
An empirical study on principles and practices of continuous
delivery and deployment

Despite substantial recent research activity related to continuous delivery and deployment

(CD), there has not yet been a systematic, empirical study on how the practices often

associated with continuous deployment have found their way into the broader software

industry. This raises the question to what extent our knowledge of the area is dominated

by the peculiarities of a small number of industrial leaders, such as Facebook. To address

this issue, we conducted a mixed-method empirical study, consisting of a pre-study on

literature, qualitative interviews with 20 software developers or release engineers with

heterogeneous backgrounds, and a Web-based quantitative survey that attracted 187

complete responses. A major trend in the results of our study is that architectural issues

are currently one of the main barriers for CD adoption. Further, feature toggles as an

implementation technique for partial rollouts lead to unwanted complexity, and require

research on better abstractions and modelling techniques for runtime variability. Finally,

we conclude that practitioners are in need for more principled approaches to release

decision making, e.g., which features to conduct A/B tests on, or which metrics to

evaluate.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

An Empirical Study on Principles and Practices of
Continuous Delivery and Deployment

Gerald Schermann*, Jürgen Cito*, Philipp Leitner*, Uwe Zdun†, Harald C. Gall*
*University of Zurich, Department of Informatics, Switzerland

†University of Vienna, Austria
*{schermann, cito, leitner, gall}@ifi.uzh.ch

†uwe.zdun@univie.ac.at

ABSTRACT
Despite substantial recent research activity related to con-
tinuous delivery and deployment (CD), there has not yet
been a systematic, empirical study on how the practices of-
ten associated with continuous deployment have found their
way into the broader software industry. This raises the ques-
tion to what extent our knowledge of the area is dominated
by the peculiarities of a small number of industrial leaders,
such as Facebook. To address this issue, we conducted a
mixed-method empirical study, consisting of a pre-study on
literature, qualitative interviews with 20 software developers
or release engineers with heterogeneous backgrounds, and a
Web-based quantitative survey that attracted 187 complete
responses. A major trend in the results of our study is that
architectural issues are currently one of the main barriers for
CD adoption. Further, feature toggles as an implementation
technique for partial rollouts lead to unwanted complexity,
and require research on better abstractions and modelling
techniques for runtime variability. Finally, we conclude that
practitioners are in need for more principled approaches to
release decision making, e.g., which features to conduct A/B
tests on, or which metrics to evaluate.

Keywords
empirical software engineering; release engineering; contin-
uous delivery; continuous deployment

1. INTRODUCTION
In the wake of mainstream adoption of agile development

practices, many software developing organizations are look-
ing into ways to further speed up their release processes and
to get their products to their customers faster. One instance
of this is the current industry trend to “move fast and break
things”, as made famous by Facebook [12] and in the mean-
time adopted by a number of other industry leaders [29].
Another example is continuous delivery [15], a release engi-
neering practice that focuses on perpetually keeping software

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

products in releasable state, supported by a high degree of
automation.

Given that the adoption of continuous delivery and de-
ployment (CD) has substantial impact on various aspects
of software engineering (including, but not limited to, re-
quirements engineering, architectural design, and testing), it
seems imperative for the academic community to understand
whether, and how, these ideas are actually implemented in
industrial practice. Unfortunately, despite substantial re-
cent research interest (e.g., [21, 27, 28]), our knowledge of
CD practices outside of a number of well-known and out-
spoken industrial leaders remains spotty. This is concerning
for two reasons. Firstly, it raises the question to what ex-
tent our view of these practices is coined by the peculiarities
and needs of a few large Web-based innovation leaders, such
as Facebook or Google. Secondly, it is difficult to establish
what the real open research issues in the field are. This leads
to the following research questions that guided this paper.

RQ1: What CD practices are already in use in the broader
software industry?

To address this question, we conducted a mixed-method
empirical study in three steps. In a first step, we conducted a
pre-study on literature to identify practices associated with
CD in order to ground our research in the current state of the
art. We then conducted a semi-structured interview study
with 20 software developers and release engineers from 19
companies. We specifically focused on a mix of different
team and company sizes, domains, and application models.
Finally, we conducted a Web-based survey, attracting a to-
tal of 187 responses. Our study shows that the industrial
adoption of CD practices is mixed. Some practices, most
importantly continuous integration, health checking, “De-
veloper on call” (this and other CD terminology is defined
in Section 3.1), and, to a lesser extent, canary testing, are
already widespread. Others, such as dark launches or A/B
testing, are used much more seldomly, or are even largely
unknown among practitioners.

RQ2: What are the underlying principles and practices
that govern CD adoption in industry?

A major recurring trend preventing the mainstream adop-
tion of many CD practices are architectural concerns. Legacy
applications are often not suitable for partial rollouts or
higher automation, and require costly and difficult archi-
tectural redesign. The application model, most importantly
whether the application is a Web-based SaaS application,

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

plays a role. Unsurprisingly, CD is most commonly used for
Web-based applications, but variations of CD practices are
also used for other application models. Customer expecta-
tions and domain are crucial. For instance, many companies
simply do not have enough customers to sensefully conduct
A/B tests on. Finally, we have seen that feature toggles as
an implementation technique lead to unwanted complexity.

Based on the main observations of our study, we propose a
number of promising directions for future academic research.
Most importantly, given the importance of architecture for
CD, we argue that further research is required on archi-
tectural styles that enable CD, for instance microservices.
Further, given that feature toggles as an implementation
technique for partial rollouts lead to unwanted complexity,
research on better abstractions and modelling techniques for
runtime variability are needed. Finally, we conclude that
practitioners are in need of more principled approaches to
release decision making (e.g., which features to conduct A/B
tests on, or which metrics to evaluate). Ultimately, we en-
vision this to lead to well-defined, structured CD processes
implemented in code, which we refer to as Release-as-Code.

The rest of this paper is structured as follows. Section 2
gives more detail on our chosen research methodology, as
well as on the demographics of our study participants and
survey respondents. The main results of our research are
summarized in Section 3, while more details on the main
implications and derived future research directions are given
in Section 4. Threats to the validity of our study are dis-
cussed in Section 5, and related previous work is covered in
Section 6. Finally, we conclude the paper in Section 7.

2. RESEARCH METHODOLOGY
To answer our research questions, we conducted a mixed-

method study [31] consisting of semi-structured, qualitative
interviews followed by a quantitative survey. All interview
materials and survey questions are part of the online ap-
pendix1 of this paper. As a first step, prior to conducting
qualitative interviews, we performed a pre-study to identify
practices associated with CD and determine the scope of our
interviews.

2.1 Pre-Study
The goal of the pre-study was to identify the practices

companies are using in the field of continuous deployment
and to serve as a basis for formulating questions for the
qualitative part of our study. As a starting point, we stud-
ied [12, 15, 27], which we considered standard CD literature
at the time we conducted our pre-study (the mapping study
described in [28], which we also consider seminal for the
field, was not yet available). From those sources, we ex-
tracted practices and categorized them into five categories:
automation, rollout, quality assurance, issue detection and
handling, and awareness. In order to also get an intial im-
pression of the industrial view of the topic, and inspired
by [4], we then used Hacker News2 as an additional tool to
revise and evaluate our categorization and findings. Articles
were found using hn.algolia.com, a keyword-based Hacker
News search engine. We searched for articles containing
the keywords “continuous delivery” and “continuous deploy-

1http://www.ifi.uzh.ch/seal/people/schermann/projects/
cd-study.html
2https://news.ycombinator.com/

ment”, which were posted between Jan 1 2011 and Nov 1
2015, and sorted them based on their popularity on Hacker
News. For both keywords, we considered the first 80 arti-
cles, as we then reached saturation. Our main focus was on
articles containing mainly experience reports, i.e., how com-
panies make use of CD in the trenches. We removed those
with dead links and those, which were mainly advertising
specific tools. We ended up with 17 (continuous delivery)
and 25 (continuous deployment) matching articles, which we
then analyzed and compared to the practices derived from
literature. The results showed that our set of practices was
sound, and required only minor adaptations (e.g., renam-
ing intercommunication to awareness). However, the results
strengthened our confidence to use those derived practices
as a basis to formalize our interview questions.

