
Controlled Experiment on the Comprehension of Runtime
Phenomena Using Models Created at Design Time

Michael Szvetits
Software Engineering Group

University of Applied Sciences Wiener Neustadt
Wiener Neustadt, Austria

michael.szvetits@fhwn.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

ABSTRACT
Utilizing models for software construction is a well-studied
research topic. Recent research investigates the integration
of models into running systems to provide additional infor-
mation about the system configuration at runtime. While
this additional information enables innovative self-adaptive
mechanisms, it is still an open research question if the in-
formation provided by models can also improve the analysis
capabilities of human users where manual intervention is
inevitable for investigating runtime phenomena. This pa-
per contributes to fill this gap by conducting a controlled
experiment where the correctness and completion time of
tasks regarding runtime information are assessed. A control
and experiment group had to analyze the output of a soft-
ware system, and the experiment group additionally received
traceability links between models and associated runtime
records. The results show that improvements of the anal-
ysis can especially be observed where model elements em-
phasize relationships between system parts that are hardly
recognizable in the implementation code.

CCS Concepts
•Software and its engineering→ Design languages; Uni-
fied Modeling Language (UML);

Keywords
models, runtime, comprehension, experiment

1. INTRODUCTION
Modeling plays an important role in the whole software life

cycle, for example to capture requirements, communicate
architectural designs, emphasize a common understanding
of a system, improve documentation and make decomposi-
tion and modularization explicit. Modeling usually comes
in various forms and is often done in an informal way [1].
While modeling with a minimal degree of formality is per-
fectly suitable for communication and documentation pur-
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poses, it lacks the ability to serve as input for more advanced
model-based techniques such as model driven engineering
where executable software is directly generated from formal
model specifications. With an appropriate organizational
alignment, model driven engineering promises not only to
improve communication and control, but also to help react-
ing quicker to changing requirements and boost productivity
and maintainability [2].

The increasing need for dynamic adaptation to new re-
quirements and environments leads to a blur between devel-
opment time and runtime, meaning that modern software
must inherently embrace changeability instead of being fit-
ted to predefined requirements that are specified by various
stakeholders [3]. To cope with such dynamism, recent re-
search utilizes models not only for constructing software,
but also integrates them at runtime to provide systems with
additional capabilities to reflect on their own structure and
react to changes in requirements and environments more ef-
fectively [4–7]. In this paradigm, models are created at run-
time and are causally connected to the running system in
a way that changes to the models are propagated to the
running system, and vice versa. Using models in this way
promises to enable analysis of running systems on an ab-
straction level which is closer to the problem space [6].

While such additional reflexive capabilities have been
studied in various scenarios for automatic decisions and
self-adaptive systems, situations where human intervention
is necessary have seldom been addressed by existing ap-
proaches which utilize models that have a relationship to
the running system or its ouput [8]. We argue that linking
runtime data with associated models and their elements
can provide human observers with contextual information
to better understand occurring situations, for example by
providing condensed views of a system, visualizing faulty
processes and communication paths, presenting aggregated
data for containment relationships or providing control
mechanisms on the model level to make ad-hoc adaptations
to configuration parameters. While such feedback-driven
development can be used to measure performance, de-
tect hotspots and find root causes of problems [9], some
challenges regarding traceability, (semi-)automatic data
extraction and intuitive navigation between models and
associated runtime information remain. Furthermore, more
empirical evidence is needed to assess the benefits for
human observers when runtime information is related to
associated design time artefacts.

This paper makes an initial step to fill this gap by con-
ducting a controlled experiment where the correctness and
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completion time of six questions concerning recorded run-
time information is assessed. The goal of the experiment
was to find out if model artefacts created at design time
can support the comprehension of system behaviour if these
artefacts are related to the logged runtime information. We
preferred models created at design time over runtime models
to better reflect modeling activities that are established in
industry [2]. 39 students with medium programming experi-
ence were separated in two groups (one of size 20, one of size
19) and had to analyze the course of events of an open source
game. One group, the control group, had access to the
source code of the game and the produced runtime data via
a browser-based interface with textual searching and sorting
capabilities. The other half, the experiment group, addition-
ally had access to models extracted from the project docu-
mentation and was able to utilize traceability links between
these models (provided by the browser-based interface) and
their associated runtime records (i.e., the browser-based in-
terface connected the models to the runtime information).
The results indicate that the presence of models created at
design time and their corresponding traceability links during
the analysis of runtime information can improve the quality
of answers to questions that concern the course of events
of an executing system. The results also indicate that the
quality of answers increases where model elements empha-
size relationships between system parts that are hardly rec-
ognizable in the implementation code.

This paper is organized as follows: In Section 2 we com-
pare our approach to related work. In Section 3 we give
a detailed explanation of our experiment including the hy-
potheses, the variables, its design and its execution. Sec-
tion 4 discusses the statistical evaluation of the stated hy-
potheses. In Section 5 we interpret our observed results. In
Section 6 we analyze possible threats to the validity of our
results. We conclude and discuss future work in Section 7.

2. RELATED WORK
A common approach to realize feedback between a sys-

tem and an external observer is an autonomic control loop
where runtime data is measured, then analyzed, and correc-
tive actions are planned and executed based on the gained
knowledge [10]. For the domain of cloud applications, Cito
et al. [9] propose to include development tools into such a
feedback loop to cope with shortened requirements engineer-
ing and quality assurance phases and to exploit the amount
of data which is easily available in cloud applications. While
various use cases are demonstrated which show the potential
of the feedback-driven approach, empirical evidence of inte-
grating models for analyzing runtime data is not provided.

