
The Perception of Technical Debt in the Embedded

Systems Domain: An Industrial Case Study

Areti Ampatzoglou
1
, Apostolos Ampatzoglou

1
, Alexander Chatzigeorgiou

2
, Paris Avgeriou

1
, Pekka Abrahamsson

3
,

Antonio Martini
4
, Uwe Zdun

5
, Kari Systa

6

1
Department of Computer Science, University of Groningen, Groningen, Netherlands

2
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

3
Department of Computer and Information Science, National Technical University of Norway, Trondheim, Norway

4
Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

5
 Faculty of Computer Science, University of Vienna, Vienna, Austria

6
 Department of Software Systems, Technical University of Tampere, Tampere, Finland

areti.ampatzoglou@rug.nl, a.ampatzoglou@rug.nl, achat@uom.gr, paris@csd.auth.gr, pekkaa@ntnu.no,

antonio.martini@chalmers.se, uwe.zdun@univie.ac.at, kari.systa@tut.fi

Abstract—Technical Debt Management (TDM) has drawn the

attention of software industries during the last years, including

embedded systems. However, we currently lack an overview of

how practitioners from this application domain perceive tech-

nical debt. To this end, we conducted a multiple case study in the

embedded systems industry, to investigate: (a) the expected life-

time of components that have TD, (b) the most frequently occur-

ring types of TD in them, and (c) the significance of TD against

run-time quality attributes. The case study was performed on

seven embedded systems industries (telecommunications, print-

ing, smart manufacturing, sensors, etc.) from five countries

(Greece, Netherlands, Sweden, Austria, and Finland). The results

of the case study suggest that: (a) maintainability is more serious-

ly considered when the expected lifetime of components is larger

than ten years; (b) the most frequent types of debt are test, archi-

tectural, and code debt; and (c) in embedded systems the run-

time qualities are prioritized compared to design-time qualities

that are usually associated with TD. The obtained results can be

useful for both researchers and practitioners: the former can

focus their research on the most industrially-relevant aspects of

TD, whereas the latter can be informed about the most common

types of TD and how to focus their TDM processes.

Keywords—technical debt; embedded systems; industry; case study

I. INTRODUCTION

Embedded Software (ES), as a type of software targeting
devices that is not typically thought of as computers, is usually
specialized for a particular hardware and therefore has plat-
form-specific run-time constraints (e.g., memory usage, pro-
cessing power, etc.) [24]. In recent decades, software plays an
increasingly important role in the development process of
embedded products: as suggested by Rauscher and Smith some
embedded companies have increased the percentage of staff
devoted to developing software in the organization—as much
as 80% in some software-intensive domains [22]. A possible
explanation for that is software’s negligible replication cost and
its greater flexibility compared to hardware, which makes it
easier to change. Thus, product development managers often
allow for some software additions or changes late in the prod-

uct development cycle to address hardware problems or to add
new functionality [22], resulting in intense maintenance ac-
tivities. An additional challenge in embedded systems is the
long lifetime expectancy, which is normally beyond a decade
(see Section III.B), requiring the management of old systems in
parallel to the design and implementation of new ones. Any
decision to take advantage of novel hardware and software
platforms means that companies need to manage many differ-
ent configurations. Based on the above, it can be concluded
that maintenance is an extremely challenging and costly activi-
ty in the ES domain.

To decrease the effort spent on maintenance, companies
could invest in boosting design-time quality (e.g. maintainabil-
ity) [3]. However, in most cases, companies trade-off design-
time qualities in favor of business qualities such as product
time-to-market. The relevance of this strategy for embedded
software development has already been acknowledged in the
literature: embedded software development is particularly chal-
lenging in the high-end technology sector, which is character-
ized by shortening product lifecycles, rising market fragmenta-
tion, and rapid technological changes [5], [18]. The aforemen-
tioned compromise between design-time qualities and business
qualities, leads to the creation of a financial overhead in future
maintenance activities, usually termed as technical debt (TD)
[8]. It has been widely accepted that in an industrial context
zero technical debt is not realistic, and probably not even desir-
able; the investment to reduce TD to zero would be extremely
inefficient [10]. Thus, establishing Technical Debt Manage-
ment (TDM) methods, tools and techniques are necessary to
guide the (partial) technical debt repayment, the prioritization
of refactoring opportunities, and the provision of design deci-
sions that will improve the quality of software.

Although current methods, tools and techniques for moni-
toring and managing technical debt are continuously improv-
ing, they do not target specific application domains, like Em-
bedded Systems. In particular, we expect that ES are in need of
domain-specific methods, due to the special requirements of
such software applications, e.g., hard software constraints, the

need to guarantee run-time qualities, etc. A first step toward the
development of domain-specific methods, tools and techniques
is the in-depth understanding of TD in the domain under con-
sideration. To this end, in this paper we perform an exploratory
case study that aims at understanding how TD is perceived in
the ES industries. This understanding can support steering re-
search in technical debt management as well as raising aware-
ness among ES practitioners on technical debt-related issues.

