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Abstract—Much attention is paid nowadays to software archi-
tecture of a system as a set of design decisions providing the
rationale for the system design. To document and share proven
architectural design decisions, decisions made in concrete devel-
opment projects are mined and distilled into reusable architec-
tural decision models (a.k.a. guidance models). The available dis-
tillation approaches, however, remain ad hoc and biased towards
the personal experience of few expert architects. Relationships
between distilled decisions are not systematically explored. We
propose an approach for distilling reusable architectural design
decisions with emphasis on their relationships. Architectural
knowledge artifacts (e.g., architecture documentation, interviews)
are systematically coded for the occurrence of architectural
design decisions and their details. Co-occurrences of coded design
decisions are then processed for different relationship types
using an established data-mining technique: frequent item-sets.
The distilled relationships enter the construction of a reusable
architectural decision model and contribute to organizing the
design space based on empirical data (i.e., frequency patterns
of co-occurrences). We report on distilling design-decision re-
lationships from decision data collected during a three-year
project on language architectures of 80 UML-based domain-
specific modeling languages.

Index Terms—architectural design decision; design-decision
relationship; reusable architectural design-decision model; guid-
ance model;

I. INTRODUCTION

In recent years, software architecture is perceived as the
result of a set of architectural design decisions (ADDs) inter-
twined with other design artifacts rather than only the system’s
structure using components and connectors [1], [2]. Capturing
ADDs is important for analyzing, understanding, and sharing
the rationale and implications of these decisions and reducing
the problem of architectural knowledge vaporization [3]. Many
architecture decision models and tools [4], approaches for
selecting design alternatives during decision making [5], and
ADD documentation approaches have been proposed in the
literature: Tofan et al. identified 76 process-oriented papers as
of 2014 [6]. An ambition common to all those approaches is
avoiding and reducing maintenance costs by countering the
vaporization of architectural knowledge [6].

Among those, approaches exist that distill common or
reusable knowledge—similar to design patterns [3]—from
decisions made in concrete projects to document and share
proven solutions along with their forces, consequences, and
(alternative) solutions (see, e.g., [7]–[12]). This distilled,

reusable architectural knowledge is then offered in a reusable
architectural decision model (RADM; also called: guidance
model) including possible relationships between the decisions.

So far, the process of distilling architectural design decisions
and their relationships is mostly an informal, ad hoc process
based the personal experience of either only the authors of the
RADM or sometimes also other designers and architects. In
particular, identifying reusable decisions and decision details
is driven by personal experiences, rather than systematic liter-
ature studies or harvesting readily available and documented
knowledge (e.g., pattern collections) in a community [7]. This
may incur unwanted biases. For example, the material entering
the construction of an RADM frames any follow-up decision
making based on the reused decisions, e.g. by fixating the
decision makers on specific, but possibly irrelevant require-
ments shimmering through in this input material (framing bias;
[2]). In previous work, we aimed at systematizing in particular
identification of decision candidates further by performing
a rigorous empirical multi-method study [11]. This study
combined the results of a systematic study of the literature,
interviews with industry experts, and an industrial case study.

A key issue of decision identification for reuse from archi-
tectural knowledge artifacts—whether ad hoc or systematic—
is the vast amount of information which potentially enters
an architect’s decision inventory [7]. For example, early steps
of our previous study [11] yielded more than 400 potentially
relevant pattern descriptions. Even in already structured and
navigable sources of reusable knowledge (e.g., a single pattern
language, a reusable ADD model), there are numerous poten-
tial decision relationships to be considered. In many cases, as
pattern languages and ADD models are also used outside the
domain they are originally described for, potential decision
relationships might significantly go beyond those documented
in the pattern languages or ADD models. In our catalog on
design decisions for domain-specific modeling languages [13],
for example, there are 27 reusable and combinable decisions
resulting in 227 potential decision combinations. When popu-
lating a design-decision space from such sources, the risk is
high that the effort spent on evaluating this space becomes
excessive and that decision makers put emphasis on wrong or
irrelevant decisions or relationships [7].

None of the existing approaches applies a fully systematic
and objective approach for selecting the reusable decisions



and organizing the knowledge based on decision relationships.
Frequencies of decisions and relationships in real-life projects
are only informally considered by the authors of the current
RADMs. Despite existing suggestions for automation support
during identification [7], the degree of automation and tool
support to tame the vast amount of architectural information
is low, rendering approaches labor-prone, especially if larger
sets of software systems need to be analysed.

In this paper, we suggest a systematic distillation approach
for architectural design decisions from possibly large sets of
architecting projects into an RADM, with focus on systemati-
cally harvesting relationships (associations) between reusable
decisions. Key to this approach are frequent item-sets as a
family of data-mining techniques that have already been ex-
plored by the software-architecture community for architecture
recovery [14], [15] and for static architecture-conformance
checking [16]. However, its application for distilling architec-
tural design decisions and relations in RADMs has not been
explored so far and presents particular challenges (e.g., appro-
priate inter-rater reliability statistics). We report on applying
the distillation approach for identifying associations between
design decisions on 80 architectures of UML-based domain-
specific modeling languages. This application showcases the
capacity of frequent item-sets to structure and to summarize an
design-decision space otherwise abound in possible decision
combinations (e.g., by exposing prototypical designs).

This paper is structured as follows: In Section II, we discuss
background on representing ADDs and frequent item-sets.
Section III introduces our distillation approach. Details of a
frequent item-set analysis are then described in Section IV.
The application in a large-scale distillation project is reported
in Section V, followed by a discussion of limitations and
lessons learned in Section VI. Related work is reviewed in
Section VII, and Section VIII concludes the paper.