Several research works have been performed to investigate
the impact of models on the comprehension of software ar-
chitecture and source code. Haitzer and Zdun [11] measured
the supportive effect of architectural components diagrams
for design understanding of novice architects. They con-
cluded that component diagrams are useful for system com-
prehension if direct links between components and source
code parts of interest can be established. While the provided
evidence indicates that traceability links can improve the
comprehension of static architectural structures, the ques-
tion arises if the results can be extended to dynamic runtime
behaviour as well.

Javed and Zdun [12] performed two controlled experi-
ments concerning the supportive effect of traceability links in

architecture-level software understanding. The conclusion is
that traceability links between architectural models and the
source code leads to a better architectural understanding of
the software under observation, regardless of the experience
of the human analyst. While these results also indicate that
traceability links provide valuable information for software
comprehension, an analysis of runtime phenomena is not in
focus of this work either.

Arisholm et al. [13] report controlled experiments on the
impact of UML documentation on software maintenance and
came to the conclusion that UML documentation is able to
improve the functional correctness of changes. In contrast to
their experiments, we argue that our system under observa-
tion is closer to real world systems and much more complex,
but we also see conceptual differences: Our experiment fo-
cuses on the analysis of runtime behaviour and the produced
runtime data, while their experiments mostly target the un-
derstanding of the design time artefacts themselves and on
extending them appropriately.

In the work of Cornelissen et al. [14,15] the impact of dy-
namic analysis and trace visualization on the comprehension
of software has been analyzed. Dynamic analysis was inves-
tigated through a systematic survey which identified various
methods to analyze runtime information like slicing, filter-
ing, querying, metrics, pattern detection and static analy-
ses of source code and documentation. However, relating
modeling artefacts created at design time with actual run-
time information seems under-represented in the identified
literature. While the survey revealed related work in terms
of model-based analysis of runtime data [16], the presented
models are often generated post-mortem and used to gain
insight into the produced data by innovative visualization.

In terms of trace visualization, Cornelissen et al. [15] con-
ducted a controlled experiment with EXTRAVIS [17], a tool
which provides a large-scale UML sequence diagram and a
circular projection of structural entities as interactive visu-
alizations. The goal of the experiment was to find out if
the correctness of answers to system-related questions and
the needed time improve by using the visualizations. The
results show a decreased time and an increased correctness,
but give no indication whether models created at design time
can improve the comprehension as well.

Gravino et al. [18] investigated whether the comprehen-
sion of object-oriented source code increases when it is added
with UML class and sequence diagrams produced in the soft-
ware design phase. The results show an average improve-
ment of 12% in solving different comprehension tasks when
using class and sequence diagrams. On the other hand, they
also concluded that only experienced participants could ad-
equately take advantage of the provided models. While the
experiment is strongly related to our approach, we focus on
the comprehension of runtime phenomena and incorporate
more UML models than class and sequence diagrams.

As a summary, there is a strong indication that models,
visualizations and traceability information seem to improve
overall system comprehension, but additional empirical evi-
dence is necessary to assess the suitability of models for un-
derstanding the course of events of running systems. We be-
lieve that relating models with runtime information provides
additional analysis capabilities, especially in the context of
model driven engineering where some traceability informa-
tion can directly be inferred from existing code generators
and do not have to be specified manually [19].



3. EXPERIMENT DESCRIPTION
The design of the experiment is inspired by the guidelines

of Kitchenham et al. [20] which concern the description of
populations, sampling techniques, treatment allocations and
bias minimization. For the statistical analysis, we followed
the recommendations of Wohlin et al. [21] which describe
the effects between independent and dependent variables,
the presentation of descriptive statistics, the testing of hy-
potheses and the correct reporting of validity concerns. The
resources of the experiment are available online1.

3.1 Goal and Hypotheses
The goal of the experiment was to find out if the in-

formation provided by models created at design time can
improve the analysis capabilities of human users if manual
intervention is inevitable for investigating runtime phenom-
ena. More specifically, the experiment should reveal if there
is a significant improvement in the correctness of statements
about the system behaviour if models are available and their
elements can be traced to associated records of runtime in-
formation. We aimed to generalize our findings as effec-
tively as possible by providing participants in the experiment
group with UML models of different types and abstraction
levels:

• A use case diagram with 39 model elements for ana-
lyzing high-level scenarios of the software under obser-
vation.

• A component diagram with 9 model elements for ana-
lyzing the high-level architecture of the software.

• A package diagram with 35 model elements to support
a fine-grained analysis of one of the components.

• An activity diagram with 34 model elements showing
a complex process in an implementation-agnostic way.

• Two sequence diagrams with 32 and 47 model ele-
ments showing two complex processes from a perspec-
tive which is close to the source code.

• Two class diagrams with 32 and 71 model elements
showing the structure of essential parts from a per-
spective which is close to the source code.

We chose UML as modeling language because it is complete
and the de-facto standard for modeling both structural and
behavioural features of software systems on various abstrac-
tion levels. Furthermore, UML is the language that the
participants of the experiment were capable of using and
understanding.

Beside the correctness, another goal of the experiment was
to determine if there is a significant difference between the
control and experiment group regarding the time spent for
answering the questions. The participants were instructed
to write down the time spent for every question when they
feel that their answer is complete.

3.1.1 Hypotheses
Based on the goals of the experiment, we formulated two

null hypotheses and corresponding alternative hypotheses
for the experiment:

1see: http://jarvis.fhwn.ac.at/controlled-experiment-mars/

• H01: Models and traceability links between their el-
ements and related runtime data do not significantly
improve the correctness of given answers about the
system behaviour.

• HA1: Models and traceability links between their ele-
ments and related runtime data significantly improve
the correctness of given answers about the system be-
haviour.