The rest of the paper is organized as follows: In Section II,
we present related work on studies that report on TDM in an
industrial context and studies that report on the important
quality attributes for embedded software systems development.
In Section III, we report on the case study design, whereas in
Section IV we present our results, organized by research ques-
tion and accompanied with possible interpretations. The results
are discussed in Section V, with respect to the implications to
researchers and practitioners that they provide. Finally, in Sec-
tion VI we report threats to validity and mitigation actions,
whereas in Section VII, we conclude the paper.

II. RELATED WORK

We have identified a few studies on investigating the ac-
cumulation and management of technical debt in industry.
Ernst et al. [11] conducted a survey to understand which Tech-
nical Debt type is more frequent among practitioners. The re-
sults show that architectural debt is the one that is mostly men-
tioned by practitioners. Although 31% of the respondents be-
long to the embedded software domain, the paper does not dis-
tinguish results with respect to the application domain. Ernst et
al. have also found that the main challenges so far are the lack
of systematic practices, and the inadequateness of the tools (too
complex to install or to interpret and too many false positives),
while another major issue is the difficulty of increasing the
awareness of TD for stakeholders without software engineering
expertise; the latter is also recognized by both Lim et al. [17]
and Martini et al. [20]. According to Lim et al., [17] measuring
TD is difficult for practitioners, because the impact is not uni-
form. Codabux et al. [7] mention that the repayment of TD is
highly influenced by the customer needs and they also discuss
the fact that practitioners decide to take on debt in order to
achieve their short-term objectives, although they cannot be
fully aware of the potential serious long-term consequences.
Martini and Bosch [19] highlight how TD repayment can be
prioritized in an industrial context, by discussing with practi-
tioners. The major difference of these studies, compared to
ours is that we focus our investigation on the embedded soft-
ware domain.

In addition to studies that focus on TD in industry, as relat-
ed work, we discuss papers that provide insights on the im-
portant quality attributes (QAs) in the embedded systems do-
main. This kind of work is pertinent as TD represents in its
core a tradeoff between maintainability and other qualities.
Concerning the interplay between QAs in the domain of em-
bedded systems, Del Rosso presents an architectural approach
for improving the performance of software products, derived
from a product family for real-time embedded systems, and its
possible implications to maintainability [9]. The results suggest
that by analyzing the commonalities and differences among
derived products, one can extract bottlenecks and problems in

the core architecture (e.g., a God class). In a similar context,
Oliveira et al. investigate the relationship between non-critical
quality attributes, measured by metrics obtained from source
code, and performance, measured by physical metrics (i.e.,
memory, time, and energy) obtained from run-time monitoring
[21]. The results indicate the existence of trade-offs between
quality and physical metrics, as well as the fact that quality
metrics can provide information regarding high-level quality
attributes, guiding the design solution selection at early stages,
which might lead to significant gain in physical characteristics
later on. Finally, Feitosa et al. [12] analyze the difference in the
trade-offs among quality attributes in critical and non-critical
embedded software. The quality attributes of interest were:
correctness, performance, security, reusability, understandabil-
ity, functionality, extendibility, effectiveness, and flexibility.
Based on the results of this study, the authors provide some
hints that understandability has an inverse relationship with all
the other qualities. Compared to the aforementioned studies,
we emphasize on (the lack of) maintainability, which can be
considered a factor for the accumulated TD.

III. CASE STUDY DESIGN

To explore the perception of industrial practitioners on
technical debt, we have performed an exploratory case study
on seven embedded systems companies (see Section III-B).
The main reason for conducting this case study is that domain-
specific TDM requires a detailed understanding of how the TD
phenomenon is perceived in software-intensive industries. In
this section we describe the case study design, according to the
guidelines proposed by Runeson et al. [23].

A. Objective and Research Questions

The goal of this study, described using the Goal-Question-
Metric (GQM) formulation [4], is: “to analyze the perception
of technical debt in the embedded systems industry for the
purpose of understanding with respect to: (a) the expected life-
time of components that have TD, (b) the types of technical
debt that are frequently occurring, and (c) the significance of
other quality attributes from the point of view of software en-
gineers, in the context of embedded software development”.

By taking into account the inherent relationship of main-
tainability and technical debt [15] in this study we consider
maintainability as a proxy for TD. We have chosen this proxy,
since the term TD is not interpreted unambiguously in industry:
practitioners may mean different things when discussing TD
and related concepts like principal and interest. On the other
hand, maintainability, though not associated to a universally
accepted definition, is widely accepted as the ability to make
changes in a system. Moreover, even when a practitioner is not
aware of incurred TD, any decisions aimed at enhancing main-
tainability, will result in a lower amount of TD. On the other
end, if a development team is not interested in producing a
maintainable system, then it is highly probable that shortcuts
will be made, leading to the accumulation of technical debt.
Thus we have used maintainability as the proxy for RQ1 and
RQ3; this proxy is discussed further in the threats to validity
(see Section VI).

