ACM SIGSOFT Software Engineering Notes Page 32

January 2016 Volume 41 Number 1

Variability for Qualities in Software Architecture

Azadeh Alebrahim
paluno - The Ruhr Institute for
Software Technology
Working group Software
Engineering
University of Duisburg-Essen,
Germany
azadeh.alebrahim
@uni-due.de

Michael Goedicke
paluno - The Ruhr Institute for
Software Technology
Working group Specification of
Software Systems
University of Duisburg-Essen,
Germany
michael.goedicke

@paluno.uni-due.de

Stephan FaBbender
paluno - The Ruhr Institute for
Software Technology
Working group Software
Engineering
University of Duisburg-Essen,
Germany
stephan.fassbender

@uni-due.de

Maritta Heisel
paluno - The Ruhr Institute for
Software Technology
Working group Software
Engineering
University of Duisburg-Essen,
Germany
maritta.heisel
@uni-due.de

Martin Filipczyk
paluno - The Ruhr Institute for
Software Technology
Working group Specification of
Software Systems
University of Duisburg-Essen,
Germany
martin.filipczyk
@paluno.uni-due.de

Uwe Zdun
Research Group Software
Architecture
University of Vienna

uwe.zdun@univie.ac.at

DOI: 10.1145/2853073.2853094
ABSTRACT http://doi.acm.org/10.1145/2853073.2853094
Variability is a key factor of most systems. While there are many
works covering variability in functionality, there is a research gap
regarding variability in software qualities. There is an obvious
imbalance between the importance of variability in the context of
quality attributes, and the intensity of research in this area. To
improve this situation, the First International Workshop on VAri-
ability for QUallties in SofTware Architecture (VAQUITA) was
held jointly with ECSA 2015 in Cavtat/Dubrovnik, Croatia as a
one-day workshop. The goal of VAQUITA was to investigate and
stimulate the discourse about the matter of variability, qualities,
and software architectures. The workshop featured three research
paper presentations, one keynote talk, and two working group dis-
cussions. In this workshop report, we summarize the keynote talk
and the presented papers. Additionally, we present the results of
the working group discussions.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords

Software architecture, quality attributes, variability

1. INTRODUCTION

“Variability is a “key factor of most, if not all, systems” [6] and
therefore a relevant concern of those systems” [5]. “Variability is
the ability of a software system to be adapted for different con-
texts. Variability affects functionality as well as quality attributes
of software systems. Even though variability is primarily studied
in the software product line (SPL) domain, variability is a con-
cern not only in the context of product lines but of many systems,
including service-based systems” [7].

Variability is a frequently used key concern in Software Product
Line Engineering (SPLE). Variability in SPLE represents the set
of properties which vary in those products. Variability caused
by introducing quality attributes has a significant impact on the
architecture of an SPL as reported in a recent survey [§]. For

SPLE, most works that cover variability only take functionalities
into account. Additionally, many works that analyze variability
in quality attributes only focus on qualities that are related to
product lines such as flexibility, while software quality attributes
are often neglected [4].

Besides software product lines, many software systems are de-
signed to support variability, either at design time (for example,
as product lines or product families) or at runtime, especially for
self-adapting or service-based systems. Variability itself comes
in two dimensions: functional variability and variability in soft-
ware qualities. While there are many works covering variability
in functionality, there is a research gap regarding variability in
software qualities [5]. This gap is in contrast to the importance
of variability in software engineering.

There is an obvious imbalance between the importance of vari-
ability in the context of quality attributes and the intensity of re-
search in this area. Therefore, the First International Workshop
on Variability for Qualities in Software Architecture (VAQUITA
2015) aimed at investigating and stimulating the discourse about
the matter of variability, qualities, and software architectures. We
focus on software architecture since it directly influences the ful-
fillment of a software system’s quality attributes. Therefore, it
requires special attention. In addition, the goal of the workshop
was to bring together researchers and practitioners to share ideas
and experiences, analyze research trends and upcoming research
challenges, discuss open problems, and propose promising solu-
tions with a particular focus on handling variability in software
architecture with respect to quality attributes. Further informa-
tion about the workshop, its theme, motivation, and the organiz-
ing and the program committees can be found in the workshop
proceedings [1] as well as on the workshop websit

2. KEYNOTE TALK

The workshop featured a keynote talk titled “Architecting for
Variability in Quality Attributes of Software Systems” by Matthias

"http:/ /vaquita-workshop.org/



ACM SIGSOFT Software Engineering Notes Page 33

Galster from University of Canterbury, Christchurch, New Zealand.

