Furthermore, the need of a more precise distinction between development models and runtime models
is demanded, which our approach partially assists by underlining various kinds of runtime models.
One open research question of the paper addresses the problem of synchronization between runtime
models and the running system. We help answering this question by our summary of techniques for
processing runtime models: Introspection, conformance, comparison, transformation and execution.
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Figure 17: Absolute frequency of metrics used to evaluate runtime model approaches
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Research method Related approaches
Controlled experiment [9, 21, 49, 50, 54, 94, 97, 128, 139, 172]
Case study Realistic scenario:

[4, 10, 11, 16, 20, 25, 33, 56, 73, 74, 114, 125–128, 130, 133, 135, 140, 159, 181,
188, 199, 200, 212, 223, 224, 226, 229, 233, 240, 243, 248, 250, 265, 272, 278]
Exemplary scenario:
[5,13,17,34,37–39,51,57,59,60,63,64,79,81,83–87,90,92,93,97,98,100,
101,103,106,117,120,121,127,128,137,138,144,148,151,168,170,171,177,
186, 190, 192, 204–207, 217, 219, 220, 222, 231, 232, 234, 235, 237, 244, 246,
248, 249, 253–255, 258, 259, 261, 262, 266–268, 271, 276, 277, 279–281, 283]

Survey research None
Ethnography None
Action research None

Table 7: Overview of approaches related to the applied research methods

Blair et al. [36] also point out the important role of software models at runtime. They present
relevant articles and emphasize several research challenges regarding models at runtime. They divide
models into several groups: Structure vs. behaviour, procedural vs. declarative, functional vs. non-
functional and formal vs. informal. While not grouping our identified kinds of models according to
these classes, in contrast to their classification our work focuses on objectives, techniques and archi-
tectures when using models at runtime.

Vogel et al. [256, 259] list different classes of models used at runtime: Implementation models
are platform-specific and coupled to the system’s implementation, Configuration and Architectural
Models reflect the current system configuration and provide architectural views, Context and Resource
Models describe the environment of a system and Configuration Space and Variability Models reveal
possible variants of a system. Their approach focus on the relations between these models while our
work emphasizes objectives, techniques and architectures of runtime models in general.

As mentioned in Section 3.3.1, adaptation is one main objective to cope with continuously chang-
ing requirements. Our literature search yielded proceedings of conferences specializing in adaptive
and self-managing systems [2], international workshops on models in general [1] and workshops on
ubiquitous systems [216]. All these topics relate to adaptation in general, giving us confidence that
the importance of runtime models will increase in the future. As seen in the introduced approaches
throughout the article, runtime models are an effective instrument to tackle various problems regard-
ing adaptation needs such as requirement evolution and changing environments.

4 Discussion

In this section, we assess our literature search method, the precision of our search results, possible
distortions by our selection criteria and limitations of this study. Furthermore, we discuss our collected
results and relate them to our research questions introduced in Section 2.2. At the end of this section
we discuss perspectives and future challenges of models at runtime.
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4.1 Search method

In each SLR, the question arises whether relevant publications were omitted due to our literature search
method. For instance, we could have improved our search results by including more publishers. This
would potentially have led to an increased number of publications but would also complicate the phases
of filtering, duplicate elimination and grouping. We decided to choose only the ACM Guide to Com-
puting Literature and IEEE Xplore, which include bibliographic information from all major publishers
in computing (e.g., Springer, Elsevier, etc.), and compensate possibly missed publications by extending
our search to other publishers by our snowballing phase. The low number of additional publications
found during snowballing indicates that our search has found most of the relevant literature.

Another possible distortion in our search results may result from publication filtering by looking
at their abstracts. Abstracts can be very short or even not be available, bringing inaccuracy into our
search. Furthermore, we realized that some of the abstracts suffer from incorrect formatting (e.g.,
words of a sentence sticking together). We are unsure if this is just a presentation issue or if this has
bad influence on the search functionality. We compensate such perturbations by including multiple
spellings of words and abbreviations in our search string and by shifting inclusion/exclusion decisions
to later, more detailed phases in case of uncertainty. Again, the low number of additional publications
found during snowballing indicates that our strategy worked well.