Based on the abovementioned goal, we have extracted three
research questions (RQs):

RQ1: What is the relationship between the expected lifetime

of components and technical debt?

This research question is considered important, in the sense

that managing technical debt is important for components,

whose accumulated interest, at some point becomes larger

than the principal [3][6]. In other words, technical debt that is

accumulated on components that are not maintained for a

large time period is less probable to be harmful than for com-

ponents with a high expected lifetime. This aspect becomes

even more important for embedded systems, since their ex-

pected lifetime is usually long. For this research question we

will study the relationship between the focus of development

teams on maintainability (as a proxy for TD) and the expected

lifetime of the software. In other words, we will explore if

software engineers focus on maintainability (potentially man-

aging TD) when the system under development is expected to

be active for many years.

RQ2: What types of technical debt (e.g., code, architectural,

etc.) are more frequently occurring in embedded sys-

tems?

According to Li et al. [16], technical debt can be identified in

all phases of software development. In particular, Li et al.

have identified 10 types of TD (see Section III.C for more

details). Each one of these TD types requires different tech-

nical debt management approaches. Therefore, understanding

which the most frequent ones are can support prioritization

and monitoring of TD.

RQ3: What is the significance of building maintainable soft-

ware systems (with low TD) compared to satisfying

other quality attributes?

In embedded system industries, run-time constraints are very

important for software development. Therefore, trade-offs

between run-time and design-time qualities are a common

practice [12]. In this research question, we examine which

quality attributes are taken into account in embedded software

development, and how these are prioritized. In particular we

aim at comparing the importance given to maintainability (the

QA that is used as a proxy for TD) against the other quality

attributes. By answering this research question we gain insight

into which quality attributes are prioritized in software devel-

opment, and which ones are negotiable in the ES domain.

B. Case Selection

Cases and Units of Analysis. According to Runeson et al. [23],
case studies can be characterized either as holistic or embed-
ded, based on the way cases and units of analysis are defined.
This study is an embedded multiple case study, because we
investigate multiple units of analysis (i.e., components in
which technical debt has been identified) extracted from multi-
ple embedded systems industries (i.e., cases).

Case Selection. In this study, we consider as cases embedded
systems companies, specializing in different application do-
mains, and located in different European countries. A brief
description of the companies is presented below and is summa-
rized in Table I. The companies have been anonymized due to
confidentiality reasons.

TABLE I. EXPLORED EMBEDDED INDUSTRIES

ID
Company Description

Application Domain Country Type
#Analyzed

Components

C1 Telecommunications Sweden Large 1

C2 Automotive Sweden Large 1

C3 Mobile Greece SME 7

C4 Sensors Greece SME 3

C5 Printing Netherlands Large 1

C6 Smart Manufacturing Austria Large 6

C7 Media Devices Finland SME 1

From the data of Table I, we can observe that in our dataset we
have selected a balanced mix of Small/Medium Enterprises
(SMEs) and Large Enterprises. The last column of Table I,
presents the number of units of analysis (i.e., analyzed compo-
nents) that have been provided by each company. In total, 20
units of analysis have been extracted and analyzed. The com-
ponents from each company and some challenges and interests
of the companies are briefly described as follows:

• Company C1 contributed a telecom component that has
been in use for 50 releases and is expected to be main-
tained for approximately 30 more years. For C1, compat-
ibility, functional suitability, and reliability are having the
highest priority so far. The major challenges that the
company faces while repaying TD are: (a) the prioritiza-
tion of feature development before repaying debt, and (b)
the difficulty in smoothly planning refactorings. Develop-
ers are mostly interested in test and architecture TD.

• Company C2 contributed an automotive component that
has already been released 30 times from 2013, and there-
fore is in need of intense maintenance activities. The ex-
pected lifespan for this component is 15 more years.
While developing and maintaining this component, C2 is
interested in ensuring functional suitability, reliability,
and security. The company is interested in working on
feature coverage test, pass rates of test cases, and prioriti-
zation of features during development.

• Company C3 contributed seven mobile components,
which are of various levels of maturity (1-21 releases so
far), which have an infinite expected/desired lifespan (i.e.,
as far as the customer wants to use them). Although main-
tainability is of great interest to the company, since their
embedded products might need to survive for a long peri-
od, so far the company is mostly focused on other quality
attributes (i.e., usability, functional suitability, and per-
formance). The form of TD that the company wants to re-
pay is within the software architecture, source code, test-
ing, documentation, and underlying infrastructure.