2.2 Qualitative Interview Study
Protocol. Based on our pre-study findings, we then con-

ducted semi-structured interviews. To foster an exploratory
character, we avoided asking direct questions (e.g., whether
a given practice is used). Thus, we structured the inter-
views in five blocks: release process in general, roles and re-
sponsibilities, quality assurance, issue handling, and release
evaluation. Each of those blocks started off with an open
question. Except for the first block, topics were not covered
in any particular order but instead followed the natural flow
of the interview. The interviews were conducted by the first,
the second, and the fourth author, either on-site in the areas
of Zurich and Vienna, or remotely via Skype. All interviews
where held in English or German, ranged between 35 and 60
minutes, and were recorded with the interviewee’s approval.
All selected quotes of interviews held in German were trans-
lated to English.

Participants. We recruited our interviewees from indus-
try partners and our own personal networks. In total, we
conducted 20 interviews with developers or release engineers
(P1 to P20, one female) from companies across multiple do-
mains and sizes, as illustrated on the left-hand side of Fig-
ure 1. Our interviewed companies ranged from single-person
startups to global enterprises with more than 100,000 em-
ployees, located in Austria, Germany, Switzerland, Ireland,
the Ukraine, and the United States. As the release process of
mobile applications is strongly influenced by the peculiarities
of app stores (e.g., the iTunes App Store or Google Play), we
explicitly refrained from conducting interviews with compa-
nies developing mobile applications.

Analysis. The recorded interviews were transcribed by
the first two authors. We coded the interviews on sentence
level without any a-priori codes or categories. The first three
authors then analyzed the qualitative data using open card
sorting [33]. For this purpose, we created 683 cards in to-
tal from our interviewees’ statements. We categorized cards
into 9 themes that emerged over the course of card sort-
ing. Each of those themes is further divided into multiple
subcategories.

2.3 Quantitative Survey
Protocol. To validate and deepen the findings from our

qualitative interviews on a larger sample size, we designed a
Web-based survey consisting of, in total, 39 questions. The
survey consisted of a combination of multiple-choice, single-
choice, Likert-scale, and free-form questions. Depending on
individual responses, we displayed different follow-up ques-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

3

12

4corporation

small or medium
enterprise

startup

0 5 10 15
Interview − Company Size

35

99

53corporation

small or medium
enterprise

startup

0 25 50 75 100
Survey − Company Size

1

9

2

8more than
10 years

6 − 10 years

3 − 5 years

0 − 2 years

1 3 5 7 9
Interview − Experience

16

46

62

62more than
10 years

6 − 10 years

3 − 5 years

0 − 2 years

0 20 40 60
Survey − Experience

14

4

1

1

web applications

enterprise software

desktop software

embedded software

0 5 10 15
Interview − Application Type

105

34

23

10

8

7

web applications

enterprise software

desktop software

mobile applications

embedded software

other

0 25 50 75 100
Survey − Application Type

Figure 1: Demographics of interview study participants
(left) and survey participants (right)

tions (branches) for the purpose of identifying underlying
reasons. In total we had 7 branches in our survey, thus the
number of questions a participant had to answer varied.

Participants. We distributed the survey within our per-
sonal networks, social media, via two DevOps related newslet-
ters3,4, and via a German-speaking IT news portal5. As
monetary incentives have been found to have a positive ef-
fect on participation rates [32], we offered the option to enter
a raffle for two Amazon 50$ gift vouchers on survey comple-
tion. In total, we collected 187 complete responses (com-
pletion rate of 28%). On average, it took the participants
12 minutes to fill the survey. The resulting participant de-
mographics for the survey is summarized on the right-hand
side of Figure 1.

Analysis. We analyzed the distributions of responses to
Likert-scale, multiple-choice, and single-choice questions. In
particular, we have correlated survey responses with the ap-
plication model (Web-based or other) and the company size,
as these two factors have emerged as important factors of
influence in the interviews. Furthermore, we applied open
coding on the answers to free-form questions. Those coded
statements were then either attributed to the themes and
categories which emerged from our card sorting, or led to
new categories in cases where we were able to enhance our
understanding.

3. RESULTS
We now discuss the main outcomes of our research, start-

ing with the pre-study, followed by the main results of our
qualitative and quantitative studies.

3.1 Pre-Study Results and Overview
From our pre-study, 9 practices emerged which are com-

monly discussed in a CD context. Following the example
of [25], we arranged those practices in a “stairway to (CD)

3http://www.devopsweekly.com/
4http://sreweekly.com/
5http://heise.de

heaven” along the typical evolution path of companies mov-
ing towards more sophisticated, and often more automated,
release engineering (Figure 2). The three phases relevant
to this paper are continuous integration, continuous deploy-
ment, and partial rollouts. We now discuss these fundamen-
tal practices, in order to provide the reader with background
information and relevant definitions, as we will use them in
the rest of the paper. After that we will discuss the concrete
implementation and prevalence of these practices based on
our study outcomes. As there is no universally-accepted
common definition of CD practices, the following definitions
and descriptions represent the authors’ own view as formed
over the course of the pre-study.

Continuous Integration.
The core characteristic of continuous integration is that

developers integrate code in a shared repository multiple
times a day. To reduce the burden of long-living parallel
development branches, companies have started to adopt the
idea of trunk-based development [12], wherein all teams
contribute to a single branch, usually called master, trunk,
or mainline. Trunk-based development requires means to
“switch on or off” individual code, if it is not ready for pro-
duction. A common implementation technique for this are
feature toggles [5]. In its simplest form, a feature toggle
is a condition evaluating a flag (e.g., feature on/off) or an
external parameter (e.g., userId) deciding which code block
to execute. Besides enabling trunk-based development, fea-
ture toggles are also one potential implementation technique
for various partial rollout practices [14]. Another hallmark
of continuous integration is (full) developer awareness,
sometimes referred to as transparency [28] or intercommu-
nication [27]. Developer awareness is opposed to the siloiza-
tion of release, status, and rollout information common to
more traditional software engineering processes.

Continuous Deployment.
Fundamentally, continuous deployment assumes that the

product perpetually remains in a shippable state. A (fully or
at least partially automated) deployment pipeline [5, 15]
comprises the core of a continuous deployment release pro-
cess. A deployment pipeline consists of multiple defined
phases a change has to pass until it reaches the production
environment. Early phases handle compilation tasks and
provide binaries for later phases focusing on either manual
or automated tests in various environments. After deploy-
ment, health checks are central post-deployment activities
to assess the deployed production code. Typically, health
checks are implemented via monitoring [5] on infrastruc-
ture, application level, or business level. A cultural change
strongly associated to continuous deployment and DevOps,
which is a practice emphasizing a tighter collaboration be-
tween developers and operations, is the idea of “developer
on call” [12]. “Developer on call” requires that software de-
velopers remain available for some time when their change
is deployed to production. In case of problems, they know
best about their change, and can help operations identify
and fix problems faster.