• H02: The times spent for analyzing the system be-
haviour do not significantly differ if models and trace-
ability links to related runtime data are provided.

• HA2: The times spent for analyzing the system be-
haviour significantly differ if models and traceability
links to related runtime data are provided.

3.1.2 Expectations
Regarding the correctness, we expect that the presence of

models and their traceability links are especially useful for
questions that target high-level system understanding, e.g.
if specific user interactions should be analyzed based on the
observed data. This expectation results from our impression
that observed runtime data (e.g., using log files) is usually
not directly connected to use case scenarios, and traceabil-
ity links from high-level models to associated runtime data
can provide a good starting place for further analysis. For
such cases, we expect that the null hypothesis H01 can be
rejected. In other cases where questions target behaviour
which is closely related to the source code, we expect that
the null hypothesis H01 cannot be rejected.

Similar to the correctness, we expect that the additional
information provided by models and their traceability links
do not hinder the completion time of questions, but instead
improve the time for scenarios closer to the problem space.
As a result, we expect that the null hypothesis H02 can be
rejected for questions that target high-level scenarios. In
other cases, we expect that the null hypothesis H02 cannot
be rejected.

3.2 Parameters and Variables
Two dependent and four independent variables were ob-

served during the experiment. Table 1 gives an overview of
the six variables with their associated scale types, units and
value ranges. Note that the independent variables were ob-
served once per participant, while the dependent variables
were observed once for each question per participant.

Table 1: Observed Variables of the Experiment
Description Scale Unit Range

Dependent Variables

Correctness Interval Points [0, 1]

Time Interval Minutes [0, 180]

Independent Variables

Group affiliation Nominal N/A Control group,
Experiment group

Programming expe-
rience

Ordinal Years 4 classes:
0, 1-3, 3-7, >8

Programming expe-
rience in industry

Ordinal Years 4 classes:
0, 1-3, 3-7, >8

Software design ex-
perience

Ordinal Years 4 classes:
0, 1-3, 3-7, >8

http://jarvis.fhwn.ac.at/controlled-experiment-mars/


3.2.1 Dependent Variables
For measuring the correctness of an answer, we decided

to abandon open-ended questions which are inherently sen-
sitive to subjective bias of human analysts. Instead, we
created six different questions for which the expected an-
swers are always a list of distinct elements, which means
that formulating free text by participants was unnecessary.
Conducting the experiment in such a way allowed us to ap-
ply metrics from information retrieval systems which rely on
the set of mentioned elements (the answer of the participant)
and the set of expected elements (the preferred solution) per
question [22]. If Rp,q denotes the set of elements mentioned
by participant p for question q, and Cq denotes the expected
elements in the solution for question q, then these metrics
are calculated in the following way:

Precisionp,q =
|Rp,q ∩ Cq |
|Rp,q |

Recallp,q =
|Rp,q ∩ Cq |
|Cq |

Precision is the fraction of mentioned elements that are cor-
rect, and recall is the fraction of expected elements that were
actually found [22]. Since these metrics are hardly compa-
rable, we unified them using the harmonic mean to compute
the so-called F-measure, an indicator for the quality of the
given answer with a value range of [0, 1] where 0 denotes
the worst and 1 the best quality. This F-measure is used
as metric for the overall correctness of an answer given by
participant p to question q and is computed as follows:

Correctnessp,q = Fp,q = 2 ∗
Precisionp,q ∗Recallp,q

Precisionp,q +Recallp,q

For measuring the completion time of an answer, partici-
pants were instructed to write down the time spent for every
question when they feel that their answer is complete (the
maximum time for the overall experiment was 180 minutes).
Participants were able to write down multiple time entries
if they decided to return to a question later on. In such a
case, the overall time spent for a question is the sum of all
entries.

3.2.2 Independent Variables
According to Table 1, four different independent variables

have been observed which can influence the results of the
dependent variables. We tried to mitigate the influence of
programming and design experience on the dependent vari-
ables by conducting the experiment with participants that
have similar education and by choosing the questions and
the system under observation in a manner so that experi-
ence provides no significant advantage.

3.3 Experiment Design
To test the hypotheses stated in Section 3.1, we conducted

the experiment in the context of two courses focussing soft-
ware architectures and adaptive software systems at the Uni-
versity of Applied Sciences Wiener Neustadt in the winter
semester 2015.

3.3.1 Subjects
The subjects of the experiment are 39 students with

medium programming experience and knowledge of soft-
ware modeling and software architectures in general. The
participants were randomly assigned into two groups, a
control group of size 20 and an experiment group of size 19.

3.3.2 Object
The runtime information to be analyzed by the partici-

pants originates from the Mars Simulation Project2 version
3.07, an open source social simulation of future human set-
tlement of Mars. The game allows to model human be-
haviour and maintain settlements across the planet. The
survival of the people depends on their social interactions,
their collaboration in expanding their territory and improv-
ing their skills. The system was chosen for various reasons:

• The project is open source, thus allowing to distribute
the source code to the participants.

• With a size of 213.794 lines of code, the project is
small enough for participants to comprehend the over-
all structure, but at the same time big enough so that it
is impossible for participants to learn the whole source
code during the experiment (and thus leading to bias).

• Choosing a game as system under observation is mo-
tivating and a familiar domain for most of the partic-
ipants.

• The game can easily be explained, but must not fully
be understood to answer the questions in the experi-
ment.

• The project is written in Java, a programming lan-
guage the participants are familiar with.

• The source code seems to be in good quality with a
deliberate use of best practices and design patterns.

• The project documentation already contains five UML
diagrams which describe essential parts of the software.
This is important because we wanted to experiment
with models that are not created entirely by ourselves,
thus reducing researcher bias as much as possible.