II. FROM ARCHITECTURAL DESIGN DECISIONS TO
DECISION-ITEM SETS
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Fig. 1. Exemplary overview of architectural design decisions and their details:
decision context, decision problem, and decision options.

a) ADD representation: Various approaches to reusable
architecture decision models (RADM; such as [7]–[12]) use
different meta-models to represent the reusable ADDs sharing
the same core concepts, but currently there is no generally
accepted representation [4]. In addition, any representation
for documenting design rationale should be adapted to the
respective domain or application. As the work presented in
this paper should work together with any of those approaches,

without loss of generality, we use here a simplified meta-
model that only considers those core concepts and can easily
be mapped to the (sometimes differently named) meta-model
elements of the different RADMs.

The used core concepts and their relationships are illustrated
in the meta-model in Figure 1. In particular, a decision is taken
in a particular decision context (e.g., a development phase, a
scope, by a certain role, or in the context of certain technology
choices) to address a specific architectural design problem
(see Figure 1). The decision and its description encompass
the possible design options that can be adopted to solve the
problem. In a decided instance of the reusable decision, one of
those options would be adopted. Further details often recorded
are for instance decision drivers, decision consequences, and
decision states [17], [18].

b) Decision associations: An association between two
decisions (or decision details) represents a possible, inten-
tional co-occurrence of two (or more) corresponding decisions
(or decision details). An association says that two or more
decisions must be considered together, without implying any
particular (e.g., temporal, causal) order of adoption. Decision
associations can capture one decision relating to another in
terms of decision drivers and decision consequences (causal
sequence). More generally, a causal sequence groups decisions
(decision details) which are linked pairwise by depends-on,
is-excluded-by, and/or relationships [17]. When recovering a
decision-making process, the time order of decision adoption
can be recorded (adoption sequence), irrespective over whether
time ordering subsumes any causality or not. In relevant
literature, many possible decision associations are discussed,
such as the influences, refinedBy, decomposesInto, forces,
isIncompatibleWith, isCompatibleWith, and triggers relations
in the work by Zimmermann et al. [8].

TABLE I
SKETCH OF IMPORTANT FREQUENT ITEM-SET CONCEPTS: ITEMS, ITEM

BASE, TRANSACTIONS, AND BINARY ENCODING [19], [20]

Binary item-set encoding
Transactions Item sets i1 i2 i3 in

t1 {i2, i3, . . . } 0 1 1 · · ·
t2 {i1, i2, i3, . . . } 1 1 1 · · ·
...

...
...

...
...

...
tn · · · · · · · · · · · · · · ·

c) Decision-item sets: In this section, we map frequent
item-set concepts [19], [20] onto concepts needed for reusable
decision distillation. Such distillation is based or can deliver a
set of possible nominal attributions on given software architec-
tures. Such attributions can, for instance, be guided through
generic design rationale (e.g. an ADD catalog, architectural
pattern collections) or the results of a (systematic) literature
review (e.g. 40 software patterns relevant for the technical
domain of service-based platform integration in our previous
study [11]). If unguided, a base set of nominal attributions
is arrived post hoc (e.g., using ex-post content coding). Each
possible nominal attribute (e.g. one software pattern or deci-
sion option) is referred to as a (decision) item. All available



nominal attributes can be encoded as a set of binary attributes
B = {i1, i2, . . . , in} called the item base (see also Table I).

A coding procedure on architectural knowledge artifacts—
for details see Section III—yields a collection of item sets
referred to as the data base T , with each recorded item set
being a transaction; T = {t1, t2, . . . , tn}. The cover K of
any item set I ⊆ B indicates the transactions in B it is
contained in: K = {t|t ∈ T ∧ I ⊆ t}. The support s (a.k.a.
absolute frequency) of a given item set is the cardinality
of its cover: s = |K|; that is, the number of containing
transactions. Such decision-item sets are eligible to represent
decision associations (see above).
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Fig. 2. An overview of the proposed decision-identification and distillation
approach as part of a conceptual decision-modeling framework based on
reusable architecture decision models (RADM, GM; [7]). Its application to
the domain of UML-based DSMLs [13] is elaborated on in Section V.

III. APPROACH OVERVIEW

To put our approach into a broader context, we consider
it as a refinement of the decision process based on reusable
architecture decision models (RADM) by Zimmermann et
al. [7]. This approach claims that a decision process usually
has three major steps: decision identification, decision making,
and decision enforcement. Figure 2 depicts these RADM-
based steps in the left-most column, followed by our suggested
identification sub-steps, and an instantiation of these sub-steps
in an actual distillation project (described in Sections IV and
V). Zimmermann et al. [7] replace the decision identification
step, specific to each project, with an identification resulting in
a set of reusable decisions. In their decision identification the
objective is to identify required decisions based on knowledge
artifacts relevant for the technical domain at hand and likely to
document recurring decision contexts, problems, and solution
candidates. The outcome of this step is the RADM for the
actual decision making in the next step. Making a decision
based on the identified candidates involves an evaluation of
decision drivers such as domain- and project-specific require-
ments or quality attributes. Finally, decision enforcement is
about communicating decisions made to stakeholders and
executing them. The goal of reusing decisions from an RADM
is to increase productivity significantly and have a positive

effect on quality [7]. The focus of our work is to systematize
the reusable decision-identification step in Zimmermann et
al.’s decision process. Note that our approach can easily be
combined with other RADM approaches (e.g., [8]–[12]).

Our approach has three major steps: collection, coding, and
frequent item-set analysis (see middle column in Figure 2).
Data collection refers to the architects in a software devel-
opment project gathering as many architectural decisions and
solutions in an architectural solution domain as possible with
(direct) or without involvement (indirect) of peers [21]. Direct
data-collection techniques include interviews, questionnaire
surveys, brainstorming, and focus groups. Indirect techniques
are primarily architecture-documentation analyses including
literature reviews (e.g., systematic literature reviews as in [11],
[13]), analyses of process documentation (project logs, work
diaries), if available, and reviews of system artifacts (e.g., code
and test bases).