Partial Rollouts.
Often seen as the epitome of CD, partial rollout practices

are build on top of continuous deployment. Practically, par-
tial rollouts are run-time quality assurance and requirements

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

Scope of this paper

Traditional Development
Agile Organization

Continuous Integration
Continuous Deployment

Partial Rollouts

Trunk-Based
Development

[TBD]

Health Checks
[HC]

Deployment Pipeline
[PIP]

Feature Toggles [FT]
Dev on Call

[DOC]

A/B Testing
[AB]

Canary Releases
[CAN]

%

A B

Full Developer
Awareness
[AWA]

Dark Launches
[DAR]

Figure 2: The “stairway to heaven” based on [25], and the main practices commonly associated to the phases in this evolution.

validation techniques. Canary releases [15] are releases of
a new version to a subset of the user base (e.g., 10% of all
users in a geographic region). This is done to test a change
on a small sample of the user base first. A/B testing [20]
comprises running two or more versions of an application in
parallel, which differ in an isolated implementation detail.
The goal is to statistically evaluate which of those versions
performs better, based on technical (e.g., response time)
and/or business metrics (e.g., items sold, conversion rate).
Finally, dark launches [12] are used to test functionality in
production, but without enabling it (yet) for any users. The
idea is to assess whether a new or redesigned functionality
is ready to handle production-scale traffic.

Results Overview.
Following the method used in [27], we provide a first un-

derstanding of the prevalence of these practices in the long
tail of industrial practice by simply mapping, for each par-
ticipant in the interview study, whether the participant’s
team uses (turquois), does not use (white), or partially uses
(color graded turquois) the respective practice (Table 1).

Participants are described in the form PXAppModel
Size in which

X represents a particular participant followed by the com-
pany’s size in subscript and the application model of the
main product that this participant works on in superscript.
Throughout the paper, we annotate our results by adding
the interview participants that support the statements in
parentheses. Mappings have been conducted by the first
and third author, based on coded interview transcripts.

It is evident that adoption of CD practices does not strictly
follow the “stairway to heaven” model. That is, for instance,
while some semblance of continuous integration is a precon-
dition to continuous deployment and partial rollouts, many
companies have made a version of canary testing work with-
out specifically implementing trunk-based development or
feature toggles. Further, it is evident that some practices are
substantially more prevalent in industry than others. Most
of our interview partners have at least rudimentary health
checks in place, as well as an at least partially automated
deployment pipeline. Developer awareness (of the current
build status, which users are currently served which version,
etc.) is generally good, even if developers in many teams do
not have access to all relevant information. “Developer on
call” is a widely accepted practice among our interview par-
ticipants. This strengthens our previous result that DevOps
should by now be considered mainstream [9]. Further, and
to our surprise, 13 of 20 interview participants are using, at

Participant

H
C

P
IP

A
W

A

D
O
C

C
A
N

F
T

T
B
D

A
B

D
A
R

P1Web
SME

P2Enterpr
SME

P3Web
SME

P4Web
SME

P5Web
SME

P6Desktop
SME

P7Enterpr
Corp

P8Enterpr
SME

P9Enterpr
SME

P10Web
SME

P11Web
SME

P12Web
Corp

P13Web
Startup

P14Web
Corp

P15Web
Corp

P16Web
SME

P17Web
Startup

P18Web
Startup

P19Web
SME

P20Embedded
SME

Table 1: Usage of CD practices by our interview partici-
pants. Acronyms (e.g., HC) follow Figure 2. Practices are
ordered from the most prevalent (health checks) to the most
uncommon (dark launches).

least for some changes, a variant of canary releases, even if it
often takes the form of manually administered early-access
or pilot phases. Feature toggles, trunk-based development,
and A/B testing are known among our interview partners,
but rarely used in practice. Finally, dark launches can be
considered a niche practice in our study. All but one par-
ticipant did not use it, and most participants were not even
aware of this release practice, hence also had no intentions
of using it in the future. Thus, we decided to refrain from
putting questions about dark launches into our survey and
set the focus for this paper on canary releases and A/B test-
ing as practices for partial rollouts. Similarly, as we did
not collect enough data to reason about trunk-based devel-
opment, its implications for continuous deployments, and in
general the implications of various branching models, we de-
cided not to cover it in the result section of this work and
leave it for future research.

We now discuss the results of the remaining seven prac-
tices that emerged from our study in more detail. As the
adoption (or lack thereof) of automated and partial roll-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

outs drives the adoption of many other CD practices, we
start with a discussion of the industrial state of partial roll-
outs, then step down the stairway to heaven and discuss
practices associated with continuous deployment, and finally
cover practices related to continuous integration.

3.2 Partial Rollouts
The fundamental idea underlying partial rollouts is not

uncommon in industrial practice. However, depending on
the domain, technical sophistication of the project team,
and other factors, the specific shape that partial rollouts
take varies.

Canary Releases.
Interview Results. Our interviews have shown that

among all practices associated with partial releases, canary
releases are the ones that have most found their way into
mainstream industrial practice. Users either apply canary
releases for all changes, or, more commonly, use this practice
for specific, often particularly, critical features. A common
use case for canary testing was scalability testing in Web-
based applications.

”[We use canary testing] especially in those cases when
we have concerns how it would scale when all users get
immediate access to this new feature.” -P4Web

SME

How these canary tests are implemented varies widely be-
tween participants. Many participants developing enterprise
or desktop products (e.g., P8Enterpr

SME , P9Enterpr
SME) implement

canary releases via manually-administered early-access or pi-
lot phases with hand-picked friendly customers. For these
participants, it may take weeks of canary testing before a
change is rolled out to all customers. Others, particularly
developers of Web-based applications, implement canary re-
leases by gradually rolling out changes to some data centers
or hosts. Finally, a small subset (e.g., P19Web

SME) always roll
out a change entirely, but then use feature toggles to serve
only a subset of customers with the new version. A special
case of canary releases via pilot phases is the eat your own
dog food approach pioneered by companies such as Google
or Facebook [12], in which companies (e.g., P16Web

SME in our
study) use a very cutting-edge version of their own software
internally before releasing externally.

Survey Results. Contrary to our interviews, our survey
has shown that a majority of 63% of practitioners is not yet
using canary releases (Table 2). However, and consistently
with our interview results, the practice of canary releases
– among those that actually make use of it – is not bound
to companies developing Web-based applications.There is no
statistically significant difference in our survey responses be-
tween canary release usage of developers of Web-based appli-
cations and others. However, while Web-based applications
often use feature toggles and traffic routing to implement ca-
nary releases technically (both used by 45% of respondents
that build a Web-based product and use canary testing),
other application types (e.g., desktop applications) need to
be canary tested by distributing specific binaries (47%) for
technical reasons.