3.3.3 Instrumentation
The participants of both the experiment and the control

group received browser-based access to the source code of
the Mars Simulation Project, generated by Maven JXR3.
Furthermore, participants gained browser-based access to
the produced log output of the Mars Simulation Project in
a table-based manner with the following columns:

• Number: This column is just a chronological enumer-
ation of the log file entries.

• Type: This is an indicator if the log entry is a method
call, method execution or an exception.

• Source: This is the fully qualified name of the source
method of a call or exception. A click on the entry
leads to the exact source code location of the call.

• Target: This is the fully qualified name of the target
method of a call. A click on the entry leads to the
exact source code location of the called method.

• Message: This column holds arbitrary information of
the call, execution or exception. An example would
be the string representations of the caller and callee
objects.

2see: http://mars-sim.sourceforge.net/
3see: http://maven.apache.org/jxr/
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Table 2: Traceability Information Provided for the
Experiment Group
UML
Element

Traced Log Entries Traced Model Ele-
ments

Component Calls within the compo-
nent

Contained
packages/classes

Package Calls within the package Contained
packages/classes

Dependency Calls between dependent
components/packages

None

Class Calls concerning class
operations/properties

Contained classes, op-
erations, properties

Operation Calls of the associated
method

Associated
activity/action

Property Calls concerning the
property (getter, setter)

None

Lifeline Calls concerning the rep-
resented object in the se-
quence

None

Activity Calls during the repre-
sented operation of the
activity

Contained
operations/actions

Action Calls of the associated
method during the par-
ent activity

Associated
activity/operation

Control
Flow

Associated method call
or logger call, if available

None

Use Case Calls concerning the re-
alizing classifier of the
use case

Realizing classifier

All of the columns could be searched textually by using
textboxes on top of the columns. Participants were able
to search for multiple terms in different columns, meaning
that they could apply multiple column filters at once. Beside
filtering, participants were also able to perform lexicograph-
ical sorting of the log entries in ascending and descending
order by clicking on the respective column headers. Overall,
the searchable log file consisted of 480.000 entries which re-
sulted from recording a gaming session of 30 seconds. The
large amount of log file entries ensures that the asked ques-
tions could not be answered by exhaustively going through
the log file, but instead by cleverly applying the provided
filtering, sorting and navigation capabilities.

In addition to the materials mentioned above, the exper-
iment group also gained browser-based access to the eight
UML diagrams mentioned in Section 3.1. Five of the eight
diagrams were directly extracted from the project documen-
tation, but had to be redrawn in Eclipse Papyrus4 because
they were only available as image and could not be linked to
associated log entries. The other three diagrams (a use case
diagram showing the possible user interactions, and two se-
quence diagrams showing two scenarios that were performed
while the gaming session was recorded) were created by our-
selves based on the information available in the project doc-
umentation. Table 2 shows the provided traceability links
between model elements and log entries that were provided
for the experiment group.

The navigation from log entries to their associated model
elements was achieved by an additional column in the table-
based log access which was only accessible for the experiment
group. The links from model elements to associated log
entries and other model elements could be utilized by the

4see: http://www.eclipse.org/papyrus/

experiment group by clicking the respective elements in the
browser.

Beside digital, browser-based material, both groups re-
ceived a questionnaire to be answered during the experi-
ment. The first page of the questionnaire contained ques-
tions regarding the independent variables (programming ex-
perience, programming experience in industry, and software
design experience). The second and third pages contained
the actual six questions to be assessed for correctness and
completion time. Table 3 gives an overview of the six ques-
tions. Note that every question can only be answered by ap-
plying the correct filtering and sorting mechanisms. None of
the questions could be answered by looking into the source
code or the models alone since this would provide an ad-
vantage for either the control or the experiment group and
would not actually measure the comprehension of runtime
phenomena. Furthermore, some models and model elements
provided for the experiment group were useless for answering
the question, which is important to reflect a realistic scenario
where design time artefacts are created without specific pre-
determined analyses in mind.

For question Q1, participants had to identify the concrete
subtypes of the class Unit either in the source code or in the
models (for the experiment group) and then filter the log ac-
cording to constructor calls of those types. The challenge for
this question was to filter only the non-abstract classes out
of the log. There was especially a challenge for the experi-
ment group since the class diagram provided by the project
documentation depicts only a partial view of the whole class
hierarchy. As a result, participants of the experiment group
could not rely completely on the provided class diagram.

For questions Q2-Q3, participants had to analyze the
amount of method calls between components and packages.
The experiment group could utilize traceability information
of model elements that represent dependency relationships.

For question Q4, participants had to list the names of
all people on Mars that had at least once neither an active
task (e.g., explore parts of Mars) nor an active mission (e.g.,
rescue people on Mars after a vehicle crash). The challenge
was to identify the occurrence of unemployment either in the
source code or in the provided diagrams (more specifically,
in the activity diagram describing the mind of a person) and

Table 3: Questions of the Controlled Experiment
ID Description

Q1 How often was each concrete subtype of Unit instantiated
while the event log was recorded? Make a list of the sub-
types with their respective instantiation counts.

Q2 Analyze the degree of coupling between the Mars simulation
components by counting the method calls between them (if
any). Make a list of component pairs with their respective
call counts.

Q3 Analyze the degree of coupling between the following pack-
ages: msp, person, mars, structure, science. Make a list
of package pairs with their respective call counts (in both
directions, if any).

Q4 Name the people who – at least once – had neither an active
task nor an active mission. The task/mission management
is found in the class Mind.

Q5 Which classes were used at runtime to check the status of
a health problem? Health problems are managed in the
method HealthProblem.timePassing.

