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Abstract. We derive a new model for simultaneous segmentation and
deconvolution of dynamic PET images. By incorporating the PSF of
the imaging system into our segmentation model, we simultaneously es-
timate region boundaries, and correct tissue activities for the partial
volume effect. We show improved segmentation results, and outperform
two state-of-the-art dynamic PET segmentation methods.

1 Introduction

Dynamic Positron Emission Tomography (dPET) is a functional imaging modal-
ity that allows observation of the metabolic activity of biological tissue in vivo.
By injecting radioactive tracers into a subject, a 3D+time distribution of tracer
uptake can be reconstructed from the resulting photon emissions.

The reconstructed distribution can be considered a 3D volume, where each
location is described by a Time Activity Curve (TAC): a vector of tracer concen-
tration measurements. By fitting a compartmental model to the observed TAC,
kinetic parameters are recovered which describe the properties of the tissue.
These parameters are important for applications in tracer evaluation, clinical
investigation, and drug design. Unfortunately, accurate quantification of PET
is a difficult problem, and is complicated by both physical factors (photon at-
tenuation and scattering) and characteristics of the scanning hardware itself [I].
Therefore, the images produced by current PET systems exhibit low resolution
and high noise. To overcome these limitations in practice, quantification of PET
data requires delineation of regions of interest (ROIs) that exhibit homogeneous
TACs, and therefore physiological behavior. Accumulated TAC statistics from
these regions can be used to compensate for the effects of noise on TAC estima-
tion and the resulting kinetic parameters.

The response of an imaging system to an infinitesimally small point source
is known as the point-spread function (PSF). The PSF is large in dPET, and
while spatially variant, it can be approximately described by a spatially invari-
ant Gaussian filter with a full width half maximum (FWHM) on the order of
4 — 8mm [I]. As a consequence of this large PSF, TACs of neighboring tissue
structures are corrupted along their boundaries, and regions blur together. This



is known as “spill-over” and creates a misleading or implausible TAC shape.
This effect, especially pronounced in smaller structures, must be corrected in
order to accurately quantify true activities and boundaries.

Several approaches have been applied to delineation of ROIs in PET data.
Manual delineation by an expert is possible, but is difficult and time consum-
ing, especially for 3D-+time data. Automated methods are preferable, and can
provide faster results with decreased variability. Early automated methods em-
ployed factor analysis or principal component analysis. However, the resulting
components do not necessarily have biological significance, and are susceptible
to artifacts. Clustering methods have also been applied, most recently by Saad et
al. [2] where variants of k-Means were extended with kinetic regularization. All
of these methods are susceptible to misclassification errors (Fig. [1} left) because
they do not explicitly correct for the effect of the PSF.
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Fig.1. (Left) TACs in transition regions exhibit a mixture of true activities.
Without proper consideration, segmentation methods such as k—-Means classify
these TACs as belonging to incorrect regions. (Right) Empirical comparison of
Ly recovery error using the core method [3], and our model (Sec. . As noise
increases, the error of the core model increases.

The effect of the PSF introduces a tradeoff. On the one hand, excluding cor-
rupted transition regions from a segmentation will improve parameter recovery,
since it will be based only on TACs uncorrupted by the PSF. On the other
hand, excluding transition regions results in an incorrect segmentation with a
smaller ROI and fewer TACs are available to correct for the effects of noise. In
very recent work, Maroy et. al [3] follow the former approach and extract region
cores for kinetic parameter estimation. These estimates are based on fewer TAC
samples, and are thus more susceptible to noise. We postulate that more ro-
bust estimates and improved delineations are obtained by considering the entire
region, and correcting for the PSF. Fig. [l right, gives a simple demonstration
via a numerical experiment: for a fixed, 1D, piecewise constant signal of width
>FWHM of the PSF, increasing levels of noise were added and the activity es-
timated using two methods. The mean of the samples in the unaffected interval
(the “core” region) provided one estimator, while the estimator that corrects for
the PSF, developed in Section [2.3| provided another. The developed estimator,
using all region statistics, demonstrates a more robust estimate.



Direct correction of the effect of the PSF in dPET data has been investi-
gated previously. Given a complete spatial description of region boundaries, and
a model of the PET scanner, the GTM method [I] corrects data for PSF ef-
fects in either sinogram or image space. Relevant scanner characteristics can be
measured, but knowledge of region boundaries necessitates additional structural
information such as CT or MRI. Chiao [4] et al is the only previous work that
attempts to estimate both region boundaries and activities, and avoids the cost
of acquiring structural information. Chiao et al. use an explicit contour model,
and a detailed description of the scanning hardware. However, their method suf-
fers from the known shortcomings of discrete contour models, and is developed
for a single ROI of fixed topology, restricting its applicability. In the 2D image
processing domain, Bar et. al [5] developed a method to simultaneously perform
segmentation and semi-blind restoration of non—medical images. However their
model used an edge map instead of an explicit region model, which prevented
modeling of important region properties. Many other PET segmentation and
correction approaches have been developed. Due to space restrictions, we refer
the reader to the references in [I] or [2].