For the 63% of respondents that are not actually using
canary releases, the largest obstacle is a software architec-
ture that does not easily support partial rollouts. This was
particularly evident for SMEs and corporations, and com-
panies that develop Web-based products (64%, versus 48%

a
ll

n
=

1
8
7

W
e
b

n
=

1
0
5

o
t
h
e
r

n
=

8
2

s
t
a
r
t
.

n
=

3
5

S
M

E
n
=

9
9

c
o
r
p
.

n
=

5
3

CAN: all features 18% 15% 22% 6% 22% 19%
CAN: some features 19% 21% 17% 17% 21% 17%
no CAN 63% 64% 61% 77% 57% 64%

Table 2: Canary release usage (single choice).

for others). It is likely that this is because most Web-based
products in these domains are still deployed as monolithic
3-tier applications. For startups, software architecture is
slightly less of a concern. However, startups often do not
have a sufficiently large customer base to warrant partial
rollouts. This is linked to a third, similar problem prevent-
ing the adoption of partial rollouts – some teams simply do
not see any business value in conducting them. Interest-
ingly, lack of expertise was seen only as a minor barrier to
canary release adoption, given by 26% of respondents over-
all. A summary of the main reasons against adopting canary
releases is shown in Table 3.

a
ll

n
=

1
1
7

W
e
b

n
=

6
7

o
t
h
e
r

n
=

5
0

s
t
a
r
t
.

n
=

2
7

S
M

E
n
=

5
6

c
o
r
p
.

n
=

3
4

other 18% 1% 10% 7% 4% 6%
lack of expertise 26% 27% 24% 15% 34% 21%
no business sense 39% 39% 40% 41% 36% 44%
number customers 39% 46% 30% 56% 38% 29%
architecture 57% 64% 48% 44% 66% 53%

Table 3: Reasons against canary releases (multiple-choice).

Key Points. 37% do not roll out new features to every
customer immediately. These canary releases are not limited
to Web-based systems, but in other application types partial
rollouts are often implemented manually. Monolithic archi-
tectures are the largest barrier for more widespread adoption
of canary releases in Web-based applications.

A/B Testing.
Interview Results. A/B testing was rarely used among

our interview participants. In total, three participants al-
ready conduct A/B tests, and one had concrete plans. The
central use case for A/B tests was user facing frontends,
mostly limited to the design of landing pages. P14Web

Corp is
applying this practice not only to user interfaces, but also
for the purpose of internal performance evaluation. Another
participant emphasized that A/B testing is typically not a
pure IT activity, but is strongly coupled with marketing and
product development:

”If it’s performance related, we will benchmark. If it’s
related to marketing, someone on the marketing side has
to specify this.” -P17Web

Corp

An often-heard reason against using A/B testing in our in-
terviews was that the customer base was too small to draw
statistically valid conclusions from. However, the majority
of participants also does not feel an urgent need for A/B
testing, and consider other, more pragmatic, ways of assess-
ing customer behavior, as sufficient:

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

”We only have around 130 customers, it is actually eas-
ier to just talk to everybody.” -P18Web

Startup

Survey Results. Adoption of A/B testing among sur-
vey respondents was higher than indicated by our interview
study, with 23% of respondents claiming to use A/B test-
ing. Further, this practice is not only bound to companies
developing Web-based applications, even though they still
represent the majority with 63% of A/B test users. Con-
sistent with our interviews, evaluating changes in the user
interface is the most common use case (88%), but backend
features are also A/B tested by 44% of the respondents that
make use of A/B testing in the first place. A summary of the
main reasons against A/B testing given by those not using
the practice is depicted in Table 4.

a
ll

n
=

1
4
4

W
e
b

n
=

7
8

o
t
h
e
r

n
=

6
6

s
t
a
r
t
.

n
=

2
5

S
M

E
n
=

7
4

c
o
r
p
.

n
=

4
5

other 6% 4% 8% 4% 1% 13%
don’t know 6% 5% 6% 4% 7% 4%

lack of knowledge 15% 19% 11% 12% 15% 18%
policy / domain 21% 14% 29% 12% 22% 24%
number of users 28% 32% 23% 44% 27% 20%

investments 33% 35% 30% 44% 31% 29%
architecture 50% 53% 47% 40% 59% 40%

Table 4: Reasons against A/B testing (multiple-choice).

Unsurprisingly, and similarly to canary releases, for 77%
of participants that are not making use of A/B testing, the
biggest challenge is a software architecture that does not
support running and comparing two or more versions in par-
allel. Confirming the results of canary releases, the architec-
ture is mainly a problem for SMEs and corporations, while
for startups a small user base is seen as a major obstacle.
Once enough data points are collected to ensure statistical
power, expertise is needed to analyze and draw correct con-
clusions. However, a lack of expertise was only mentioned
by a minority of respondents (15%) as a problem. What is
interesting and what we identified throughout our interviews
as well, is that companies often do not have the features for
which it would be worth conducting A/B tests. The return
on investment, both financial and time, of creating and/or
setting up appropriate tooling would be just too low. This
was mentioned by 33% of our survey participants. While
limitations because of internal policies are minor factor for
startups (12%), for corporations this represents a strong bar-
rier (24%). This underlines other findings (e.g., [21]) that
besides technical challenges, organizational aspects are an
important factor for CD adoption.

Key Points. 23% of survey respondents make use of A/B
testing. In the majority of cases, A/B testing is applied on
user frontends for Web-based applications. Similarly to ca-
nary releases, monolithic architectures are the most impor-
tant barrier to adoption. However, organizational, business,
user base, and domain considerations are additional factors
that play into the decision of whether to adopt A/B testing.

3.3 Continuous Deployment
In this section, we report on the fundamental practices

for successfully executing partial rollouts on production en-
vironments.

Health Checks.
Interview Results. Most of our interview participants

have at least rudimentary health checks in place. The impor-
tance of monitoring applications arises once practices such
as partial rollouts are in use. Health checks are not only
used to determine if everything runs as expected, but also
to support rollout decisions (e.g., increase traffic assigned to
a canary release).

”The decision whether to continue rolling out is based
on monitoring data. We look at log files, has something
happened, did we get any customer feedback, if there
is nothing for a couple of days, then we move on.” -
P16Web

SME

Metrics monitored by our interview partners primarily
consist of well-known application (e.g., response times) and
infrastructure (e.g., CPU utilization) metrics. This is con-
sistent with our previous survey results [30]. Almost all par-
ticipants mentioned that they do not only rely on such data,
but also take customer feedback, for instance provided via
bug reports, into account. Some companies (e.g., P2Enterpr

SME)
rely entirely on customer feedback, especially in cases when
it concerns on-premises software, for which real-time moni-
toring is usually not feasible.

Most interviewees do not have strict rules or thresholds
when defining what to monitor or how to interpret data. In-
stead, they conduct health assessments iteratively and pri-
marily based on intuition. If something seems problematic,
they take action based on experience (i.e., what has worked
or was wrong in the past) rather than well-defined processes
and empirical data. This is consistent with our experiences
in earlier studies [9, 10]. If formal thresholds are used, they
are often based on historical metrics gathered from previous
releases.

”[Health assessment is] mostly based on the team expe-
rience. You may start with obvious ones [metrics and
thresholds] and then over time, as you hit and bump into
issues, you add more and more.” -P14Web

Corp

Survey Results. Customer feedback (85%) and active
monitoring (76%) are both widely used among survey re-
spondents (see Table 5). For Web-based applications, mon-
itoring and customer feedback are in balance, while for other
application types, customer feedback (90%) is dominant (67%
monitoring). This is not surprising, as monitoring Web-
based applications is technically easier than for other appli-
cation models, and supported by a large array of existing
Application Performance Monitoring (APM) tools, such as
New Relic6.

a
ll

n
=

1
8
7

W
e
b

n
=

1
0
5

o
t
h
e
r

n
=

8
2

s
t
a
r
t
.

n
=

3
5

S
M

E
n
=

9
9

c
o
r
p
.

n
=

5
3

don’t know + other 4% 2% 6% 3% 5% 2%
monitoring 76% 83% 67% 89% 72% 75%

customer feedback 85% 81% 90% 80% 88% 83%

Table 5: How issues are usually detected (multiple-choice).