Matthias Galster divided his talk into four parts. In the first
part fundamentals, he talked about quality attributes, variability,
and software architecture. According to Matthias, variability oc-
curs not only in product lines, but also in other systems such as
self-adaptive, configurable or customizable single systems, open
platforms, or systems that support the dynamic composition of
services. In addition to variability in functionality, it also oc-
curs in quality attributes and quality attribute requirements. In
the second part of the talk, Matthias introduced a scenario-based
taxonomy for variability in quality attributes. He presented five
scenarios, in which Scenarios 1,2 and 5 express “intentional” vari-
ability whereas the other scenarios express “unintentional” vari-
ability:

Scenario 1 Variability in quality attributes due to variations in
the user and user needs, such as different market segments
or customer profiles.

Scenario 2 Variability in quality attributes in different phases
of the software development process. For example, during
different testing phases or integration phases, privacy may
not be a concern, whereas for final delivery of a multi-tenant
SaaS product, privacy is a concern.

Scenario 3 Variability in quality attributes due to the impact
of variability in functionality. For example, complex data
visualization may affect performance.

Scenario 4 Variability in quality attributes due to the impact of
variability in other quality attributes. For example, a higher
response rate (performance) may reduce security.

Scenario 5 Variability in quality attributes due to variation in
hardware resources. Examples for this scenario are variation
in network capacity, variation in product hardware chipset,
etc.

In the third part of his talk, Matthias reviewed the state of re-
search regarding variability in quality attributes. He discussed
five studies. Some of the main findings of the related work review
are:

e Variability in quality attributes has not been subject of ex-
tensive research. When dealing with variability in quality
attributes, performance and availability are addressed most
whereas security and safety have not been investigated ex-
tensively.

e In service-based systems, studies use mostly laboratory set-
tings rather than real-life case studies.

e In service-based systems, variability is mostly accommo-
dated in the activities architecture design and implemen-
tation and integration.

According to the speaker, future research in the context of vari-
ability in quality attributes (fourth part of the talk) can be per-
formed in two directions “conducting exploratory and descriptive
studies to better understand variability in quality attributes” as
well as “devising approaches for describing, analyzing, and imple-
menting variability in quality attributes”.

January 2016 Volume 41 Number 1

3. PAPER PRESENTATIONS

We accepted three research papers for inclusion in the proceed-
ings. The papers were presented in short 15 minutes presenta-
tions. Each paper presentation was followed by a discussion which
has been opened up by a pre-assigned discussant, who gave a crit-
ical review of the paper.

Models for Self-Adaptive Systems

The first paper was presented by Amir Molzam Sharifloo. It fo-
cused on the roles of models and the relationships among them
in self-adaptive systems. It classified the types of models often
required for self-adaptation into environment, system, and re-
quirements. The environment is defined as everything on which
the system does not have any control but can impact on system
functionality. Defining the scope has been identified as the main
challenge in modeling the environment. Modeling and specifying
requirements has always been a challenge in software develop-
ment. Although much research has been done on this topic in the
recent years, more work is still required. The system architecture
as the central concept for developing self-adaptive systems has to
contain variation points, knowledge about design decisions, and
rationales behind the design decisions which are vital for adap-
tation planning. Furthermore, Amir pointed out the following
main challenges of using run-time models by self-adaptive sys-
tems: model integrity, variability modeling, uncertainty, tacit ar-
chitectural knowledge, and run-time verification. This paper can
be found in [10].

Automatic selection and composition of model trans-

formations alternatives using evolutionary algorithms
The second paper [9], presented by Smail Rahmoun, focused on
making trade-offs between non-functional properties when pre-
sented various design alternatives for software architectures. There-
fore, Rahmoun et al. formalize these design alternatives with
model transformations, use evolutionary algorithms to create model
transformation alternatives and finally identify the transforma-
tion that represents the best trade-off between the non-functional
properties at hand. From a software architecture given as AADL
model, an initial population of model transformation alternatives
is created. After the non-functional properties of all alternatives
are evaluated, a new generation of offspring is created using the
evolutionary operation mutation and crossover. Finally, the out-
put of the method presented in 9] is a set of nearly optimal AADL
models. The authors demonstrate their approach in a use case
with the goal of finding the optimal deployment of interconnected
software components on hardware components.