• Company C4 contributed three components (i.e., “Moni-
toring and processing”, “Sensor Configurator”, and “Re-
porting tool”). The system is a rather “young” project,
i.e., half-year, and is expected to be used from the com-
pany for 5 more years. Although maintainability is char-
acterized as important from the company, other quality at-

tributes, like security, functional suitability and reliability
are getting more priority. The company is interested in
managing architectural, source code, test, and build TD.

• Company C5 contributed the “Printing Data Path
(PDM)” component, which has been used from the com-
pany for almost ten years, and its expected lifetime is 5
additional years. PDM is a highly reusable component
that needs to be adapted to different printers’ hardware.
Compared to the previous years, C5 is interested in put-
ting extra effort in repaying technical debt related to test-
ing, documentation, and design. At the same time, the
functional suitability, reliability and performance of PDM
are not negotiable.

• Company C6 contributed the “Product Status Sensor”,
the “Weather Sensing”, the “Product Data”, and the “Da-
ta Aggregator” components, and two components of a
“Smart Product Maintenance” application. The expected
lifetime of the aforementioned components is between 10
– 20 years, so their easy extension and maintenance is
crucial to the company. Based on the current knowledge
on the quality key-drivers for these components, func-
tional suitability, reliability and performance should be
kept at the highest level while managing technical debt.

• Company C7 contributed a software component used for
home media server applications. The component includes
a platform and an SDK for application development. The
software has been developed since early 2000 and during
the years it has evolved significantly. The expected
lifespan of the project is 20 years from now. Since the ar-
ea of home automation is new and there are many players
in the market, the system should be compatible with a
huge number of external systems and different installa-
tions connected to different sets of home automation sys-
tems (high portability and compatibility are required).
Rapid implementation of the support for these systems
may create technical debt.

C. Data Collection

Every company (case) has been asked to provide us with a
number of components that have accumulated technical debt
and are difficult to maintain. Next, for each unit of analysis the
following information has been recorded:

Project Demographics

[V1] Textual description of project, in which the TDI has

been identified.

[V2] First release date of the project. This variable aims at

expressing how old the component is.

[V3] Number of releases until now. This variable provides

an indication on how frequent the maintenance of this

component is.

Technical Debt Item Data Points

[V4] Estimated lifespan of the TDI. This variable represents

how significant it is to eliminate the TD from the com-

ponent, since it denotes the time period during which

the company is paying interest. Due to the low number

of units of analysis, we preferred to recode this variable

in a categorical one, so that each data class has more

members. Therefore, we recode values less than 10

years to “short-term projects” and values between 10

and 30 years to “long-term projects”. The selection of

the threshold of 10 years was made since it is the medi-

an of our sample, and a decade is considered as a mile-

stone in terms of time periods.

[V5] Types of debt identified. In this variable we record

what types of TD are identified in the selected compo-

nent. The types have been extracted from the work of

Li et al. [16], summarized as follows: Requirements,

Architecture, Design, Code, Test, Build, Documenta-

tion, Infrastructure, and Versioning. We note that from

the list provided by Li et al. [16], we have removed De-

fect Debt, since the TD community does not consider

the existence of defects as TD principal [15].

[V6] Importance of quality attributes along TDI evolution.

A rating, in a scale from 1(lowest) to 5 (highest), of the

importance of the following QAs: Functional suitabil-

ity, Reliability, Performance, Usability, Security, Com-

patibility, Maintainability, and Portability. The quality

attributes have been selected so as to represent both de-

sign-time and run-time quality attributes.

The data collection has been performed through interviews
with software engineers (i.e., designers, architects, project
managers) during which data have been recorded by the re-
searchers (a supervised questionnaire-based approach [14]).
The use of supervised data collection methods ensures the un-
derstanding of the data collection instrument from the inter-
viewees and strengthens validity. Nevertheless, the use of a
supervised data collection method has restricted the size of our
dataset to 20 units of analysis (obtained by 7 companies), since
it was time consuming. We note that variables [V4] – [V6]
have been answered by practitioners without the use of any
documentation, since: [V4] represents an estimation of the re-
spondent, in none of the companies the technical debt items
([V5]) were documented, and [V6] represents the importance
of several QAs according to experts’ opinion.

D. Data Analysis

To answer the research questions set in section III.A, we
have performed descriptive statistical analysis and hypothesis
testing. The analysis plan per research question is presented in
Table II. More specifically, concerning RQ1, we used descrip-
tive statistics on the expected lifespan of components that carry
technical debt. In addition, we explored the correlation be-
tween expected life-time and maintainability tasks to unveil a
possible relationship, by performing a chi-square test. Regard-
ing RQ2, we report frequencies for the different types of tech-
nical debt of the highest level, as reported by Li et al. [16].
Furthermore, we present details on how industries perceive
technical debt types, by synthesizing the obtained results.