Data collection may yield two types of architecture knowl-
edge artifacts (see Figure 2): A primary source is a descriptive
piece of documentation on a particular architecture authored
by the original architects themselves. In [13], for example,
we collected 84 scientific publications using a mixed engine-
and citation-based search as primary studies on existing archi-
tectures. A secondary source is a reflective and/or prescriptive
piece of documentation on architecting for a particular domain
or across domains. A scientific literature review, e.g., can
detect secondary sources in terms of literature surveys, sys-
tematic reviews, pattern collections, opinion papers, personal
experience reports, and evaluation research [22]. In [11], e.g.,
we performed a manual and subjective systematic literature
review for pattern collections. The availability of secondary
sources determines the options for data coding (open vs.
guided; see below).

During data coding, the primary sources collected so far
are subjected to a systematic, qualitative content-coding proce-
dure [23], [24]. Coding involves one or more experts searching
for occurrences of architectural design decisions or solutions
in a set of primary sources and to document them. The main
objective of coding is to reduce the enormous amount of
predominantly qualitative data obtained from data collection.
A key coding step is developing a coding schema. A coding
schema, which is defined before actual coding based on
existing concepts, realizes guided (or deductive) coding. This
is based on previous, extrinsic knowledge, such as existing
theories (e.g., reference architectures, prescriptive guidelines),
reports on prior research in the domain, or data-collection
artifacts (e.g., interview guides). A guided coding approach
assumes secondary sources being available from the data
collection step. When a coding scheme is built by creating
categories and sub-categories based on the primary sources in
an incremental manner during coding, as secondary sources
are not available at all, this is referred to as a procedure of
open (or inductive) coding. Available open-coding techniques
are summarizing, subsumption, and open/selective coding as
in grounded-theory approaches (see [23] for an overview).
Whether guided or open (or a combination), the output of



TABLE II
A CONVENIENCE SAMPLE OF TEN DSMLS EXTRACTED FROM THE STUDY DATA FROM [13] FOR ILLUSTRATION PURPOSES. EACH DSML

ARCHITECTURE WAS CODED FOR THE PRESENCE OF ADDS GROUPED INTO SIX DIFFERENT DECISION GROUPS (EXPANDED CODE, ABBREVIATED CODE):
LANGUAGE-MODEL DEFINITION (d1), LANGUAGE-MODEL FORMALIZATION (d2), LANGUAGE-MODEL CONSTRAINTS (d3), CONCRETE-SYNTAX

SPECIFICATION (d4), BEHAVIOR SPECIFICATION (d5), PLATFORM INTEGRATION (d6).

DSML Transaction

expanded abbreviated

CompSize {LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, CONCRETE-SYNTAX SPECIFICATION} {d1, d2, d4}

EIS
{LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, LANGUAGE-MODEL CONSTRAINTS,

CONCRETE-SYNTAX SPECIFICATION} {d1, d2, d3, d4}

UACL
{LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, LANGUAGE-MODEL CONSTRAINTS,

CONCRETE-SYNTAX SPECIFICATION} {d1, d2, d3, d4}

MoDePeMART {LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, CONCRETE-SYNTAX SPECIFICATION} {d1, d2, d4}
UML-GUI {LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, PLATFORM INTEGRATION} {d1, d2, d6}
SMF {LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, CONCRETE-SYNTAX SPECIFICATION} {d1, d2, d4}

BIT
{LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, LANGUAGE-MODEL CONSTRAINTS,

CONCRETE-SYNTAX SPECIFICATION, PLATFORM INTEGRATION} {d1, d2, d3, d4, d6}

UML-PMS
{LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, LANGUAGE-MODEL CONSTRAINTS,

CONCRETE-SYNTAX SPECIFICATION} {d1, d2, d3, d4}

SECRDW {LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION} {d1, d2}

UML4SOA
{LANGUAGE-MODEL DEFINITION, LANGUAGE-MODEL FORMALIZATION, LANGUAGE-MODEL CONSTRAINTS,

CONCRETE-SYNTAX SPECIFICATION, PLATFORM INTEGRATION} {d1, d2, d3, d4, d6}

this step is a data base of decision-item sets (transactions; see
also Section II).

Finally, via running a frequent-item set analysis [19], the
coded decision data are processed to highlight a subset of the
identified decisions and their details based on their relevance
to the decision-making context. The objective is to prepare
not a complete, but a tailored design-decision space for the
decision-making step. The main outcome of the frequent-item
set analysis step is an RADM refined by data on occurrences
and co-occurrences of its model elements.

Toolkit: The analysis step is supported by a tool using
existing statistical software components in R, mainly the R
package arules [20]. The toolkit provides reusable frequent
item-set definitions (e.g., generators) and a battery of special-
purpose inter-rater agreement statistics (e.g., Kuppner-Hafner
index, Krippendorff’s extended alpha).