Based on our interviews, some companies have fixed sched-
ules for rolling out releases (i.e., to a larger user base) driven

6http://newrelic.com/

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

by management decisions. Other companies are more flexi-
ble, they decide based on monitoring data and or by contact-
ing customers whether to go forward with a release. Com-
panies deploying a Web-based application (74%) are signif-
icantly more data-driven in their decisions than other com-
panies (34%). Table 6 summarizes our findings across all
company types. Survey respondents confirmed our finding
that thresholds for assessing the state of a release are mainly
formulated based on (developer) experience (72%), followed
by the consideration of historical metrics from previous re-
leases (54%).

a
ll

n
=

7
0

W
e
b

n
=

3
8

o
t
h
e
r

n
=

3
2

s
t
a
r
t
.

n
=

8

S
M

E
n
=

4
3

c
o
r
p
.

n
=

1
9

don’t know 7% 5% 9% 0% 9% 5%
monitoring data 56% 74% 34% 75% 51% 58%

customer feedback 59% 58% 59% 75% 60% 47%
mgmt. desicions 60% 58% 62% 38% 70% 47%

Table 6: How release decisions for partial rollouts usually
are made (multiple-choice).

Key Points. At least rudimentary health checks are
practiced by almost all companies. Besides active monitor-
ing and logging, the majority of companies also take cus-
tomer feedback (e.g., bug reports) into consideration for de-
ciding on application status. Health checks are used for
identifying issues in production and to provide a proper ba-
sis for rollout decisions. Data is mostly collected and inter-
preted iteratively without a principled approach, based on
developer experience and intuition.

Deployment Pipeline.
Interview Results. All of our interviewed companies

structure their release process into multiple phases. Contin-
uous integration in a narrow sense is “solved” (see also [1]).
All but one company is making use of CI, either on a nightly
basis, or triggered after every push to the version control
system. However, the degree of automation (i.e., manual
or automated phase transitions), velocity (i.e., how fast sin-
gle phases are passed), test scopes of single phases, and the
number of phases along the pipeline, differ substantially.

Similar to [21] and [8], we identified both technical and or-
ganizational obstacles, which influence the pipeline’s degree
of automation as well as velocity. From the organizational
perspective, internal policies (e.g., strict testing guidelines
for P4Web

SME), or customers which simply do not appreciate

higher release frequencies (e.g., P9Enterpr
SME) were stated sev-

eral times. On the technical side, application architecture is
again an essential driver for release frequency:

”It is difficult to release individual parts of the system
since dependencies between new code and the system in
the back are just too high” -P5Web

SME

In order to tackle this problem, P5Web
SME mentioned that

they have started migrating from their monolithic applica-
tion architecture to (micro-)services. In their current ar-
chitecture, complex dependencies between various parts of
the system prevent them from moving through their deploy-
ment pipeline faster. Besides a supporting architecture, the
degree of automation is also bound to financial investments

(e.g., tooling, setting up an appropriate infrastructure for
automated quality checks):

”Depends on the size of the company. The larger you
are, the more automation you want to have. The
smaller you are, the more costly it is to build automa-
tion.” -P19Web

SME

This reinforces a notion already described in [15]. Compa-
nies generally do not strive for immediate 100% automation
just for the sake of it. Implementing higher automation is a
slow process, and various challenges, of technical and organi-
zational nature, need to be solved for climbing the “stairway
to heaven”.

An effect of highly automated pipelines is that not only
new features reach production faster, but so do bugs, which
can slip through automated quality checks along the pipeline.
This changes the way how companies have to deal with is-
sues:

”I think the faster you move, the more tolerant you have
to be about small things going wrong, but the slower you
move, the more tolerant you have to be with large change
sets that can be unpredictable.” -P18Web

Startup

Highly automated pipelines allow companies to fix those
small issues fast, emerging practices such as automated health
checks and “Developer on Call” help companies prevent se-
vere damage. In addition, practices such as canary releases
provide means for testing changes on small user bases first.
However, in case that issues have found their way into pro-
duction, some companies use different or modified pipelines
to get patches faster deployed and to avoid situations as
described by P14Web

Corp:

”it is very frustrating for a developer ... the bug is found
in production, the developer fixes it within a week, but
it is not there until a month later or so.” -P14Web

Corp

Fundamentally, we identified three ways how issues in pro-
duction are handled within a delivery pipeline. (1) The same
pipeline and the same steps are executed for hotfixes and
feature commits. (2) The same pipeline is used for hotfixes,
but some phases are skipped or only a subset of tests is exe-
cuted. (3) There is an entirely separate pipeline for hotfixes.
While the former is an indication that the delivery pipeline
has reached a high degree of automation and established a
high level of confidence, the second may be an indication
that the pipeline per se simply takes too long. Completely
separated pipelines have the benefit of avoiding interference
between the version to be fixed and the progress made in de-
velopment across the various phases and environments along
the pipeline.

Survey Results. 68% of the respondents stated that
they use the same pipeline for dealing with issues as for every
other change. The remaining 30% (2% unknown) have ei-
ther a modified or entirely separate pipeline. In these cases,
executing a subset of tests and skipped single phases are
dominant, while a completely separated pipeline is only used
by a minority (see Table 7).

A majority of 74% of survey respondents agreed that,
from a technical perspective (i.e., pipeline and tooling), they
could release more frequently than they actually do. The
main reason that keeps them from doing so is a missing busi-
ness case. This is also valid for companies developing Web-
based applications (50%). However, for non Web-based ap-
plications, internal policies are even more important (40%).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

a
ll

n
=

5
7

W
e
b

n
=

3
2

o
t
h
e
r

n
=

2
5

s
t
a
r
t
.

n
=

9

S
M

E
n
=

3
1

c
o
r
p
.

n
=

1
7

don’t know 7% 3% 12% 0% 10% 6%
separate pipeline 23% 22% 24% 11% 26% 24%

subset of tests 51% 53% 48% 67% 42% 59%
reduced phases 53% 53% 52% 56% 55% 47%

Table 7: How the deployment pipeline for hotfixes differs
from the usual pipeline (multiple-choice).

Considering various company sizes, a missing business case
for faster releases is the top reason for startups (56%), while
they are not limited by internal policies (4%). Table 8 shows
the non-technical reasons in relation to more frequent re-
leases.

a
ll

n
=

1
3
8

W
e
b

n
=

8
0

o
t
h
e
r

n
=

5
8

s
t
a
r
t
.

n
=

2
7

S
M

E
n
=

7
4

c
o
r
p
.

n
=

3
7

don’t know 12% 11% 14% 22% 12% 5%
other 13% 15% 10% 19% 9% 16%

customers 22% 18% 28% 15% 22% 27%
internal policies 30% 24% 40% 4% 39% 32%
no business case 42% 50% 31% 56% 38% 41%

Table 8: Non technical reasons that prevent companies from
releasing more frequently (multiple-choice).

Key Points. The practice of deployment pipelines, i.e.,
structuring the release process into multiple, at least par-
tially automated, consecutive phases is widespread. Barri-
ers for higher flexibility and automation are internal policies
and missing business cases, but also include architectural
problems.

Developer Awareness.
Interview Results. Awareness in CD refers to activities

that enable and promote transparency of the development
progress throughout the “stairway to heaven”. Most of our
interview participants agreed that developers in their orga-
nization usually know or have access to the information in
what stage a feature or change that they worked on is cur-
rently in. This information was usually provided in different
ways. One option is tooling that tracks status or progress
of features through tasks or tickets (e.g., Pivotal tracker).
Another are online dashboards, or public monitors in the
office, which display information such as build status, test
results, or production performance metrics. Another way
to promote awareness and transparency is through signals
sent in the form of asynchronous communication that is in-
tegrated within team collaboration chat tools (e.g., Slack,
HipChat) [22].