We applied our snowballing phase only to papers to be discussed in detail. While we could apply
snowballing to other publications as well, we decided to keep the number of additional literature man-
ageable, expecting that references of non-detailed papers would again yield papers not fitting the topic
exactly. Keeping the number of papers manageable was also achieved by dismissing publications if
uncertainty about relevance and classification persisted until the elimination phase.

Overall, despite a structured proceeding, a minimal degree of subjectivity regarding decisions
about inclusion and exclusion of publications remains, especially when weighing fitting/not fitting
the topic, importance/unimportance of facts and classification of literature.

4.2 Classification into objectives, techniques, architectures and kinds of models

In this article we analyze objectives, techniques, architectures and kinds of models when using models
at runtime to identify research areas not covered so far and to provide a comprehensive overview
for researchers who are new to this topic. Our classification contains some overlaps because there
exist interconnections between the aspects (e.g., (model-)conformance is considered as objective and
technique). Figure 18 shows the relationships between the four aspects.

Objectives Kinds of models

Techniques Architectures

determine

realize organize

operate on

Figure 18: Interconnections of the proposed classification aspects
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Objectives determine the kinds of models which can be used to support the satisfaction of these
objectives (e.g., the objective error handling can be satisfied by using state machine models, but hardly
by using feature models). Architectures organize the selected kinds of models and make them available
at runtime through various interfaces (e.g., a repository architecture enables access to business pro-
cess models through a special query interface). Techniques are responsible for realizing objectives by
utilizing model access interfaces provided by the architecture (e.g., within a monolithic architecture,
the technique model comparison gets the architecture model from an XMI file, compares it with the
current configuration and calculates corrective actions, thus satisfying the objective of adaptation).

In other words, for every objective there exists a set of kinds of models which help to satisfy that
objective when used at runtime (see Table 4 for details). Architectures and techniques are independent
of the pursued objective and the used kinds of models (an exception here is the technique model
execution since not every kind of model is executable, furthermore it is debatable if this technique is
related to the topic of models at runtime - see Section 3.4.6).

Our proposed classification is only one possibility to structure runtime model approaches, other
classifications also qualify for giving an overview of various runtime model aspects (e.g., different
model query techniques/languages, synchronization mechanisms and feedback loop variations).

4.3 Research questions

In Section 2.2 we introduced four different research questions and were able to answer these the fol-
lowing way according to our research results:

For what purposes are models used at runtime? We answer this by identifying different objec-
tives throughout our literature analysis: Adaptation, abstraction, consistency, conformance, error han-
dling, monitoring, simulation, prediction, platform independence and policy checking/enforcement. A
common objective of all these classes is the shift from low level system interactions to model-based
processing which is closer to the problem space. Recent research introduce requirements-based and
goal-oriented mechanisms to continue this shift further in the problem space direction [55, 215, 260].

Which techniques are applied when processing models at runtime? We identified following tech-
niques when processing models at runtime: Autonomic control loops, introspection, model confor-
mance, model comparison, model transformation and model execution. These techniques address the
ongoing surveillance of a running system, the extraction of its data and the model-based processing
to reason about the system and to affect its execution. As described in Section 3.4.6, there is still no
consensus about the relationship between model execution and the models at runtime paradigm.

Which problems are addressed by using models at runtime? Our classification of problems includes
inaccurate predictions, changing environments and requirements, combinatorial explosion of system
variants, error localization, rule enforcement and hand-written artefacts with low reusability, mainte-
nance and abstraction. Early approaches focussed on architectural adaptation to tackle the problems
of changing environments and requirements. Over time researches realized the potential of models at
runtime and extended their field of application to cope with additional problems. Ongoing research on
models at runtime indicates that there will be more extensions in the near future.
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Which architectures exist for processing models at runtime? Identified approaches use monolithic,
local dataflow, middleware and repository architectures which often overlap in their usage. Such ar-
chitectures must include introspective capabilities to extract runtime information and to relate the
collected data with models. Models at runtime differ from reflection mainly in terms of abstraction:
Reflection is solution space-oriented, while models at runtime operate on a higher level of abstraction
towards problem space [36]. The selection of an architecture which supports runtime models could be
assisted by using architectural decision templates [282] (see Section 4.4 for details).