IV. ADD DISTILLATION USING FREQUENT ITEM-SETS

In this section, ADD distillation based on frequent-item
set analysis is shown by looking at a concrete data example
from an actual distillation project [13]. Along the way, we
introduce key concepts of frequent-item set analysis (e.g.,
support, closedness, maximality, freeness) based on the back-
ground in Section II. In [13], we realized the model procedure
depicted in Figure 2 (right-most column): Documentation
on 80 DSML architectures was collected via a combination
of design inspections and a large-scale systematic literature
review (SLR). The documentation content was coded using
a procedure of guided hypothesis coding yielding a data
base of 80 decision sets. The subsequent frequent item-set
analysis was calibrated—among other things—by defining two
different abstraction levels for ADDs based on the research
questions: decision groups representing critical decision points
(e.g., LANGUAGE-MODEL DEFINITION, CONCRETE-SYNTAX
SPECIFICATION; [25]) and actual decisions within these groups
(FRONTEND-SYNTAX EXTENSION, MIXED SYNTAX etc. for

decision point CONCRETE-SYNTAX SPECIFICATION). See Sec-
tion V for the study details. As an illustrative example, 10 out
of 80 decision sets (transactions) at the level of decision groups
are reproduced in Table II. In the remainder, we refer to the
decision groups and these 10 transactions in an abbreviated
notation for the sake of readability (e.g., d1, {d1, d2}; see
Table II for the mapping).

The task of identifying frequent patterns of item sets is
specific to a given item base of decision codes (see Section II).
In the example, the item base consists of the six codes repre-
senting decision groups relevant in designing a DSML: d1–d6.
Another input to the analysis is the collection (data base) of 10
distilled sets of decision codes (transactions) forming a data
base. Each transaction represents a complete DSML design.
Consider the example of UML4SOA [27], one of the 80 third-
party UML-based DSMLs reviewed. UML4SOA is a DSML
for modeling service-oriented architectures based on tailored
SoaML and UML activity, class, and component diagrams.
Its language architecture was found to result from ADDs
falling into five decision groups: LANGUAGE-MODEL DEFI-
NITION, LANGUAGE-MODEL FORMALIZATION, LANGUAGE-
MODEL CONSTRAINTS, CONCRETE-SYNTAX SPECIFICATION,
and PLATFORM INTEGRATION; or {d1, d2, d3, d4, d6} in short
(see Table II). Any transaction is a subset of the item base.
In the example, hence, there are 16 possible, unique item sets
which can be expressed using the six decision groups. The
resulting, potential design-decision space of 16 item sets is
visualized as a Hasse diagram [26] in Figure 3.

By studying the data base of ten transactions alone, we
arrive at three initial and immediately useful observations:

Uniquely distilled item sets: In the data base, there are
five uniquely distilled item sets. See the corresponding five
nodes in the Hasse graph in Figure 3, represented by solid
rectangles. Conversely, there are eleven out of 16 potential
item sets which cannot be found in the collection as-is (see
the dashed rectangles in Figure 3).
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Repeatedly distilled item sets: Each of the five unique item
sets has at least one or more occurrences in the database.
For example, there are three DSMLs sharing the item set
{d1, d2, d4} (i.e., CompSize, MoDePeMART, and SMF). On
the other hand, we find only one DSML (SECRDW) with
decisions for two decision groups: {d1, d2}.

Cardinalities: By looking at the cardinalities of uniquely
distilled item sets, we learn about, e.g., the minimum number
(two) or the maximum number (five) of decision groups
present in the collection of ten DSMLs. No DSML architecture
resulted from decisions of all six decision groups.

We can gain additional insights from contrasting the distilled
item sets to the hierarchical structure of possible item subsets.
On the one hand, by considering the distilled sets alone, we do
not learn about characteristic subsets of items being recurring
sets throughout the collection of the ten exemplary DSMLs.
For example, while the item set {d1, d2} has been found to
represent a concrete DSML design (SECRDW; see above),
we omit how often this set re-appears as a proper subset of
the remaining nine item sets. On the other hand, we do not
learn whether there are other patterns of items re-occurring
as characteristic subsets only throughout the distilled data
base on DSMLs. In Figure 3, this is exemplified by the item
set {d1, d2, d3}, which does not characterize a single DSML
design as-is (i.e., it is not contained by the data base), but is
shared as item-set fragment by five DSMLs.

The support s of a given item set is expressed as the number
of transactions in the data bases in which it is contained as a
subset (see Section II). The support can be computed for all
16 possible item sets on the design-decision space depicted
in Figure 3. For example, the support of item set {d1, d2}
amounts to 10 (in absolute terms; relative support is 10/10 or
1). In fact, this subset is contained by all ten DSMLs while

there is only one DSML which is described by this item set
exactly. A support of 0 indicates that an item set is not present
as-is in the collection and that it is not contained by any item
superset residing at the next-lower levels of the design-decision
space (assuming the top-down ordering in Figure 3). Consider
the example of {d1, d2, d5}. There is no DSML which is
exactly characterized by these three decision groups and there
is no DSML which contains this subset. This notion of support
allows for applying a number of restrictions on the item sets:
minimum support (frequency), closedness, maximality, and
freeness. By combining these restrictions when filtering the
total number of item sets expressible (a.k.a. design-decision
space), we can identify four types of item sets: frequent item-
sets (in the strictest sense), frequent-closed item sets, maximal-
frequent item sets, and free-frequent item sets.

Frequent item sets [19], [28]: Typically, we are interested
in finding item sets out of the total design-decision space
which have a minimum support. Minimum support reflects
the requirement that a given item set must occur or be
contained by a minimum number of item sets, i.e. in our
case, DSMLs. All (distilled and possible) item sets having
a support s equal to or greater than the minimum support
smin are called frequent item sets. In our running example
based on the DSMLs in Table II, we apply a smin = 3. An
option is frequent if it has a support of 3 or more, that is, it is
found in at least three different DSML projects. This results
in five frequent item sets in our example (see also the grey
rectangles in Figure 3): {d1, d2}, {d1, d2, d3}, {d1, d2, d4},
{d1, d2, d6}, and {d1, d2, d3, d4}.