Q6 Which manual actions did the user perform during the ses-
sion?

http://www.eclipse.org/papyrus/
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Figure 1: Participant Experience of the Controlled Experiment

then filter the log according to the identified method which
indicates the unemployment of a person.

For question Q5, participants had to identify the classes
that were actually used to check the health status of a person
on Mars and write down the amount of calls these classes
were receiving during the check. While potential classes can
easily be identified in both the source code and the provided
diagrams (in the sequence diagrams, more specifically), the
question can only be answered by filtering the log to check
which of the potential classes were used how often.

For question Q6, participants had to identify the user in-
teractions which occurred during the game simulation. For
both the experiment and control group, a list of possible
user interactions was provided on the question sheet. Par-
ticipants of the experiment group were additionally able to
utilize the provided use case diagram to search for poten-
tial user interactions. Note that some of the recorded user
interactions were intentionally performed in a way that the
log had to be analyzed very carefully to identify if the user
interaction actually happened. One example is the user in-
teraction of changing a mission of a person on Mars: In
the recorded session, the user opened the dialogue which al-
lows to change the mission, but never actually confirmed the
mission changes and instead cancelled the dialogue. Such
distracting interactions ensure that the pure existence of
traceability information between use cases and their real-
izing classifiers do not reveal the answer without the need
for looking further into the filtered log entries.

3.4 Experiment Execution
At the beginning of the experiment, the participants were

randomly assigned to the control and experiment group. Af-
ter assignment, the groups consisted of 20 and 19 partic-
ipants. The control and experiment group performed the
experiment in two separate rooms, not knowing that there
is an actual group affiliation involved.

Before the experiment began, the system under observa-
tion as well as the upcoming tasks were explained to the
participants. The Mars Simulation Project was not com-
pletely new for some of the participants because it was used
within a course at the University of Applied Sciences Wiener
Neustadt, but none of the participants knew its implemen-
tation and none of them were aware of the upcoming tasks.

For exactly 15 minutes, participants were given the time to
get familiar with the browser-based interface and its capabil-

ities. After this initial phase, the paper materials described
in Section 3.3 were handed to the participants and the ques-
tions were explained. Every participant seemed to under-
stand the tasks and the participants were given 180 minutes
to tackle the questions and fill out the questionnaire. All
participants had exactly the same type of computer with ex-
actly the same hardware specification. The usage of private
computers was prohibited during the experiment to provide
the same conditions for every participant. The questionnaire
had to be filled out directly on the questionnaire paper.

The data collection was performed as planned in the de-
sign phase of the experiment. No participants prematurely
quitted the experiment and no deviations from the study
design occurred. The experiment itself took place in a con-
trolled environment, more specifically within two lecture
rooms equipped with the needed computers as mentioned
above. At least one experimenter was present in each room
during the whole experiment to prevent participants from
using forbidden materials and to resolve potential questions
by the participants.

After completing the experiment, the questionnaires were
collected by the experimenters and a discussion about the
difficulties during the experiment and the experiences of the
participants was initiated. The outcomes of this discussion
did not influence any results presented in this paper, but
they were important for the experimenters to reveal any po-
tential weaknesses in the experiment design and to under-
stand the different strategies of answering the questions that
participants used based on the available materials. Another
reason for the discussion afterwards was simply to collect
feedback and generate new ideas for ongoing research.

4. EXPERIMENT RESULTS

4.1 Descriptive Statistics
Figure 1 shows the programming and design experience

as declared by the participants on the first sheet of the
questionnaire. The figure shows that the control group has
slightly more programming experience, but the differences
in industrial programming experience between the control
and the experiment group is negligible. Both groups have
similar experiences when it comes to software design. Based
on the profiles shown in Figure 1, we believe that neither
one of the two groups had a significant advantage regarding
the asked questions based on their personal experience.
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Figure 2: Descriptive Statistics for the Correctness and Time of the Controlled Experiment

Table 4: p-Values of the Shapiro-Wilk Normality Tests
Variable Group Size Q1 Q2 Q3 Q4 Q5 Q6 All

Correctness
Control Group 20 0.005860 0.109503 0.004913 6.130e-05 0.021665 0.015901 3.780e-07

Experiment Group 19 3.784e-05 6.616e-05 0.000244 3.357e-05 0.125054 0.878598 5.008e-10

Time
Control Group 20 0.575771 0.216652 0.367927 0.875501 0.773400 0.108051 0.031904

Experiment Group 19 0.033202 0.056261 0.140212 0.813237 0.269014 0.168377 0.000125

Figure 2 shows the mean and median correctness of the
answers and the mean completion time per question that
resulted from the questionnaires. The figure shows that the
experiment group achieved higher scores of correctness for
the questions, regardless if the mean or the median correct-
ness is considered. Although the experiment group achieves
better results for the correctness, the differences between
the experiment and the control group are not significant for
all questions (e.g., when comparing the mean correctness of
Q1 ). The figure also shows that the experiment group per-
formed exceptionally well for the questions Q2-Q3 since the
median values are at maximum, meaning that more than
half of the participants in the experiment group could find
exactly the right answers.

The comparison of the completion time per question
shows that the experiment group performed questions Q1-
Q2 faster, but questions Q3, Q5 and Q6 slower than the
control group. Figure 2 indicates no significant difference in
the completion time for question Q4. Note that the speed
of completion is neither an indicator for the overall quality
of an answer, nor is it an indicator if one of the groups
performed better. The participants of the experiment
were instructed to write down the completion time for
each question when they are confident that their answer is
complete. They were not instructed to complete the given
tasks as fast as possible.