Finally, concerning RQ3, we analyzed the data in three
ways: (a) we present descriptive statistics on the importance of
each quality attribute separately; (b) we inspected if there are
differences among the importance of quality attributes; and (c)

we performed Wilcoxon Ranks Test between QAs and main-
tainability (the attribute that is considered as a proxy to tech-
nical debt). Using the above, have been able to spot differences
in the way different quality attributes are prioritized. Such dif-
ferences can lead to intentional or unintentional trade-offs. In
particular, QA that receive higher priority than maintainability
are expected to be non-negotiable while managing TD.

TABLE II. DATA ANALYSIS PLAN

RQ
Analysis Plan

Used Variables Analysis

1

V4 (Estimated Lifespan)

V6 (Importance of Maintainability)

Descriptive statistics

Cross-Tabulation

chi-square test

2 V5 (Types of TD) Descriptive statistics

3 V6 (Importance of QAs)
Descriptive statistics

Wilcoxon Signed Rank

IV. RESULTS

In this section we present the results organized by research
question. In each section, we first answer the questions using
statistical analysis, and then provide a possible interpretation of
the obtained results.

A. RQ1: Technical Debt and ES Expected Lifetime

To answer RQ1 we have performed cross tabulation to ex-
amine the relationship between the projects’ lifetime expected
duration and the attention given by practitioners to maintaina-
bility. The dataset consists of components with expected life-
time that varies from less than one to 30 years. The mean ex-
pected lifetime of the components is 12.40 years, with a stand-
ard deviation of 8.94, and a median of 10 years. As mentioned
above (Section III.C), we have added a categorical variable that
separates the dataset into two groups. The first one contains
components that are expected to last for less than ten years
(short-term projects), and the second one consists of compo-
nents with an estimated lifecycle between 10 and 30 years
(long-term projects). The analysis suggests that 45% of the
components belong to the short-term projects category, while
55% of the components belong to the long-term projects one.

The results of the cross tabulation suggest that 66.7% (6 out
of 9) of the components with long estimated lifecycle receive
high attention in terms of maintainability (scores ‘high’ and
‘very high’). On the other hand, practitioners do not consider
maintainability issues important for the majority of the short-
term components, as 54.6% (6 out of 11) of them have low
maintainability importance scores (‘very low’ or ‘low’). The
results of the cross tabulation are presented in Table III. Each
column of the table represents the level of importance that
practitioners have assigned to maintainability, whereas each
line counts the observed and the expected number of long-term
or short-term components that correspond to each level. The
observed counts represent the frequencies based on experts’
opinion, whereas the expected counts, represents the frequen-
cies that would be expected based on data distribution. The
closer the observed and expected counts are, the more unrelat-
ed the two variables are [13], in the sense that the frequencies
(levels of maintainability) follow the expected distribution,

regardless of the values of the grouping variable (expected
lifespan of the project).

TABLE III. RELATION BETWEEN ESTIMATED LIFETIME & MAINTAINABILITY

Estimated Lifespan

Maintainability

very

low Low neutral high

very

high

Long
Observed Count 0,0 0,0 3,0 5,0 1,0

Expected Count 1,4 1,4 1,4 4,5 0,5

Short
Observed Count 3,0 3,0 0,0 5,0 0,0

Expected Count 1,7 1,7 1,7 5,5 0,6

To objectively assess this relationship, we have performed
a chi-square (x

2
) test. The x

2
 test revealed that there is a statis-

tically significant relationship (x
2
 = 9.89 and sig. = 0.042 <

0.05). The aforementioned relationship between the expected
lifetime of the project and the importance of maintainability is
intuitive, since software engineers are not expected to put extra
effort (representing the principal of technical debt [3]) on the
development of applications that will not be maintained for
long periods. This observation suggests that short-term projects
are expected to be developed with more design-time compro-
mises, and therefore with more accumulated technical debt.

The technical debt management activities (TD repayment, pre-
vention, etc.) are expected to be more relevant for projects for
which long-term maintenance periods are anticipated.

B. RQ2: Types of Technical Debt

In order to detect the most frequently identified types of
technical debt in embedded systems industries, we have ana-
lyzed the data on the types of TD reported by practitioners and
we have performed descriptive statistical analysis. Figure 1
presents a bar chart on the frequency of types of technical debt
on the investigated industrial components (as a percentage).