Frequent-closed item sets [19]: An item set is said to
be closed if it is frequent and if none of its proper item
supersets has a support equal to or less than the support of
this item set. In our example, we find four item sets out of



the five frequent ones in this condition: {d1, d2}, {d1, d2, d4},
{d1, d2, d6}, and {d1, d2, d3, d4} (see the nodes marked “c”
in Figure 3). The item set {d1, d2, d3} is not closed because its
{d1, d2, d3, d4} has the same support of 5. That is, an item
set is closed if no proper item superset containing a given
item set is contained by the distilled item sets, in which the
item set is contained, in the data base. This can be the case
under three conditions (i–iii) important to recovering decision
associations:

(i) A frequent item set corresponds to at least one transaction
or design as-is. An example is {d1, d2} for SECRDW. In this
case, none of its supersets (e.g., {d1, d2, d4}) can naturally
be part of this item set. Conversely, {d1, d2, d3} is not closed
because it does not appear as-is in the collection, only as a
subset of {d1, d2, d3, d4} (e.g., for EIS and UACL) and of
{d1, d2, d3, d4, d6} (i.e., for BIT and UML4SOA).

(ii) A frequent item set represents the least-common item
subset for (some of) its proper item supersets as contained
in the distilled item sets of the collection: Consider extend-
ing the example based on Table II and Figure 3. In its
given setting, {d1, d2, d3} is not closed (see above). If one
DSML is added which is described by the distilled item set
{d1, d2, d3, d5, d6}, then {d1, d2, d3} would become closed
because it qualifies as the least-common subset contained in
both the five transactions containing {d1, d2, d3, d4} and the
newly added one. Formally, this would be reflected in an
increased support of {d1, d2, d3} (6), therefore, surpassing the
support of {d1, d2, d3, d4} (5).

(iii) Both conditions 1) and 2) above hold for a frequent
item set: This is the case for {d1, d2}. First, it appears as-is as
an distilled item set (SECRDW; see Table II). Second, it turns
out to be the least-common frequent subset for the transactions
containing d3/d4 and d6 (i.e., BIT and UML4SOA).

In summary: All closed item sets are frequent ones. The
subset of closed item sets can be smaller than the number
of total frequent subsets (i.e., four of five item sets in our
example). Non-closed frequent item sets are subsets of one or
several closed item supersets.

Maximal-frequent item sets [19]: The set of frequent item
sets is a subset of the design-decision space which repre-
sents minimum support (or adoption of certain options) in
the studied DSML projects. This subset, however, contains
redundant information. For example, {d1, d2} is included by
all other four frequent item sets which are proper supersets
of the former. Any of these supersets represent the condition
of {d1, d2} being frequent. A frequent item set is called
maximal if none of its proper subsets is frequent (i.e., has
equal to or more than the minimum support). This notion is
suitable for removing the redundancy by upward containment
between frequent item sets and to establish a potentially
smaller subset of characteristic frequent item sets which is
capable of representing all other frequent item sets.

In our example, we find two maximal-frequent item sets:
{d1, d2, d6} and {d1, d2, d3, d4} (see also the nodes marked
“m” in Figure 3). The remainder of three frequent item sets
are all subsets of these two item sets. The maximal subset

of the set of frequent item sets, therefore, exhibits those
frequent item sets with maximum cardinality (three and four
decision groups, respectively). From a design-decision-space
perspective, a maximal item set reflects a frequent combination
of a maximal number of decision groups considered jointly—
besides summarizing the entire sub-space of frequent item
sets. Applied to the ten DSMLs, we can therefore state that a
critical number of DSMLs result from ADDs in three and four
decision groups, but never in five or six. In addition, based on
this sample, we could summarize that most frequently DSMLs
either take decisions at decision groups d3 and/or d4 or—
mutually exclusive—at d6, if any decision beyond d1 and d2
were taken at all. All maximal item sets are closed. Therefore,
the set of maximal item sets is a subset of the closed subset
of item sets.

Free frequent item sets [19], [28]: An item set is considered
a free item set (a.k.a. generator) if it is the minimal subset (i.e.,
the smallest in terms of items contained) among all the item
subsets appearing in a transaction. It is minimal in the sense
that there are no smaller item sets (i.e., the proper subsets of
the free set) which appear as-is in a transaction. A free item set
(generator) is frequent when having at least minimum support.

Of particular interest to us are the free item sets which
form the closed frequent item sets as found for the selected
DSMLs. As stated above, the closed frequent item sets serve
as a compact representation of the entire distilled frequent
design space (i.e., all frequent item sets can be expressed
as subsets of the closed item sets). However, as the largest
frequent building blocks (in terms of items contained) found in
reviewed DSMLs, they are not as selective when characterizing
transactions. For instance, to find the transactions containing
d3, we take the closed set {d1, d2, d3, d4} marked in Figure 3,
and match it against the ten distilled item sets. This will yield
five item sets. This result, however, contains noise because the
five item sets are also those containing d3 jointly with d4.

According to the above definition, {d1, d2, d3} is found to
be a frequent generator of the closed set {d1, d2, d3, d4} in the
sense that it is capable of matching all distilled item sets while
being of smaller size in terms of decision items. By being
smaller, it is more informative because it can be more easily
combined, for example, with other smaller closed or generator
sets (e.g., {d1, d2, d4} in Figure 3) to describe the design-
decision space. Combining the comparatively larger closed
sets as descriptors suffers from more redundancy, such as
{d1, d2, d4} and {d1, d2, d3, d4} differing only by one option.
It also follows from the above definition that a free item set or
generator cannot correspond to an entire transaction (design);
it is a building block only.