Evolving a Software Products Line for E-commerce

Systems: A Case Study

The third paper [3|, presented by Leonardo Montecchi, deals with
evolution of software product lines (SPL). Azzolini et al. present a
case study for ACFAM, an aspect-oriented and component-based
methodology for implementing software product lines. In their
case study, they compare the ACFAM approach with other types
of SPL implementations to prove its applicability to real-world
domains and its higher effectiveness compared to other implemen-
tations. Therefore, Azzolini et al. evaluate the ACFAM approach
using a real-world scenario. They extract a feature set from four
existing e-commerce systems, identify commonalities and variabil-
ities, and set up a feature model using the ACFAM methodology.
Additionally, they design an evolution scenario containing four re-
leases which are implemented using the different SPL approaches.
The authors’ findings indicate that ACFAM is indeed applicable
for real-world scenarios and is more effective for product line archi-



ACM SIGSOFT Software Engineering Notes Page 34

tectures in e-commerce domains since it required less code changes
and provided the most stable architecture.

4. WORKING GROUP DISCUSSIONS

The two following topics were selected for discussing in two par-
allel working groups:

e Complexity of the Design Space
e Quality Attributes and Variability

We selected these two topics according to the interests of the work-
shop participants. In the following, we elaborate on the results of
the discussions in the working group sessions.

Complexity of the Design Space

The discussions in this working group targeted the questions why
variability makes our systems more complex and what we can do
about it.

Sources of Complexity A source of complexity in variability-
aware systems is the set of relationships and dependencies
among various quality attributes as well as the intercon-
nection between quality attributes and functionality. Some-
times, functionality has to be dropped to fulfill a particular
quality attribute.

Reduce Complexity One key agreement of the discussion was
that variability should only be considered if the software
engineer is absolutely confident that it will be needed dur-
ing the lifetime of a system. Since variability introduces
complexity, the rule of thumb should be Don’t implement
variability you do not need. Then again, if there is already
built-in variability support regarding a particular aspect and
observe that you will never need it you may consider remov-
ing it to increase the overall maintainability of the system.

Unforeseeable Variability There are systems that experience
variability at runtime that has not been foreseen when de-
signing the system, or cannot be controlled, or both. For this
case, three strategies have been proposed: First, focus the
implementation on the aspects that are known beforehand.
If the software engineer starts guessing what might happen,
the complexity of the system is unnecessarily increased (cf.
bullet point Reduced Complezity). Second, the software en-
gineer may design the system with the mindset that it can
and will fail at runtime in case of unforeseen variability —
the knowledge about variability acquired in this case can be
seen as a new aspect that is known beforehand for another
release of the system (in terms of the first strategy). Of
course, this strategy is not always applicable, which may be
the case for safety-critical system, e.g. medical or avionic
systems. A third strategy comprises the data-driven defi-
nition of rules that triggers a reaction for observed values.
The premise for this strategy is the impossibility of defining
a reaction to every possible chain of events or events that
may occur simultaneously.

Variability in Middleware Regarding the technical implemen-
tation of variability, most modern middlewares are Intercep-
tor-based, i.e. they heavily rely on the Interceptor pattern
(cf. |2]). On one hand, from a structural viewpoint, the
architecture is rather static and in itself is not variable. On
the other hand, the Interceptor instances itself support vari-
ability since the programmer can implement arbitrary code.

January 2016 Volume 41 Number 1

There is obviously a difference between variable architec-
tures and architectures that support variability.

Future Research Obviously, variability in software architectures
is a complex challenge, especially considering quality at-
tributes. For the future, we can envision various areas for
research regarding these challenges. Architectural knowl-
edge captured in architectural patterns and tactics seems
to be a good source for solutions to said challenges. Since
making general assumptions about all software systems is
difficult, one idea is to create context-specific pattern and
tactic catalogs. Feature interaction, especially feature mod-
eling or goal modeling between quality attributes could be
a promising area of research. Finally, the establishment of
variability viewpoints on software architecture should be in-
vestigated in the future.

Quality Attributes and Variability

During the workshop, we identified that a common understanding
regarding the term “variability” does not exist. Hence, we first
brainstormed about how variability is currently defined. During
the brainstorming, it became clear that depending on the context
or application domain in which the term variability is used such
as software product line or self-adaptation, there might existing
different understandings of the term variability. However, within
a particular context or application domain, the term variability is
quite clearly defined and understood.