Fig. 1. Types of Debt Frequencies

As shown in Fig. 1, the most frequently identified TD types
are test debt (e.g., limited number of unit tests, lack of test au-
tomation, etc.) which is identified in 90% of the components. It
is followed by code debt (e.g., duplicate code, long methods,
etc.) and architectural debt (e.g., anti-patterns, best practice
violations, etc.), reported in 80% and 70% of the cases respec-

tively. Next, documentation (e.g., outdated documentation),
design (e.g., grime, design principles violation) and infrastruc-
ture (e.g., old technology in use) debt are found in many cases
(55-60%). Requirements (e.g., over-engineering), build (e.g.,
manual build process) and versioning (e.g., multi-version sup-
port) debt seem to be the least commonly identified types of
technical debt. This fact suggest that the most “tangible” and
easily detectable types of technical debt (e.g., duplicate code,
test case, and design artifacts) are more easily understood and
reported by practitioners. A more fine grained analysis of the
most frequent types of technical debt is presented in Table IV.
The terms presented in Table IV have been reused from the TD
types reported by Li et al. [16]. In addition, from the results of
Table IV, we can observe that two different subcategories of
types of TD exist: (a) the types of debt that exist in the system
(e.g., duplicate code) and therefore is more easily quantifiable
and its potential impact can be estimated, and (b) the types of
debt that refer to what is missing from the system (e.g., lack of
test cases) for which only estimations can be performed.

TABLE IV. FREQUENT TYPES OF TECHNICAL DEBT

Type of Technical Debt Item Frequency

Duplicate code 6

Limited number of unit tests 6

Complex code 3

Old technology in use 3

Lack of automated deployment 3

Violations of good architectural practices 2

Lack of test automation 2

The aforementioned results are in accordance to those of
Alves et al. [1] who are reporting on the most frequently stud-
ied types of technical debt in the research community. In par-
ticular, according to Alves et al. design, architecture, and doc-
umentation debt are the most frequently studied types in the
TD literature. The fact that our results are in accordance with
those of Alves et al. suggests that until now the research direc-
tions are quite accurately focused on the industrial needs. The
only possible exceptions are design debt, which does not seem
to be as important for practitioners as it is for researchers, and
test and code debt, which does not appear to be appealing to
researchers. Apart from industrial relevance, an additional pa-
rameter that makes research on these topics popular is the ex-
istence of tools for testing, code, and design quality assurance.

The most recurring types of technical debt in industry are test,
architectural design, and source code debt. Architectural and
design debt are among the most frequently studied by re-
searchers, as well. On the other hand, some types of TD (e.g.,
test, code, and infrastructure), which are interesting for practi-
tioners, are understudied by the research community.

C. RQ3: Technical Debt and Quality Attributes

To investigate the relationship between quality attributes
(other than maintainability) and technical debt, we compare the
importance that is assigned to them by practitioners. The im-
portance of each quality attribute is presented in Figure 2. A

quality attribute is considered more important if the most fre-
quent answers are concentrated in ‘high’ and ‘very high’
scales. For example, functional suitability is considered of
great importance since there was no component for which its
importance was characterized as ‘neutral’, ‘low’, or ‘very low’.
On the other hand, security and portability have been charac-
terized as ‘low’ or ‘very low’ importance for approximately 50-
55% of the investigated components.

Fig. 2. Importance of Quality Attributes

We performed Wilcoxon Signed Rank tests to investigate
the frequency with which each QA is given more / less priority
than maintainability (which is considered as a proxy for tech-
nical debt). The results are presented in Table V. In particular,
the first column of the table represents the QAs, the second and
third column depict if the quality attribute under discussion is
getting higher priority against maintainability or not, and the
last column stands for the p-value for the test (values lower
than 0.05 denote a statistically significant difference). The QAs

that receive higher importance/priority against maintainability
(p<0.05) are denoted with light grey cell shading.

TABLE V. PRIORITY OF QAS VS. TECHNICAL DEBT

Quality Attribute Most Prioritized N Sig.

Functionality

Functionality 19

0,000 Maintainability 0

Ties 1

Reliability

Reliability 16

0,001 Maintainability 2

Ties 2

Performance

Performance 9

0,014 Maintainability 2

Ties 9

Usability

Usability 11

0,738 Maintainability 6

Ties 3

Security

Security 4

0,125 Maintainability 8

Ties 8

Compatibility

Compatibility 2

0,705 Maintainability 2

Ties 5

Portability

Portability 3

0,104 Maintainability 9

Ties 8

From the results of Table V we can observe that function-
ality, reliability, and performance are given more importance
than maintainability along ES development. Similarly, usabil-
ity is also usually prioritized against maintainability, but this
result is not statistically significant. On the other hand, for the
selected systems security, compatibility, and portability are not
the usual quality key drivers. The importance of performance
in embedded systems can be justified by the limited resources
(e.g., memory, execution time, energy efficiency, etc.) that are
usually available in embedded systems (e.g., printers, sensors,
telecommunication devices, etc.). Additionally, reliability is
important for special types of embedded software, critical em-
bedded systems (e.g., automotive, telecommunications, etc.).
Finally, the functional suitability of the system cannot be nego-
tiated, since a system that does not conform to all of its re-
quirements, often dictated by standards and regulations, is not
ready for reaching the market. The importance of the specific
three QAs for CES is also discussed by Feitosa et al. [12].