V. REUSABLE ARCHITECTURE RATIONALE FOR DSMLS

In the following, we highlight key steps and the most
important findings of applying our distillation approach on
decision data obtained from a 3 year research project on lan-
guage architectures for UML-based domain-specific modeling
languages (DSML) [13]. In this context, a DSML architecture
is considered the fundamental structure formed by key artifacts



TABLE III
SCOPING AND CALIBRATION OF THE CONCEPTS OF A FREQUENT ITEM-SET ANALYSIS FOR THE DISTILLATION OF REUSABLE DESIGN DECISIONS FOR

UML-BASED DSMLS [13].

Generic Applied (DSML)

(Decision) Item Items represent either a) 27 individual decisions from [13] or b) six decision groups capturing points of decision making [25].
Transaction Set of category codes for a) or b) above per DSML
Data base The collection of sets of decision items recorded for 80 DSMLs
Support (abs., rel.) Number (percentage) of DSML designs in which a given option (or subset of options) was adopted
Minimum support (abs., rel.) Decision option and option sets having at least reported applications in three (3) different third-party DSMLs, that is, DSMLs not developed

by the authors; motivated by the least three known uses of a pattern in existing software systems (see, e.g., [29])

and ADDs yielding them such as its abstract syntax, abstract-
syntax constraints, concrete syntax, its behavior specification,
transformations for platform integration, and modeling tool
support [25]. This research project comprised the distillation
steps as outlined in Figure 2: data collection, data coding, and
a calibrated frequent item-set analysis (see also Table III).

Data collection was sequential: In preparing the project, we
inspected 10 DSML architectures from our own research group
to gather decision candidates (supported by secondary studies
on DSML development and UML extensions). To collect addi-
tional and unbiased evidence (primary and secondary sources),
we then designed a large-scale SLR. First, we compiled a
corpus of 37 reference publications (“quasi-gold standard”)
from key venues on DSMLs and UML extension techniques.
Second, this corpus guided an automated search for primary
DSML-specific publications by deriving search terms from its
metadata and fulltext content. The search was executed in four
search engines: SpringerLink, IEEE Xplore, Scopus, and ACM
Digital Library. Third, we ran a manual snowballing search
based on the finally selected publications from the main and
automated search. We ended up considering more than 8,000
search hits for the years between 2005 and 2012, from which
84 conference and journal publications documenting 80 unique
DSML architectures were finally selected to enter the coding
step. 10 of those DSMLs have been used for the running
example in Section IV; for a list, please refer to [13].

Data coding using a variant of deductive qualitative content
coding (hypothesis coding [24]) on the primary sources col-
lected via the above SLR: 84 scientific papers and their auxil-
iary design-documentation artifacts, e.g. package diagrams as
well as implementation artifacts such as metamodel, profile,
and concrete-syntax specifications. Coding was performed by
the 3 study authors as coders (pairwise, blinded for the alter’s
coding). The coders were guided by a coding scheme devel-
oped before the fact, which provided indicators and decision
rules for coders. Coding was performed in the typical steps:
The total material was segmented into themes (according to
the six decision points already introduced in Section IV) and
coding units (complete phrases, phrase blocks, and content
items such as tables, figures, listings, and formula blocks).
During main coding, each unit of coding was assigned to one
of 27 categories (decision options) of the coding scheme; first
as text marks in the respective and segmented document. The
27 available categories corresponded to 27 reusable ADDs
documented in a draft ADD catalog, as another outcome of

the above SLR. Coding yielded 80 sets of such assigned
categories, one for each DSML architecture.

To illustrate the outcome of this coding step, consider
the example of UML4SOA [27]. The language model of
UML4SOA is defined textually (INFORMAL TEXTUAL DE-
SCRIPTION; coding category: 1.1) and integrates with the
UML via a UML metamodel extension (METAMODEL EX-
TENSION; 2.3) as well as equivalent UML profile definitions
for tool adoption (PROFILE RE-/DEFINITION; 2.2). In addition,
the metamodel extension and profile definitions are accompa-
nied by OCL constraint definitions (CONSTRAINT-LANGUAGE
EXPRESSION; 3.1). The metamodel extension comes with
new and resampled diagram symbols (DIAGRAMMATIC SYN-
TAX EXTENSION; 4.2), the profiles imply model annota-
tions (e.g., comments containing tags; MODEL ANNOTA-
TION; 4.1) and symbol reuse (DIAGRAM SYMBOL REUSE;
4.6). As for platform integration, UML4SOA employs an
INTERMEDIATE MODEL REPRESENTATION (6.1) to trans-
form extended UML activities in several steps (M2M
TRANSFORMATION; 6.5) into web-service orchestration spec-
ifications (BPEL) using API-based generators (e.g., the
Eclipse/EMF Java API; API-BASED GENERATOR; 6.3). The
resulting decision-item set for UML4SOA is therefore:
{1.1, 2.2, 2.3, 3.1, 4.1, 4.2, 4.6, 6.1, 6.3, 6.5}.

Frequent item-set analysis: The analysis was calibrated as
summarized in Table III. We learned that the reviewed DSMLs
have a maximum of ten decisions per DSML architecture. For
recurring item subsets, i.e. item subsets found in more than
one DSML, the maximum number of items in a particular
item subset was seven. At the level of individual decision
points, these maxima translate into frequently recurring subsets
containing options from three decision records only: language-
model definition (d1), language-model formalization (d2),
and concrete-syntax definition (d4). Beyond such basics, we
obtained insights on prototypical designs and characteristic
combinations of decisions.

Prototypical designs: In this study, a prototypical design
was defined as frequent item set which represents a largest
item subset (here: DSML architecture fragment) which was
also frequently found to represent a complete transaction (here:
DSML architecture; see also Section IV). This prototype item-
set is frequently found extended by adding other (frequently or
infrequently observed) options. In this sense, it represents an
evolutionary prototypical design to derive extended DSML ar-
chitectures. The notion of prototype item-sets matches DSML



design practices commonly described and reflected on in
secondary literature on extending the UML and UML-based
DSL development (see Table IV): UML extension, UML
specialization, and UML piggybacking using UML profiles.