4.2 Handling of Outliers
While investigating the results of the questionnaires, we

considered to exclude one participant of the control group
who was not able to provide meaningful answers to the ques-
tions Q3-Q5 and also spent rather little time on those ques-
tions. But as the participant was able to provide reasonable
answers for the other three questions, we concluded that the
participant understood the topic and was motivated, but
simply skipped questions Q3-Q5 to improve the results in

the other questions. We performed all analyses without the
participant, and excluding the participant would not have
led to substantially different conclusions. For these reasons,
we decided not to exclude the participant from further anal-
yses. All other participants provided reasonable results for
all of the questions, which gave us confidence that there is
no flaw in the design of the experiment.

4.3 Hypothesis Testing
For testing the hypotheses formulated in Section 3.1, the

initial step was to test the normality of the data by using
the Shapiro-Wilk test of normality [23]. Based on the results
of the Shapiro-Wilk normality test, further tests can either
be parametric and rely on normality (e.g., the t-test) or be
non-parametric without making assumptions of the under-
lying distribution (e.g., the Wilcoxon Rank-Sum test). The
null hypothesis of the Shapiro-Wilk test states that the ob-
served data is normally distributed. Based on a significance
level of α = 0.05, Table 4 shows the results of the Shapiro-
Wilk tests for both the correctness and the completion time
for each question and the overall experiment. Numbers in
bold indicate that the p-value of a test is lower than the
significance level of α = 0.05, thus suggesting to reject the
null hypothesis and assume that the observed data is not
normally distributed. Since the data for correctness seems
to be non-normally distributed in the majority of cases, we
decided to make further analyses of the correctness based
on tests that do not assume normality of the data. For the
completion time, the results of the Shapiro-Wilk tests pre-
dominantly suggest normality, so we decided to make further
analyses of the completion time based on parametric tests
that rely on normality.

For comparing the correctness in a non-parametric way,
we applied one-tailed Wilcoxon Rank-Sum Tests [24] as
shown in Table 5. The null hypothesis of the Wilcoxon
Rank-Sum Test states that the mean correctness achieved



Table 5: Wilcoxon Rank-Sum Tests for Correctness
ID Control Group Experiment Group p-Value

Mean Std.Dev. Mean Std.Dev.

Q1 0.63791 0.31101 0.68623 0.31871 0.31329

Q2 0.55473 0.33774 0.89013 0.15619 5.62e-04

Q3 0.61083 0.37020 0.79131 0.29845 0.03694

Q4 0.59959 0.45881 0.79613 0.32344 0.06149

Q5 0.18349 0.16650 0.48325 0.31586 0.00139

Q6 0.38184 0.19958 0.73047 0.08808 1.33e-07

All 0.49473 0.35570 0.72959 0.29032 2.01e-07

Table 6: t-Tests for Completion Time
ID Control Group Experiment Group p-Value

Mean Std.Dev. Mean Std.Dev.

Q1 25.0500 10.3490 15.0000 7.7172 0.0015

Q2 17.6000 8.7202 9.2105 4.7443 0.0008

Q3 12.7000 7.8947 18.0000 6.3944 0.0268

Q4 22.6000 10.3079 25.8421 9.1667 0.3055

Q5 16.1000 6.9578 22.8947 13.2870 0.0574

Q6 11.9000 7.4332 21.5789 11.7630 0.0047

All 17.6583 9.8035 18.7544 10.6576 0.4145

by the control group is stochastically larger than or equal
to the mean correctness achieved by the experiment group.
We applied unpaired tests for every question and one
unpaired test to compare all questions together. Numbers
in bold indicate that the p-value of a test is lower than
the significance level of α = 0.05, thus suggesting to reject
the null hypothesis and assume that the mean correctness
achieved by the control group is less than the mean correct-
ness achieved by the experiment group. This is the case for
questions Q2, Q3, Q5, Q6 and for the overall comparison.

For comparing the completion time in a parametric way,
we applied two-tailed t-tests [25] as shown in Table 6. The
null hypothesis of the t-test states that the mean comple-
tion time for a question needed by the control group does
not significantly differ from the completion time needed by
the experiment group. We applied unpaired tests for every
question and one unpaired test to compare all questions to-
gether. Numbers in bold indicate that the p-value of a test
is lower than the significance level of α = 0.05, thus sug-
gesting to reject the null hypothesis and assume that the
mean completion time achieved by the control group signif-
icantly differs from the mean completion time achieved by
the experiment group. This is the case for Q1-Q3 and Q6.

5. INTERPRETATION
As shown in Table 5, the majority of cases indicate that

hypothesis H01 has to be rejected and the alternative hy-
pothesis HA1 holds: Models and traceability links between
their elements and related runtime data significantly improve
the correctness of given answers about the system behaviour.
Although a significant improvement of the correctness could
not be shown for questions Q1 and Q4, the results indicate
that the experiment group performed slightly better than
the control group for these two questions as well.

The reason for the close results for question Q1 could
be the well-structured source code of the Mars Simulation
Project: The class diagram provided by the project doc-

umentation does not seem to provide better access to the
class hierarchy of Unit than the source code itself. Never-
theless, there was only one participant (one of the control
group) that achieved a perfect answer to question Q1. The
reason that no one of the experiment group could achieve a
perfect result to question Q1 could be that participants con-
sidered the provided class diagram to be complete and did
not look further into the source code to identify additional
subtypes. The reason for the close results for question Q4
could be similar: The hint that the task and mission man-
agement can be found in the class Mind, paired with the
good code quality, seems to mitigate some of the advantages
the provided activity diagram could provide.