Regarding the rest of the QAs, security does not seem to be
the first priority of software developers, since none of the stud-
ied application domains is vulnerable to external attacks (e.g.,
through the internet). Furthermore, compatibility and portabil-

ity seem to be important only for mobile applications, due to
the needs for responsive user interfaces (i.e., for devices with
different screen sizes—tablets, mobile phones, laptop, etc.) and
different operating systems (e.g., Android, iPhones, etc.).

While managing technical debt in embedded software, some
run-time quality attributes are given higher priority than main-
tainability. Specifically, the ES domain prioritizes reliability,
functionality, and performance against maintainability.

V. IMPLICATIONS TO RESEARCHERS AND PRACTITIONERS

The obtained results are expected to be useful for both re-
searchers and practitioners, since the former can focus their
research on the most industrially-relevant aspects of technical
debt, whereas the latter can increase their self-awareness on
technical debt and target the technical debt management ac-
tions inside their companies. In particular, regarding research-
ers, we suggest that:

• Technical debt research is in need of more methods on
the test, code and infrastructure level, since these fields
are identified as problematic from the practitioners, but
are understudied in the literature [1].

• Technical debt prioritization [16] methods should con-
sider not only the urgency of resolving technical debt
items, but also the feature prioritization of the company
(see, e.g., the backlog in [15]).

• The development of tools and methods for TD prevention
[16] is necessary, so that practitioners can timely manage
the accumulated TD, while developing the software.

• The development of domain-specific tools and methods
that take into account the specific requirements of given
fields (e.g., run-time constraint or quality trade-offs for
embedded systems) and can analyze other languages that
are application domain specific (e.g., php for web, or Ja-
vaScript for mobile development).

On the other hand, the results suggest that practitioners are
acknowledging the significance of TD management, especially
for long-term projects. On the contrary, if there is no intense
maintenance, the accumulated interest may be lower than the
principal (see [2] and [6]). In such cases, having accumulated
TD is not necessarily harmful. Additionally, the results of this
study (in particular RQ2) can provide guidance to practitioners
on which TD types are the most common in the embedded sys-
tems domain (see Table IV). Based on their frequency, practi-
tioners should be vigilant and monitor effectively the corre-
sponding TD types. Finally, based on the importance of specif-
ic run-time QAs (see Table V) for embedded systems, we ad-
vise practitioners to carefully select TD repayment methods,
favoring those that do not harm these run-time qualities.

VI. THREATS TO VALIDITY

In this section we discuss the threats to validity of this
study. First, since this case study has been performed on 20
components from 7 embedded system industries, the findings
and conclusions are subject to external validity threats, in the
sense that using a different sample might reveal a different
perception of technical debt among embedded software devel-

opers. However, the fact that the analyzed industries have dif-
ferent sizes and application domains provides a certain level of
confidence on the obtained landscape of technical debt in ES.

The first research question on the relation between the ex-
pected lifetime and TD might suffer from construct validity
threats, as the acknowledgment of maintainability as an im-
portant factor for long-lived products does not necessarily im-
ply attention to TDM. The same holds for the third research
question investigating the prioritization of TD against quality
attributes; since maintainability is well-understood, but is at
best only a proxy for TD, one cannot claim that the trade-off
between maintainability and run-time quality attributes is di-
rectly transferrable to the notion of technical debt. Neverthe-
less, we consider this choice as justified since: (a) the direct use
of the term TD might cause misinterpretation among practi-
tioners (leading to a different threat to validity) and (b) the
relation of TD and maintainability is established in the com-
munity [15]. Finally, an additional threat to construct validity is
the possible misinterpretation on the quality attributes by prac-
titioners while filling in the questionnaires. However, we be-
lieve that this threat is mitigated since: (a) the data extraction
method was a supervised questionnaire-based one, and there-
fore any possible misinterpretation have been handled by the
researcher who was conducting any interview, and (b) we have
chosen well established and understandable QAs.

VII. CONCLUSIONS

The technical debt metaphor can prove to be a suitable
means for conveying the importance of maintainability to the
developers of rapidly evolving software domains, such as the
embedded systems. Before any targeted research activities are
undertaken to support the management of TD, it is important to
understand the perception of the TD concept among ES devel-
opers. To this end, in this paper, we have performed a case
study involving seven ES industries to investigate the most
frequently occurring types of TD, the quality attributes usually
associated with TD items, and the relation between the ex-
pected lifetime of a component and the acknowledgement of
the importance of maintainability. The findings indicate that
the most recurring types of technical debt in embedded soft-
ware industry are test, architectural, and code debt. At the same
time, some quality attributes such as functionality, reliability,
and performance are given higher priority compared to manag-
ing technical debt. Finally, developers clearly acknowledge the
need for low technical debt on components that are expected to
have a longer lifetime, compared to more short-lived ones.