This notion of prototype item-set is particularly useful for
structuring the design space described by the 24 observed
decision options. First, they cover a critical share of the 80
DSMLs. Second, they stress commonalities and differences in
terms of decision options between these highly representative
option combinations. In particular, the seven prototype item-
sets characterize 30% of the studied DSMLs architectures
(24/80) in their entirety. Furthermore, they are contained as
large proper subsets by 25 extended option sets; therefore
reaching a total coverage of approximately 61% of the DSML
architectures included in our study (49/80). By looking at the
common and varying decision options in the seven prototype
item-sets, we find that all seven are combinations of nine
decision options. These nine decision options correspond to
the leaf elements of the feature diagram in Figure 4.

Prototype option-set

O1.1 O1.4 O2.2 O2.3 O3.1 O3.4 O4.1 O4.6 O6.2

Fig. 4. A feature diagram representing the seven prototype item-sets found
in the pool of 80 third-party DSML architectures . These seven prototypical
designs include nine different decisions. Each of the seven distilled prototype
item-sets listed in Table IV is one of the possible, valid configuration of this
feature space.

Combinations: Characteristic combinations of design-
decision options were encoded as frequent item set which
is also a smallest (i.e. of minimal size) recurring proper
item subset contained by observed DSML designs and/or by
observed design fragments. We distinguished between two
kinds of smallest common item subset: (1) two item subsets
specific to one decision record (d1–d6); (2) seven item subsets
specific to two or more decision records (d1–d6).

For example, as for platform integration (d6), we found
a subset {GENERATOR TEMPLATE, M2M TRANSFORMATION}
({6.2, 6.5}, support: 3) that indicates that the respective 3
DSMLs use a two-level model transformation chain (PIM-
PIM-PSM): First, platform-independent models (PIM) are
transformed into another PIM representation which is then
transformed into a structured textual, platform-specific (PSM)
representation. One of them, UML2Alloy, extends UML class
models (PIM) which are transformed into models of an Alloy
metamodel (PIM), which are finally transformed into textual
Alloy definitions accepted by an Alloy model checker (PSM).

VI. DISCUSSION

Limitations: Our approach inherits the limitations character-
istic for predominantly qualitative field studies (e.g., documen-

tation, literature, and code reviews) used for data collection
and content analyses. We elaborate on threats and mitigation
strategies in [11], [13].

Any content analysis on the primary and secondary sources
is situational and requires interpretation to identify ADD de-
tails (e.g., category assignments), and different interpretations
(depending on the personal bias of the content analysts) may
be equally valid. Therefore, errors in conducting a content
analysis (e.g., applying a coding scheme) risk being perceived
as an alternative valid interpretation. As a counter mea-
sure, the interpretations must be compared between persons
and/or across time (e.g., double-coded, re-coded). The degree
of (in-)consistency between persons/ across time must be
reported to the reader (inter-rater reliability, IRR). Coding
data on ADDs turned out to have specific requirements on
inter-rater reliability measurement. For example, the structure
of coding schemes (main categories, sub-categories) yields
multi-attribute data sets, which are not natively supported by
standard IRR statistics (e.g., Cohen’s Kappa). We, therefore,
identified and implemented adequate IRR statistics (Kupper-
Hafner Index, extended Krippendorff alpha) in our toolkit.

An important threat specific to content coding is that the
coding schemes (whether used deductively or inductively) do
not capture what they are set out to capture (e.g., it leads to
missing entire ADDs or decision details). For guided (deduc-
tive) coding in [13], we assessed the content validity using
expert evaluation, having non-involved experts on DSMLs
review the coding scheme. For open (inductive) coding as
in [11], we monitored the assignment frequencies across cate-
gories and the assignments to residual categories. These can be
signs of incomplete or undifferentiated coding schemes [23].

There is a critical trade-off between a quantitative analysis
of co-occurrences (frequent item-sets) and characterizing dis-
tilled ADDs and their relations. On the one hand, a systematic
decision identification is meant to yield a substantial amount of
decision material to avoid, e.g., anchor and framing biases [2].
On the other hand, when reducing this content base to a
manageable size via coding, one consciously neglects data on
certain decisions and abstracts from the actual decisions.

Equally important, the nature of any ADD relationship (e.g.,
causal, temporal) is lost. This is not only due to coding
and the representation choice of decision-item sets. Whether
information on the order of ADDs, for example, can be
distilled depends on the data-collection technique [21]. By
applying a direct inquisitive or observational technique (e.g.,
interviews, participant observation), the ordering information
can be gathered. By applying an indirect technique such as a
kind of documentation analysis, as in our study, information on
ordering often remains implicit and, therefore, unrecoverable.
Similar, even if documented, the indirectly observed order of
options might also follow from biases such as presentation
requirements, e.g., of an scientific publication. Although such
abstraction is a limiting factor, the benefits of frequent item-
sets are elsewhere: They help render the design space for deci-
sion makers more accessible (e.g., by highlighting frequently
adopted decisions) and present cues on otherwise hidden



TABLE IV
OVERVIEW OF THE SEVEN PROTOTYPE ITEM-SETS (ORDERED BY DECREASING ABSOLUTE SUPPORT). DETAILS ON THE EXEMPLARY DSMLS INCLUDING

CITATIONS ARE DOCUMENTED IN [13].

Prototype Item set Support (abs.) Frequency (abs.) DSMLs (ex.)