Which research methods are most frequently used for evaluating runtime model approaches?
Which empirical evidence has been reported? Evaluation and corresponding evidence for models at
runtime is most often provided through example scenarios only or not at all. In only 37 cases, case
studies have been conducted within realistic settings. Only 10 controlled experiments have been con-
ducted. Often metrics are used for evaluation. As Figure 17 outlines, performance measurement is by
far the most often used method for evaluating approaches dealing with models at runtime.

Beside purposes, techniques, problems and architectures, we identified different kinds of models
used in our selected literature. We pointed out the broad field of meanings, use cases and representa-
tions of runtime models. We did not distinguish between different model representations (e.g. graphi-
cal, textual) to capture all publications using the term model in combination with runtime utilization.

As demonstrated by our presentation of the most relevant approaches, models used at runtime
cover many different research areas leading from low-level adaptation on AST-level to High Perfor-
mance Computing. The majority of our analyzed literature deals with model-based monitoring and
software adaptation according to changing environments and requirements. Few approaches address
trace visualization and parameter prediction. Other areas not addressed in detail so far are model-based
monitoring, adaptation and architecture reconstruction of software where introspection mechanisms -
namely event log checking, instrumentation and management APIs - cannot be applied easily, as is the
case with legacy systems.

4.4 Perspectives and future challenges

Early approaches using models at runtime focussed on architecture-based mechanisms to realize mon-
itoring and adaptation [97,98,100]. The ideas further evolved from early middleware-based adaptation
approaches [65,67,76,154,211] to other topics like error handling [137,147] and model execution (see
Section 3.4.6). Several approaches refined the management of causal connections between models and
the running system [107–110,138,231–235,255,257,258]. Recent approaches refine established tech-
niques like feedback loops [61, 157, 159, 203] and abstract running systems even further by focussing
on goal- and requirement-oriented aspects [55, 215, 260]. Overall, there has been a recognizable shift
from simple adaptation interests to wider application fields and more goal-oriented and user-centric
approaches over the last years [32]. The question arises in which direction models at runtime will
evolve in the future.

While researchers put a lot of effort into the development of monitoring, adaptation and synchro-
nization mechanisms, we think that there is a strong need for process-related enhancements when de-
signing and implementing systems which are augmented by runtime models. Differences to traditional
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development processes have to be elaborated, especially in terms of testing to ensure quality of the
resulting application. The vast amount of models combined with different architectures and techniques
lead to a great number of test cases which have to be executed to reduce the possibility of runtime
errors in such highly-dynamic environments. We believe that a tool-assisted selection of architectures,
techniques, kinds of models and testing mechanisms would boost the development and adoption of
applications using models at runtime. Reusable architectural decision templates would be a first step
to realize such an assisting framework [282].

5 Conclusions

In this article we applied a systematic literature review to analyze objectives, techniques, kinds and
architectures when using models at runtime. Our search yielded a classification of distinct groups
containing 122 papers analyzed in detail, 87 not detailed and 33 dismissed papers. We identified
different objectives throughout our literature analysis, namely adaptation, abstraction, consistency,
conformance, error handling, monitoring, simulation, prediction, platform independence and policy
checking/enforcement. We demonstrated the usage of different kinds of models in our identified lit-
erature to achieve these objectives and to tackle common problems of inaccurate predictions, chang-
ing environments, error localization, hand-written artefacts and combinatorial explosions regarding
system configurations. We identified different techniques when processing runtime models to extract
runtime data, raise the abstraction level and enforce constraints: Introspection, model conformance,
model comparison, model transformation and model execution. We demonstrated the usage of these
techniques in our selected literature and explained their similarities and differences. Regarding archi-
tectures, identified approaches use monolithic, local dataflow, middleware and repository architectures
which often overlap in their usage.

With this work we aim to provide a basis for future studies and to promote ideas for research areas
not covered in detail by models at runtime so far. In particular, we aim to automate parts of the runtime
model development process and improve the architectural decision process when designing systems
with runtime model support.
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