REFERENCES

[1] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull,
and C. Seaman, “Identification and management of technical debt: A
systematic mapping study,” Information and Software Technology, vol.
70, pp.100–121, 2016.

[2] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou,
“A Financial Approach for Managing Interest in Technical Debt”,
LNBIP, Springer, vol. 257, pp. 117-133, 2016.

[3] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, Elsevier, vol. 64, pp.
52–73, Aug. 2015.

[4] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Metric
Paradigm”, Encyclopedia of Software Engineering, John Wiley, 1994.

[5] D. J. Bowersox, T. P. Stank, and P. J. Daugherty, “Lean launch:
managing product introduction risk through response-based logistics,”
Journal of Product Innovation Management, vol. 16, no. 6, pp. 557–568,
Nov. 1999.

[6] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T.
Amanatidis, “Estimating the Breaking Point for Technical Debt”, 7th
International Workshop on Managing Technical Debt (MTD ‘15), IEEE
Computer Society, 2015.

[7] Z. Codabux and B. Williams, “Managing technical debt: An industrial
case study,” 4th International Workshop on Managing Technical Debt
(MTD’ 13), 2013, pp. 8–15.

[8] W. Cunningham, “The WyCash Portfolio Management System,”
Proceedings on Object-oriented Programming Systems, Languages, and
Applications (Addendum), New York, NY, USA, 1992, pp. 29–30.

[9] C. Del Rosso, “Software performance tuning of software product family
architectures: Two case studies in the real-time embedded systems
domain,” Journal of Systems and Software, Elsevier, vol. 81(1) pp. 1–
19, Jan. 2008.

[10] R. Eisenberg, “Management of Technical Debt: A Lockheed Martin
Experience Report,” 3rd International Workshop on Managing Technical
Debt (MTD’ 13), Baltimore, USA, 2013.

[11] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
It? Manage It? Ignore It? Software Practitioners and Technical Debt,”
10th Joint Meeting on Foundations of Software Engineering, New York,
NY, USA, 2015, pp. 50–60, 2015.

[12] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa,
“Investigating Quality Trade-offs in Open Source Critical Embedded
Systems”, Quality of Software Architectures (QoSA’ 15), 2015.

[13] A. Field, “Discovering Statistics using IBM SPSS Statistics”, SAGE
Publications Ltd., 2013.

[14] B. Kitchenham and S. L. Pfleeger, “Principles of Survey Research Part
2: Designing a survey”, Special Interest Group on Software, ACM, 27
(1), pp. 18-20, January 2002.

[15] P. Kruchten, R. L. Nord, I. Ozkaya, "Technical Debt: From Metaphor to
Theory and Practice", Software, IEEE Computer Society, vol. 29, no. 6,
pp. 18-21, November-December 2012

[16] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
Elsevier, vol. 101, pp. 193–220, March 2015.

[17] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software
Practitioners Have to Say About Technical Debt,” Software, IEEE
Computer Society, vol. 29, no. 6, pp. 22–27, Nov. 2012.

[18] D. N. Mallick and R. G. Schroeder, “An Integrated Framework for
Measuring Product Development Performance in High Technology
Industries,” Production Operation and Management, vol. 14, no. 2, pp.
142–158, Jun. 2005.

[19] A. Martini and J. Bosch, “Towards prioritizing Architecture Technical
Debt: information needs of architects and product owners,” 41st
Euromicro SEAA Conference, Funchal, Madeira, August 2015.

[20] A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural
Technical Debt Accumulation and Refactoring over Time: a Multiple-
Case Study,” Information and Software Technology, July 2015.

[21] M.F.S. Oliveira, R.M. Redin, L. Carro, L. Lamb and F. Wagner,
“Software Quality Metrics and their Impact on Embedded Software,” 5th
International Workshop on Model-based Methodologies for Pervasive
and Embedded Software, (MOMPES'08), pp. 68–77, 2008.

[22] T. G. Rauscher and P. G. Smith, “From experience time-driven
development of software in manufactured goods,” Journal of Production
and Innovation Management, vol. 12, no. 3, pp. 186–199, Jun. 1995.

[23] P. Runeson, M. Host, A. Rainer, and B. Regnell, “Case Study Research
in Software Engineering: Guidelines and Examples”, John Wiley &
Sons, 2012.

[24] B. Stroustrup, “Abstraction and the C++ Machine Model,” Embedded
Software and Systems, Z. Wu, C. Chen, M. Guo, and J. Bu, Eds.
Springer Berlin Heidelberg, 2005, pp. 1–13.