The majority of interviewees agree that the notion of “De-
veloper on call” has become a widely accepted practice in
their organization. Developers that contributed code to a
certain release are on call for that release. In case of issues,
developers know best about their changes and can help op-
erations to identify the problem faster and contribute to the
decision about subsequent actions. Additionally, P16Web

SME

also specifically mentions a learning effect for developers due
to “Developer on call”:

”Developers need to feel the pain they cause for cus-
tomers. The closer they are to operations the better,
because of the massive learning effect.” -P16Web

SME

This practice is strongly related to DevOps and empha-
sizes a shift in culture that is currently taking place. Tradi-
tional borders between development, quality assurance, and
operations seem to vanish progressively. This plus of respon-
sibility could lead developers to writing and testing their
code more thoroughly, as one participant indicated:

”If you don’t have enough tests and you deploy bad code
it will fire back because you would be on call and you
have to support it” -P14Web

Corp

Some participants mention that their companies avoid the
additional burden of keeping developers on call on weekends
by releasing only during office hours, for instance P7Enterpr

Corp .
However, for certain companies and domains, deployment
weekends are a business necessity (e.g., P9Enterpr

SME).
Survey Results. The survey confirmed our findings that

“developer on call” has become mainstream. The majority
of survey respondents stated that developers never hand off
their responsibility for a change (see Table 9). When com-
paring company sizes, this practice is especially appealing to
startups (74%), but even in corporations (45%) it is applied
frequently. While in SMEs and corporations (23%) develop-
ers hand off their responsibility directly after development,
this is almost never the case for startups (3%).

a
ll

n
=

1
8
7

W
e
b

n
=

1
0
5

o
t
h
e
r

n
=

8
2

s
t
a
r
t
.

n
=

3
5

S
M

E
n
=

9
9

c
o
r
p
.

n
=

5
3

don’t know + other 4% 2% 5% 3% 1% 8%
preproduction 9% 10% 9% 9% 8% 11%

staging 12% 15% 9% 11% 12% 13%
development 19% 12% 28% 3% 23% 23%

never 56% 61% 50% 74% 56% 45%

Table 9: Phase in the delivery pipeline after which devel-
opers typically hand off responsibility for their code (single-
choice).

Key Points. Awareness and transparency in CD are
achieved by means of tracking tools, publicly advertised
dashboards, and chat integration. “Developer on call” has
become mainstream. It is widely practiced across companies
of all sizes, but particularly by startups. Companies appre-
ciate that this additional responsibility results in increased
overall awareness for contributed changes and strengthens
collaboration within the company, but may induce addi-
tional developer burden, especially if releases are required
during weekends.

3.4 Continuous Integration
The next sections cover the practices assigned to the con-

tinuous integration phase in the “stairway to heaven”.

Feature Toggles.
Interview Results. Feature toggles were rarely used

among our interview participants. Interestingly, some of our
interview participants associated feature toggles with per-
mission mechanisms, similarly to [14]. Feature toggles may
be used as well for the purpose of regulating resource access
(e.g., P9Enterpr

SME). Another usage category we identified is
enabling/disabling code that is not yet ready for production
(e.g., P19Web

SME , P20Embedded
SME).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

”We do that a lot. We’ll push the code dark behind a
feature flag. We might only enable it in certain envi-
ronments, we might only enable it in CI and staging.
And the day we decide to release it, we just ’turn it on’
in production.” -P19Web

SME

Only a minority was using feature toggles for implement-
ing canary releases (P16Web

SME , P19Web
SME) and A/B testing

(P19Web
SME). From the group of participants not consider-

ing feature toggles, a major concern was added complexity.
This is particularly relevant when multiple feature toggles
are active at the same time.

”I’m not using feature toggles and I don’t have plans
to do so [...] configuration leads to complexity, every
time you add complexity, you end up having additional
complexity when you have to remove it at some point.”
-P13Web

Startup

This problem is aggravated by the fact that none of our
interview participants has access to abstractions or tooling
beyond the very basic to manage feature toggles.

Survey Results. In contrast to our interview study, our
survey respondents are more commonly using feature toggles
to implement partial rollouts (36%, see Table 10). Feature
toggles are especially used by companies providing Web-
based products (45%), while they are less frequently used
for other application models (25%). Concerning company
sizes, startups show the highest adoption rate. However,
with n = 8, the sample size for this specific observation is
small.

a
ll

n
=

7
0

W
e
b

n
=

3
8

o
t
h
e
r

n
=

3
2

s
t
a
r
t
.

n
=

8

S
M

E
n
=

4
3

c
o
r
p
.

n
=

1
9

other 6% 8% 3% 12% 5% 5%
permissions 17% 18% 16% 38% 16% 11%
dont’ know 20% 13% 28% 12% 21% 21%

binaries 29% 13% 47% 12% 33% 26%
proxying 30% 45% 12% 38% 23% 42%

feature Toggles 36% 45% 25% 50% 35% 32%

Table 10: Implementation techniques in use for partial re-
leases (multiple-choice).

Key Points. While feature toggles are a common im-
plementation technique for partial rollouts, they add com-
plexity and need to be managed with care. Currently, no
sufficient abstractions or tooling for managing this complex-
ity are available.

4. IMPLICATIONS
We now discuss the main implications of our study for the

academic community. We focus on the underlying problems
and principles we have observed, and propose directions for
future research.

Architectural support for CD. As discussed in Sec-
tion 3.2, one substantial barrier for many companies to CD
adoption is a (legacy) system architecture that makes ad-
vanced practices, such as canary or A/B testing, hard to im-
plement in production. Similarly, application architectures
drive the design of deployment pipelines (see Section 3.3)
and thus set the pace with which companies bring their

changes to production. Moreover, we have observed that ap-
plying feature toggles (see Section 3.4) to circumvent archi-
tectural limitations for implementing partial rollouts come
at the price of increased complexity, which negatively affects
maintainability and code comprehension. Hence, we argue
that future research is required on how to architect a soft-
ware system to enable CD. This could come, for instance, in
form of a catalogue of architectural patterns which supports
various CD practices. Microservices [3, 30] are a promis-
ing starting point, but the community is currently lacking
formal research into the tradeoffs associated with the mi-
croservices architectural style, its suitability for various CD
practices, and how to decompose an application into mi-
croservices in the first place.

Modelling of variability. Related to the previous im-
plication, the results reported in Section 3.4 imply that prac-
titioners currently struggle with the complexity induced by
feature toggles. Hence, it can be argued that more research
is needed on better formalisms for modelling the software
variability induced by feature toggles, as well as for their
practical implementation without polluting the application’s
source code with release engineering functionality. We sus-
pect that concepts known from aspect-oriented software de-
velopment [19] and (dynamic) product line engineering [13]
could serve as useful abstractions in this domain. However,
their usage did not emerge in our study even though these
techniques have been available for years.

From intuition to principled release decision mak-
ing. In Section 3.3, we have observed that release engineers
are currently mostly going by intuition and experience when
defining metrics and thresholds to evaluate the success, or
lack thereof, of a (partial) rollout. Similarly, which features
to conduct canary or A/B tests on, or which (or which frac-
tion of) users to evaluate, is currently rarely based on a
sound statistical or empirical basis. Hence, research should
strive to identify (for various application types) the princi-
pal metrics that allow evaluating the success of a (partial)
rollout, and identify best practices on how to select changes
that require canary or A/B testing. Further, robust statis-
tical methods need to be devised that suggest how long to
run at which scope (e.g., number of users) to achieve the re-
quired level of confidence. A main challenge for this line of
research will be that release engineers cannot generally be
expected to be trained data analysts. This is particularly
true for smaller companies, for which release decision mak-
ing needs to remain cost-efficient and statistically sound on
a small sample size.