On the other hand, it is noteworthy that the experiment
group performed significantly better for questions Q2, Q3,
Q5 and Q6 where related diagrams make concepts explicit
(and thus, traceable) that are not easy to identify in the
source code alone, for example component dependencies,
package dependencies, message flows and use cases. The
results suggest that models are especially useful if runtime
information can be related to high-level architecture and de-
sign concepts for which no direct counterparts exist in the
implementation code.

Another interesting picture arises if the completion time
of Table 6 is taken into account. While the correctness does
not differ significantly between the two groups for question
Q1, it seems that the experiment group reached confidence
about the completeness of the given answers much faster
than the control group. This matches our impression that
the experiment group considered the provided class diagram
to be complete, thus coming faster to the conclusion that no
further subtypes exist. Furthermore, the experiment group
performed question Q2 much faster, which may be due to
the fact that dependencies between components (realized as
Java projects) are made explicit in the provided component
diagram, and can thus be traced to associated log entries
more easily. On the other hand, it took the experiment
group significantly longer to find confidence in the answers
to question Q6. This could be because the traceability links
from the use case diagram to the realizing classifiers may
have provided more intuitive starting points for analyses
than the source code and the textual filters. As a conse-
quence, the experiment group had more potential places to
look for user interactions, whereas the control group may
have believed sooner that there are not any more relevant
log entries to find.

Beside questions Q1-Q3 and Q6, the results show no evi-
dence that the time spent for analyzing the system behaviour
differs significantly between the experiment and the control
group. Especially the overall time spent per question is very
similar between the two groups (see the last row of Table 6).
This is a very mixed result, but since the overall completion
time is almost identical, we argue that the null hypothe-
sis H02 cannot be rejected: The times spent for analyzing
the system behaviour do not significantly differ if models
and traceability links to related runtime data are provided.
Nevertheless, there are indicators that the null hypothesis
must be rejected in cases where models are rather complete
or emphasize relations that are not easy to discover in the
source code alone (e.g., dependencies between components
and packages, or links to associated use cases). However, it is
noteworthy that for both correctness and completion time
the quality of significance for question Q3 is considerably



lower (i.e., the p-value is higher) than for other questions
that show significant results. The difference in performance
between the control and experiment group is smaller for this
question. This could be because UML packages are directly
translated to Java packages, thus mitigating the advantage
of having the package diagrams at hand.

6. THREATS TO VALIDITY
According to Cook and Campbell [26], we analyze the va-

lidity of our results in four dimensions: Construct validity
refers to the degree to which the applied experiment tech-
niques are adequate to measure what was intended to be
measured. Internal validity refers to the degree to which the
observed results really follow from the collected data due to
correct elimination of confounding variables. External va-
lidity refers to the degree to which the observed results are
generalizable beyond the conducted experiment. Conclusion
validity refers to the degree to which conclusions about the
interactions of observed variables are statistically valid.

6.1 Construct Validity
One could argue that the provided materials (a searchable

log file of method calls with filtering and sorting capabilities)
do not necessarily reflect reality if runtime phenomena have
to be analyzed. We argue that structured analysis of log files
is still an important source of information which is widely
adopted [27]. Furthermore, the instrumentation of source
code with appropriate print statements is still an often used
technique to inspect and debug running systems. We argue
that this kind of instrumentation is very similar to provid-
ing the chronological history of method calls as it has been
done in the experiment. Furthermore, providing more pow-
erful searching mechanisms like complex event filters and
query languages may be closer to real world scenarios, but
would require a deeper level of preliminary knowledge for
the participants which cannot be guaranteed easily.

Another threat is that the asked questions might not have
enough similarity with actual real world situations. We ar-
gue that in the presence of unexpected behaviour, it is highly
desirable to know which parts of the software actually qual-
ify to be the root source of the problem. Such situations
should be represented by the questions Q2, Q3 and Q5.
Another realistic scenario is the assessment of footprints and
performance hot spots of running systems, which should be
represented by the questions Q1, Q2 and Q3. Independent
of the domain, an understanding of the (usually erroneous)
behaviour of a system is highly desirable if certain situations
or user interactions occur, which should be represented by
questions Q4 and Q6. While this threat cannot be elimi-
nated completely, we believe that our questions adequately
represent scenarios similar to the real world while being fea-
sible to be answered by participants in a controlled environ-
ment. There is obviously a trade-off to make in this respect.

The fact that only one object, the Mars Simulation
Project, has been analyzed, introduces the risk that the
observed results are specific to the examined case and
domain. We think that this factor is not a strong threat
to validity since the tasks performed by the participants
are very generic and require no domain-specific knowledge.
Furthermore, we argue that the object is an ideal surrogate
for several real world projects that rely on modeling because
of its existing modeling artefacts that were created at design

time. It is common that design time modeling artefacts are
not created with upcoming runtime analyses in mind.

A similar threat to validity is given by the fact that only
one measure for correctness is recorded in our experiment.
Although our assessment of correctness combines two widely
adopted measures from information retrieval systems, fur-
ther metrics for correctness would allow to cross-check our
observed results more efficiently.

6.2 Internal Validity
Misbehaviour of participants during the experiment can

never be prevented completely. An example would be that
a participant writes down the start time of a task, but forgets
to write down the end time when finishing the answer. We
mitigated such risks by making sure that an experimenter is
always present during the experiment. Especially the prob-
lem of noting incorrect times can be discovered quickly by
the experimenter because there can never be two noted start
times at once without one of them having a noted end time.