UML piggybacking plus informal constraints {1.1, 2.2, 3.4, 4.1, 4.6} 30 5 UML-AOF, PredefinedConstraints,
UML-PMS

UML piggybacking plus formal constraints {1.1, 2.2, 3.1, 4.1, 4.6} 26 4 REMP, CUP, UML4PF
Two-level UML piggybacking {1.1, 1.4, 2.2, 4.1, 4.6} 22 5 SPArch, MoDePeMART, RichService
UML piggybacking for domain-specific M2T system {1.1, 2.2, 4.1, 4.6, 6.2} 15 3 DPL, WCAAUML, WS-CM
UML piggybacking plus mixed constraints {1.1, 2.2, 3.1, 3.4, 4.1, 4.6} 13 3 ArchitecturalPrimitives, SHP, C2style
UML metamodel (“middleweight”) extension {1.1, 2.3, 4.6} 10 4 UML2Ext, UML4SPM, MDATC

Two-level UML piggybacking plus mixed constraints {1.1, 1.4, 2.2, 3.1, 3.4, 4.1, 4.6} 5 3 UACL, SafeUML, and IEC61508

relationships between ADDs to be characterized qualitatively.
Lessons Learned: Decisions and decision relationships dis-

tilled using frequent item-sets are immediately useful devices
to structure and analyze a design space during decision iden-
tification (see Section III). In addition, we learned that the
distilled frequency data can be used to render an RADM
tailorable [30]. For example, the study in [13] resulted in
an ADD catalog which provides means for customization
such that for the project at hand only relevant decisions
and decision details are provided to decision makers. This
tailorability involves supporting visualizations (e.g. variability
models such as feature diagrams; [17]) as well as auxil-
iary content: decision-making skeletons, prototypical designs,
cross-references between related decisions, and frequency data
on known uses.

VII. RELATED WORK

Besides the related work in the field of ADDs [3], [7]–
[12], which provides the motivation for our work and which
was already discussed throughout Sections I–III, our approach
is mainly related to approaches in the broader software
engineering context adopting frequent item-set analyses and
association-rule mining on items other than ADDs. In these
approaches, units of code (e.g., files, classes, commits) and
of architectural design (e.g., components) are the analysis
items, typically extracted from artifact repositories (source-
code management systems, source-code bases). It follows nat-
urally that these approaches do not directly compare with our
distillation approach. The point of conceptual reference [31]
and algorithmic foundations (Apriori or its variants such as
DOAR) are, however, shared by virtually all related work.

Software clustering [14], [15]: Clustering code entities in
software using association rules to recover architectural views
to facilitate program-understanding tasks has been repeatedly
reported (see [15] for an overview). [32] proposed item-
set mining for establishing patterns of tangling in (COBOL)
programs via files. An item set represents a single program,
with each item representing a file used by the program. Based
on a “grouping table” (actually a matrix relating supported-
ordered programs and files), groups of programs sharing files
of a certain support were manually identified. This represents
an ad hoc form of frequent item-set analysis. [33] explore
association-rule mining (rather than item sets) for software

clustering, i.e., grouping software block entities (COBOL pro-
cedures) into subsystems to facilitate program comprehension
and maintenance tasks based on shared characteristics. To
decompose unstructured legacy system artifacts (files, func-
tions, and data types) into modules, [34] employ a frequent
item-set analysis as an integrated step of an architecture-
recovery approach based on the Architectural Query Language
(AQL). The computed item sets serve both for an auto-
mated modularization procedure and as a query optimization
(closeness score). [35] present a requirements-driven approach
(ArchMine) for recovering architectural entities (represented
as UML packages) and their interactions (UML sequences)
from object-oriented software systems based on co-occurrence
patterns (of classes) in execution traces. The execution traces
are obtained from instrumenting use-case scenario executions.

Change-impact analysis: [36] apply association-rule mining
to detect and encode file-based change patterns in SCM (CVS)
histories as association rules. Change patterns of interest are
sets of co-changing source-code files for the scope of typical
SCM artifacts (e.g., commits, change sets). Based on a knowl-
edge base of such frequently co-changing file sets, a developer
can obtain recommendations of files potentially affected by a
change on a starting file (e.g., that she is currently working
on). [37] equally devise associaton-rule mining for software
configuration management systems (CVS) stressing change
prediction, avoidance of incomplete changes, and detecting
artifact coupling (co-changes) beyond source code (e.g., code
and documentation). Again, atomic change sets are derived
from a CVS repositories by grouping per-file changes based
on fixed time boxes. [38] adopt association-rule mining for co-
change prediction as part of the CLIO approach for detecting
modularity violations in evolving (Java) software systems.

Conformance checking [16]: [39] mine association rules
from abstracted inter-class dependencies along the revision
history of (Java) systems. The rules are meant to guide
conformance checking (absences, divergences) of the evolving
architecture against an architectural reflection model.

VIII. CONCLUSION

In this paper, we have addressed the problem to date that
the process of distilling architectural design decisions and their
relationships remains mostly an informal, ad hoc process. The
levels at which design spaces are systematically organized



and prioritized invite improvement. Our approach combines
various methods of data collection, open and guided coding
techniques, and frequent item-set analysis to distill decisions
and decision relationships systematically. This is immediately
useful to structure and to analyze a design space during deci-
sion identification, and helps prioritize decisions and decision
details for decision makers regarding their relevance for a
project at hand. The so far ad hoc, informal process is replaced
by a structured process, and even though there are limitations
due to the qualitative nature of methods of data collection
and/or coding, most of the existing limitations can be mitigated
to a large extent (see Section VI). We have demonstrated the
practical applicability of our approach using a larger study on
designs and architectures of 80 UML-based DSMLs. As future
work, we will enable our approach to distill and to preserve the
ordering of decisions. This requires adjustments at the level of
data-collection techniques and the frequent item-set analysis.
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