Release-as-Code. Once a more principled approach for
releasing is available, more research can be conducted on
how to further automate releases based on CD, for instance
through well-defined and (semi-)automated release scripts.
We refer to this idea as “Release-as-Code”, analogously to
Infrastructure-as-Code [16]. Such Release-as-Code scripts
are structured in multiple phases (e.g., canary release on 5%
of traffic for 15 minutes on users of the free tier, after success
based on a given metric 10% for an hour on all users, . . .)
with clearly specified gateways and repair actions. Release-
as-Code will not only provide means for further automation
and speeding up the release process, but also facilitate the
documentation, transparency, and even formal verification
of release processes. Besides a fundamental model, research
should be conducted on a useful and usable domain-specific
language to implement Release-as-Code.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

The many hats of DevOps developers. Our results
showed that not only DevOps, but also and more specifi-
cally “developer on call”, is becoming mainstream across all
application models and company sizes. We argue that it
is required that the academic community revisits and val-
idates through principled studies to what extent the roles
and responsibilities traditionally associated with the term
“software developer” in academic research are still a good
representation of industrial practice.

5. THREATS TO VALIDITY
We have designed our research as a mixed-method study

to reduce threats to the validity. However, as in any em-
pirical study, there are still threats and limitations that the
reader should keep in mind when interpreting our results.

External Validity. There is a possibility that our re-
sults are not generalizable beyond the subjects that were
involved in the study. To mitigate this threat, we made
sure to select interview participants that are approximately
evenly distributed between organizations of varying sizes,
backgrounds (years of experience and age), as well as the
types of applications the participants deploy in their daily
work. This threat is further addressed through the valida-
tion of our interview findings through a quantitative survey.
We advertised our survey over various social media channels
to attract a high number of respondents. However, partic-
ipation in online surveys is necessarily voluntary. Hence,
it is likely that the survey has attracted a respondent de-
mography with substantial interest and familiarity with CD
practices (self-selection bias). Furthermore, for both inter-
views and survey, we rely on self-reported (as opposed to ob-
served) behavior and practices (self-reporting bias). Hence,
participants may have provided idealized data about the CD
maturity of their companies. Due to these biases, we suspect
that our study, at least to a small extent, overestimates the
industrial prevalence of advanced CD techniques.

Internal Validity. The selection of questions for the
interview phase might have lead participants to answer to-
wards our possibly biased notion of CD. We mitigated this
threat by building a foundation of understanding on the
topic that is based on both previous work and experience re-
ports in online articles in a pre-study. Furthermore, it is pos-
sible that we introduced bias through the mis-interpretation
or mis-translation of “raw” results (interview transcripts and
survey results). To avoid observer bias, these results were
analyzed and coded by at least three authors of the study.

6. RELATED WORK
There has recently been a multitude of research on the

challenges companies face on their way to more continuous
deployments. Leppanen et al. [21] and Olson et al. [25] con-
ducted studies with multiple companies discussing technical
and organizational challenges, and their state of CD adop-
tion. Similarly, Chen [8], and Neely and Stolt [24] provide
experience reports from a perspective of a single company.
Besides technical challenges, Claps et al. [11] focused also on
social challenges companies are faced with and present mit-
igation strategies. Bellomo et al. [6] investigated architec-
tural decisions companies take to enable CD and introduced
deployability and design tactics.

As Facebook is one of the drivers in the professional de-
veloper scene surrounding CD, the company is also com-

monly the subject of related studies. Feitelson et al. [12] de-
scribe practices Facebook adopted to release on a daily basis.
In a recent work, Tang et al. [35] give insights how Face-
book manages multiple versions running in parallel (e.g.,
A/B testing), make use of a sophisticated configuration-
as-code approach, and monitor their applications at run-
time. Bakshy and Frachtenberg [2] provide guidelines for
correctly designing and analyzing benchmark experiments
such as A/B testing. Considering A/B testing, Tamburrelli
and Margara [34] rephrase A/B testing as a search-based
software engineering problem targeting automation by rely-
ing on aspect-oriented programming and genetic algorithms.
Tarvo et al. [36] built a tool for automated canary testing of
cloud-based applications incorporating the automated col-
lection and analysis of metrics using statistics.

In case that things go wrong with such partial rollouts, the
question remains whether to deploy a hotfix (“roll forward”)
or to roll back to a known stable version. In a recent study,
Kerzazi and Adams [17] took a detailed look at releases
showing abnormal system behavior after being deployed to
production. One of the findings was that source code is not
the major artifact causing problems, they are often intro-
duced by faulty configuration or database scripts. There
has also been research on release frequency and its impacts.
Khomh et al. [18] studied the impact of release frequency on
software quality and observed that with shorter release cy-
cles users do not experience more post-release bugs. Mäntylä
et al. [23] analyzed the impact on software testing efforts
when switching from a more traditional release model to a 6
weeks release train model in a case study for Mozilla Firefox.

Finally, there have also been some studies on the state
of the art in DevOps. The most authoritive source on this
is [26], albeit not an academic study per se. Other related
works in this field include our own previous work [9] and the
work conducted in the CloudWave project [7].

None of the research discussed so far has empirically eval-
uated how CD practices associated with CD are actually
adopted in practice in a larger sample size. This was also
mentioned by Adams and McIntosh [1] and Rodriguez et
al. [28]. Besides giving an overview of release engineering
practices and phases, Adams and McIntosh [1] provide a
roadmap for future research, similar as Rodriguez et al. [28],
who conducted a systematic literature review on continu-
ous delivery and deployment research articles. Rahman et
al. [27] did a step into the same direction as we do within
this paper. Starting with the practices used by Facebook,
they conducted a qualitative analysis of the CD practices
performed by 19 software companies by analyzing company
blogs and similar online texts. However, they did not con-
duct interviews or a formal survey beyond what is already
available in blogs.

7. CONCLUSIONS
We report on a systematic, empirical study on what prac-

tices associated with CD have been adopted by software in-
dustry, and what the underlying principles and practices of
adoption are. We have observed that some of the CD prac-
tices only play a minor role in industry at the moment (e.g.,
A/B testing, dark launches), while other practices have al-
ready found their way into mainstream adoption. Most com-
panies have at least rudimentary health checks in place and
at least partially automated deployment pipelines. 37% of
our survey respondents make use of canary releases, even

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

though some of them only in form of manually administered
pilot phases. Architectural concerns, customer expectations,
and domain are the most important barriers to CD adoption.
We argue that particularly the first of these issues calls for
future research on how to architect and decompose systems
to enable CD practices, and how to model and implement
them correctly. We have observed that feature toggles alone
are often not enough, as many practitioners are daunted by
the increase in complexity of managing them. Decision mak-
ing in release processes is currently mostly an experience-
driven “art”, with little empirical or formal basis. Hence,
more research on principled approaches is required, as well
as tools and languages that actually implement these prin-
cipled approaches in a way that is approachable and usable
for non-expert release engineers. Finally, we have observed
that “developer on call” is becoming a mainstream DevOps
technique, requiring the academic community to revisit how
it thinks about the role of software developers in industry.

8. ACKNOWLEDGMENTS
The authors would like to thank all interview and sur-

vey participants. The research leading to these results has
received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no. 610802 (CloudWave), and from the Swiss National
Science Foundation (SNF) under project ”Whiteboard”(SNF
Project no. 149450).