Next, we discussed about variability and product lines considering
quality attributes on the architecture level. We identified that it
might be too complex to come up with a (reference) architecture
with sufficient commonalities when applying architectural pat-
terns for addressing different quality requirements. The problem
identified in this context is that on the one hand quality require-
ments are mostly conflicting and on the other hand architectural
patterns contributing to the satisfaction of those requirements
come always with some benefits for one type of quality require-
ments and reliabilities for the other type of quality requirements.
This makes the decision about selecting the architectural patterns
for a (reference) architecture complex. However, the workshop
participants discussed four potential solutions to deal with this
dilemma:

Early design decisions Early at the architectural level, it should
be decided on the satisfaction of only one type of quality re-
quirements which are not conflicting. This early design de-
cision allows the selection of an architectural patterns con-
tributing to the satisfaction of the selected quality require-
ment. This idea is, however, in contrast to the variability
and product line concepts.

Patterns in application engineering Architectural patterns should

not be applied in the domain engineering but in the applica-
tion engineering. This solution might need some refactoring
work as it might be probably too late to apply an architec-
tural pattern at this level.

No common architecture There might not exist a (reference)
architecture which accommodates the commonalities of all
conflicting quality requirements. The reason is that quality
requirements are considered architectural drivers. Different
conflicting quality requirements might lead to completely
different software architectures using different architectural
patterns so that no common architecture can exist.



ACM SIGSOFT Software Engineering Notes Page 35

Patterns and tactics An architectural pattern positively con-

S.

tributing to one type of quality requirements and nega-
tively contributing to the other types of quality requirements
should be applied in the domain engineering. In the appli-
cation engineering, tactics should be used to compensate
the negative effect of the architectural pattern on the one
type of quality requirements. Also this solution provides no
optimal solution to the problem at hand.

ACKNOWLEDGEMENTS

As the workshop organizers, we would like to thank the speakers
for presenting their work on the topics of VAQUITA as well as all
the participants for fruitful discussions. Additionally, we thank
the members of the program committee for reviewing the submis-
sions to this workshop. We would like to express a special thanks
to our keynote speaker Matthias Galster. We appreciate the effort
he, Magnus Standar, and Leonardo Montecchi put into reviewing
this workshop report. Finally, we thank Matthias Galster in his
role as workshops chair who assisted us in the preparations of
the VAQUITA workshop. This work was partially supported by
the German Research Foundation (DFG) under grant numbers
HE3322/4-2 and GO774/5-2.

6.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

REFERENCES

A. Alebrahim, S. Falbender, M. Filipczyk, M. Goedicke,
M. Heisel, and U. Zdun. 1st Workshop on VAriability for
QUallties in SofTware Architecture (VAQUITA): Workshop
Introduction. In Proceedings of the 2015 European
Conference on Software Architecture Workshops, ECSAW
'15, pages 22:1-22:2. ACM, 2015.

P. Avgeriou and U. Zdun. Architectural Patterns Revisited
— A Pattern Language. In In 10th European Conference on
Pattern Languages of Programs (EuroPlop 2005), Irsee,
pages 1-39, 2005.

R. P. Azzolini, C. M. F. Rubira, L. P. Tizzei, F. N. Gaia,
and L. Montecchi. Evolving a Software Products Line for
E-commerce Systems: A Case Study. In Proceedings of the
2015 European Conference on Software Architecture
Workshops, ECSAW 15, pages 26:1-26:7. ACM, 2015.

L. Etxeberria and G. Sagardui. Variability driven quality
evaluation in software product lines. In SPLC, pages
243-252, Sept 2008.

M. Galster, D. Weyns, D. Tofan, B. Michalik, and

P. Avgeriou. Variability in Software Systems — A
Systematic Literature Review. TSE, 40(3):282-306, 2014.
R. Hilliard. On Representing Variation. In ECSA:
Companion Volume, pages 312-315. ACM, 2010.

S. Mahdavi-Hezavehi, M. Galster, and P. Avgeriou.
Variability in quality attributes of service-based software
systems: A systematic literature review. IFSOF, 55(2):320 —
343, 2013. Special Section: Component-Based Software
Engineering (CBSE).

A. Metzger and K. Pohl. Software Product Line
Engineering and Variability Management: Achievements
and Challenges. In FOSE, pages 70-84. ACM, 2014.

S. Rahmoun, E. Borde, and L. Pautet. Automatic Selection
and Composition of Model Transformations Alternatives
Using Evolutionary Algorithms. In Proceedings of the 2015
FEuropean Conference on Software Architecture Workshops,
ECSAW 15, pages 25:1-25:7. ACM, 2015.

A. M. Sharifloo. Models for Self-Adaptive Systems. In
Proceedings of the 2015 European Conference on Software
Architecture Workshops, ECSAW ’15, pages 24:1-24:5.
ACM, 2015.

January 2016 Volume 41 Number 1