As shown in Figure 1, the control group seems to have
slightly more programming experience than the experiment
group. Such differences cannot be eliminated completely,
but we consider the influence of the programming experi-
ence on the tasks rather low because none of the partici-
pants knew the implementation of the test object before-
hand, no code had to be written manually during the exper-
iment and the existing code of the Mars Simulation Project
is very readable. Regarding other possible differences in
the experience, all participants passed the same courses at
the university that are relevant for the experiment, more
specifically courses that target the understanding of pro-
gramming, software architecture and software design. As a
result, we consider that every participant was able to under-
stand the questionnaire, especially the used terminology and
concepts within the questions. We also distributed partic-
ipants with pre-existing knowledge of the Mars Simulation
Project evenly between the control and experiment group.

Another variation in human performance might result
from fatigue effects due to the fact that the experiment
lasted three hours. We do not consider this as a strong
threat to validity because the questions were designed with
a much lower completion time in mind and the reserved
time was intentionally generous to reduce stress. In fact, as
shown in Table 6, the average completion time per question
is about 19 minutes, which extrapolates to an average
completion time for the questionnaire of under two hours.

Another threat to validity is a potential bias introduced
by the diagrams created by the experimentors. We believe
that there is no strong bias, since the used models are ex-
actly the same as in the project documentation. Exceptions
are the use case and sequence diagrams, which were created
based on the same documentation and semi-automatically
with the help of Altova UModel5, so with hardly any man-
ual intrusion of the experimentors.

Another threat to validity is the incorrect assessment of
answers and a potential bias towards the experiment group.
We tried to mitigate that risk by the design of the questions
and the questionnaire itself: Every question requires a list
of distinct answers which can easily be verified objectively,
and the real identities of participants were not transferred
to the phase of assessing the correctness of answers.

5see: http://www.altova.com/umodel.html

http://www.altova.com/umodel.html


6.3 External Validity
A possible threat to validity is that the Mars Simulation

Project could be too simple, or as a game not suitable to be
generalized to other business domains. There is obviously
a trade-off to make between the motivation of the partici-
pants and the size of the test object that participants can
handle in a limited time. Regarding the size, we argue that
the project is small enough for participants to comprehend
the overall structure in the given time, but at the same time
big enough so that it is impossible for participants to learn
the whole source code during the experiment. Regarding
the complexity, we argue that the Mars Simulation Project,
due to its complex simulation conditions and performance
considerations, is equally complex as comparable business
domains, maybe even more complex. However, the threat
cannot be ignored completely, and experiments with systems
and models of different sizes would strengthen the general-
izability and validity of our results.

Another threat is that only a selected number of tech-
niques was provided for the participants to answer the ques-
tions. As mentioned before, providing more powerful search-
ing mechanisms like complex event filters and query lan-
guages may be closer to real world scenarios, but would re-
quire a deeper level of preliminary knowledge for the partic-
ipants which cannot be guaranteed easily. We believe that
a broad generalization to arbitrary tools and techniques is
simply not possible, but argue that our web-based log access
adequately allows the most important searching and filtering
operations that are provided by a wide range of tools.

We used students with limited professional experience as
participants for our experiment. Although we believe that
differences in experience does not significantly influence the
observed results because of our carefully selected questions,
the potential threat to validity cannot be ignored completely.
A replication of our study with experienced practitioners
would provide additional insight into the validity and gen-
eralizability of our results.

6.4 Conclusion Validity
A threat to validity might result from too many or too

little distracters (possible wrong answers) in the experiment
design. We reduced this risk by providing a mix of models
and model elements that either contribute to solve a task or
do not help at finding the correct answer at all. Participants
of the experiment group were not instructed to use certain
models for certain questions, so every participant must have
stumbled over several distracting elements while investigat-
ing the tasks. Regarding distracters on the log level, the
recorded amount of 480.000 log entries made sure that rel-
evant entries had to be actively searched and could not be
found by pure chance.

Another threat to validity might result from guessing,
meaning that participants may have simply tried to guess
correct answers. Since the experiment was designed in a way
that people only had vague directions to look for the answers
(e.g., by mentioning specific classes) and the questions had
no predefined answers, we believe that guessing was nearly
impossible. In addition, when considering the large amount
of log entries, it is highly doubtful that the statistical results
were distorted by pure luck of the participants.

From the analysis point of view, we relied on objective
techniques from information retrieval systems instead of sub-
jective ad-hoc assessments by human analysts. Nevertheless,

distortions may also result from the application of inappro-
priate statistical methods. We tried to mitigate that risk by
using either the t-test or the Wilcoxon Rank-Sum Test based
on the normality of the observed data, which was tested us-
ing the Shapiro-Wilk test of normality. However, we want to
point out that every statistical test is inherently subject to
probabilistic errors, so the Shapiro-Wilk test itself also in-
troduces inaccuracies that cannot be eliminated completely.

The statistical validity might also be affected by the sam-
ple size of 39 participants. The size can be improved by
replications of the study, ideally with experienced practi-
tioners and systems of different domain and size.

7. CONCLUSIONS AND FUTURE WORK
In this paper we describe the results of a controlled ex-

periment that was conducted to find out if models created
at design time can improve the analysis capabilities of hu-
man users if manual intervention is inevitable for investigat-
ing runtime phenomena. In the experiment, the correctness
and completion time of questions regarding recorded run-
time information are assessed. While the results provide ini-
tial evidence that models help to give more correct answers
to questions about system behaviour if they are linked to
related runtime information, a difference in the completion
time could only be observed for single cases.

We argue that the improvement of the correctness and
the differences of the completion time are especially notice-
able where model elements emphasize relationships between
system parts that are hardly recognizable in the implemen-
tation code. This argumentation matches the fact that a sig-
nificant difference of the correctness could not be identified
for questions which target the understanding of runtime phe-
nomena that are closely related to parts of the source code.
For future work, additional research needs to be done to
investigate this correlation between the explication of high-
level relationships and the quality of manual system analysis.
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