9. REFERENCES
[1] B. Adams and S. McIntosh. Modern Release

Engineering in a Nutshell – Why Researchers should
Care. In Proceedings of the International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), Future of Software Engineering (FOSE)
Track, 2016.

[2] E. Bakshy and E. Frachtenberg. Design and Analysis
of Benchmarking Experiments for Distributed Internet
Services. In Proceedings of the 24th International
Conference on World Wide Web (WWW), pages
108–118, 2015.

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi.
Migrating to Cloud-Native Architectures Using
Microservices: An Experience Report. IEEE Software,
2016. To appear.

[4] T. Barik, B. Johnson, and E. Murphy-Hill. I Heart
Hacker News: Expanding Qualitative Research
Findings by Analyzing Social News Websites. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE),
pages 882–885, New York, NY, USA, 2015. ACM.

[5] L. Bass, I. Weber, and L. Zhu. DevOps: A Software
Architect’s Perspective. Addison-Wesley Professional,
jun 2015.

[6] S. Bellomo, N. Ernst, R. Nord, and R. Kazman.
Toward Design Decisions to Enable Deployability:
Empirical Study of Three Projects Reaching for the
Continuous Delivery Holy Grail. In Proceedings of the
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages
702–707, June 2014.

[7] D. Bruneo, T. Fritz, S. Keidar-Barner, P. Leitner,
F. Longo, C. Marquezan, A. Metzger, K. Pohl,

A. Puliafito, D. Raz, A. Roth, E. Salant, I. Segall,
M. Villari, Y. Wolfsthal, and C. Woods. CloudWave:
where Adaptive Cloud Management Meets DevOps. In
Proceedings of the Fourth International Workshop on
Management of Cloud Systems (MoCS 2014), 2014.

[8] L. Chen. Continuous Delivery: Huge Benefits, but
Challenges Too. Software, IEEE, 32(2):50–54, Mar
2015.

[9] J. Cito, P. Leitner, T. Fritz, and H. C. Gall. The
Making of Cloud Applications: An Empirical Study
on Software Development for the Cloud. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE),
pages 393–403, New York, NY, USA, 2015. ACM.

[10] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller,
and A. Roth. Runtime Metric Meets Developer -
Building Better Cloud Applications Using Feedback.
In Proceedings of the 2015 ACM International
Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward!
2015), New York, NY, USA, 2015. ACM.

[11] G. G. Claps, R. B. Svensson, and A. Aurum. On the
Journey to Continuous Deployment: Technical and
Social Challenges Along the Way. Information and
Software Technology, 57(0):21 – 31, 2015.

[12] D. G. Feitelson, E. Frachtenberg, and K. L. Beck.
Development and Deployment at Facebook. IEEE
Internet Computing, 17(4):8–17, 2013.

[13] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.
Dynamic Software Product Lines. Computer,
41(4):93–95, April 2008.

[14] P. Hodgson. Feature Toggles.
http://martinfowler.com/articles/feature-toggles.html,
Jan. 2016.

[15] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 2010.

[16] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam.
Testing Idempotence for Infrastructure as Code. In
Proceedings of the ACM/IFIP/USENIX Middleware
Conference (MIDDLEWARE), pages 368–388, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[17] N. Kerzazi and B. Adams. Botched Releases: Do we
Need to Roll Back? Empirical Study on a Commercial
Web App. In Proceedings of the 23rd IEEE
International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Osaka,
Japan, March 2016.

[18] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do
Faster Releases Improve Software Quality?: An
Empirical Case Study of Mozilla Firefox. In
Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories (MSR), pages 179–188,
Piscataway, NJ, USA, 2012. IEEE Press.

[19] G. Kiczales. Aspect-oriented Programming. ACM
Computing Surveys, 28(4), Dec. 1996.

[20] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and
N. Pohlmann. Online Controlled Experiments at
Large Scale. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

[21] M. Leppanen, S. Makinen, M. Pagels, V.-P. Eloranta,
J. Itkonen, M. Mantyla, and T. Mannisto. The
Highways and Country Roads to Continuous
Deployment. IEEE Software, 32(2):64–72, Mar 2015.

[22] B. Lin, A. Zagalsky, M. Storey, and A. Serebrenik.
Why Developers Are Slacking Off: Understanding How
Software Teams Use Slack. In Proceedings of the 19th
ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW) Companion,
pages 333–336, New York, NY, USA, 2016. ACM.

[23] M. V. Mäntylä, F. Khomh, B. Adams, E. Engström,
and K. Petersen. On Rapid Releases and Software
Testing: A Case Study and a Semi-Systematic
Literature Review. Empirical Software Engineering,
2014.

[24] S. Neely and S. Stolt. Continuous Delivery? Easy!
Just Change Everything (Well, Maybe It Is Not That
Easy). In Agile Conference (AGILE), 2013, pages
121–128, Aug 2013.

[25] H. Olsson, H. Alahyari, and J. Bosch. Climbing the
”Stairway to Heaven” – A Mulitiple-Case Study
Exploring Barriers in the Transition from Agile
Development towards Continuous Deployment of
Software. In Proceedings of the 38th EUROMICRO
Conference on Software Engineering and Advanced
Applications (SEAA), pages 392–399, Sept 2012.

[26] Puppet Labs. State of DevOps Report.
https://puppetlabs.com/2015-devops-report, 2015.

[27] A. Rahman, E. Helms, L. Williams, and C. Parnin.
Synthesizing continuous deployment practices used in
software development. In Agile Conference (AGILE),
2015, pages 1–10, Aug 2015.

[28] P. Rodŕıguez, A. Haghighatkhah, L. E. Lwakatare,
S. Teppola, T. Suomalainen, J. Eskeli, T. Karvonen,
P. Kuvaja, J. M. Verner, and M. Oivo. Continuous
Deployment of Software Intensive Products and
Services: A Systematic Mapping Study. Journal of
Systems and Software, 2016. To appear.

[29] J. Rubin and M. Rinard. The Challenges of Staying
Together While Moving Fast: An Exploratory Study.
In Proceedings of the 38th IEEE/ACM International
Conference on Software Engineering (ICSE), 2016. To
appear.

[30] G. Schermann, J. Cito, and P. Leitner. All the
Services Large and Micro: Revisiting Industrial
Practice in Services Computing. In Proceedings of the
11th International Workshop on Engineering Service
Oriented Applications (WESOA’15), 2015.

[31] F. Shull, J. Singer, and D. I. Sjøberg. Guide to
Advanced Empirical Software Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007.

[32] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and
T. Zimmermann. Improving Developer Participation
Rates in Surveys. In Proceedings of the 6th
International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pages
89–92, May 2013.

[33] D. Spencer. Card Sorting: Designing Usable
Categories. Rosenfeld Media, 2009.

[34] G. Tamburrelli and A. Margara. Towards Automated
A/B Testing. In Proceedings of the 6th International

Symposium on Search-Based Software Engineering
(SSBSE), volume 8636 of Lecture Notes in Computer
Science, pages 184–198. Springer, 2014.

[35] C. Tang, T. Kooburat, P. Venkatachalam,
A. Chander, Z. Wen, A. Narayanan, P. Dowell, and
R. Karl. Holistic Configuration Management at
Facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP), pages 328–343,
New York, NY, USA, 2015. ACM.

[36] A. Tarvo, P. F. Sweeney, N. Mitchell, V. Rajan,
M. Arnold, and I. Baldini. CanaryAdvisor: A
Statistical-based Tool for Canary Testing (Demo). In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA), pages
418–422, New York, NY, USA, 2015. ACM.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0 Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016