We propose a new method (Sec. [2)) for simultaneous segmentation and cor-
rection of dPET data. To the best of our knowledge, we are the first to apply
a multi—-phase level-set Mumford—Shah model, incorporating and accounting for
the PSF, to segmentation of homogeneous physiological regions. We address the
inaccuracies of state of the art methods, and demonstrate more accurate seg-
mentation and signal recovery (Sec. [3| and . Our method is general, requiring
no fixed topology, and is therefore not restricted to any specific anatomy. Our
region estimates employ all image statistics, and are more resilient to noise than
methods which use only core statistics. We make the practical assumptions that
the number of regions are known, and the PSF has been measured beforehand.
Measurement of the PSF avoids errors associated with PSF estimation.

2 Method

2.1 Model Formulation

At some spatial location z € 2 C R? and time ¢ € [0, T], we model the formation
of an observed dPET image, I(x,t) as:

1(x,8) = [Lirue(t) * h] (%) +n(x, 1). (1)

Here, Iy is the unknown spatio-temporal distribution. It is convolved by the
PSF of the imaging system, denoted h, which is assumed to be a spatially and
temporally invariant Gaussian. Raw dPET data exhibits Poisson noise charac-
teristics, but the noise becomes approximately Gaussian after image reconstruc-
tion. Therefore, we assume the observed image is corrupted by a zero—centered,
spatially and temporally independent Gaussian noise process, denoted 7.

A common assumption in kinetic analysis is that healthy tissue with identical
metabolic behavior exhibits identical functional behavior. Therefore, we assume



that the true image can be well approximated by a known number, R, of disjoint,
piecewise—constant functional regions, each with a characteristic TAC:

Itruc X t (Z Xz Cj ) . (2)

Here, x; denotes the characteristic, or labelling, function that defines the 3"
region with TAC ¢;. The goal is to find the closest estimate of I;;.¢, by recovering
the characteristic functions y; and associated TACs ¢; for each region.

We use the approach of Mansouri et al. [6] and represent R regions as com-
binations of the zero level sets of R — 1 level set functions @5,1 < k < R — 1.
The zero level set of @, defines a closed area where @, > 0 for points inside the
kth contour, and vice versa. Set operations on these areas define the ROIs. The
kth region is the region inside @}, and outside all previous ®;,i # k. The region
outside all @, represents the final R*" region. Note that the regions are mutu-
ally exclusive and cover the entire domain, eliminating the issues of overlap and
vacuum [0]. Formally, x; for R regions can be expressed using R — 1 functions,
®;, and the Heaviside step, H(:), and dirac delta, d(-), functions as:

Xi = H (@;)! 7000 [ﬁ (1- H@k»] : (3)

k=1

2.2 Segmenting Functional Regions

Using this representation we seek the time—varying image estimate, I (x,1), formed
by convolving the approximation of Iy by the imaging PSF, h. This is ac-
complished by minimizing the following energy function, w.r.t x; and ¢;:

T

E:/ /(I(x, i(x.1)) dt+Z[ V& (x %(\V@iux)—l)? dx.
2 =0

(4)

The first term describes the spatio—temporal fit of the estimate I to the observed
data. The second and third terms, typical in active contour models, regularize
the level sets, encourage smooth region boundaries [7], and maintain the level
sets as signed distance functions. The parameter p controls the influence of
the smoothness regularizer. Note that the energy in is a generalization of the
vector—valued Active Contours Without Edges (ACWOE) multiphase energy [1]:
as the PSF A(:) converges to d(-), (4) converges to the ACWOE energy.

Minimizing equation w.r.t the unknown regions y; we derive the level set
update equations, with artificial step parameter t:

I (i(x, t) — I(x,t)) : (K: e ~ci(t)> % h] (x)) dt 5
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Note that H(-) and §(-) are discontinuous functions, and must be regular-
ized [7]. This regularization must have a localized behavior, or I will suffer from
artificial “spill-over” across regions. Therefore we choose:

Ho(2) = abs(z < 1) - (1 - g + %sin (_:'Z)) L 6u(2) = —tcos (Zl) . (7)

2 € €

with ¢ = 1. This restricts the effect of regularization to 1 voxel from the level set
boundary. This models the behavior of boundaries that pass through the center
of a voxel (i.e.: H(0) = 0.5, an equal mixture of two regions).

In dPET, temporal activity is measured by accumulating activity over a small
number of time intervals. These intervals are non—uniform, and denoted A,.
Discretizing the integral yields the evolution equation to iteratively update
®; and consequently x; Vi.

=1

8¢j N d =4 & 8X1’
W(x,t) ~ Q;At(l(x,t) —I(x,t)) - l( 0%, ~ci(t)> *h] (x) “
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As @; and the functional regions are updated, the estimated region TAC ¢;
must also be updated accordingly. This is described below (Sec. .

2.3 Calculating Region TAC

To determine the corrected TAC estimates ¢;(t), we use the first order optimality
conditions from equation to derive the optimal ¢;, for a given estimate of
region boundaries:

OF -
S (1) =2 / (I(x,t) - I(X,t)) < (xm * h) (x)dx. (9)
Cm
Q
Equation @ is rewritten as a system of linear equations, for m = 1..R, and each
time step ¢. We obtain estimates of ¢;(¢) as the solution of Ac(t) = b(t), where:

A = [ 06+ 1) 60 ) (), b= [ 16x,8) () (olax. (10)
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3 Validation

In order to perform a quantitative evaluation of accuracy, experiments were
performed using synthetic and simulated data (Fig. |2)), with a known ground
truth. Accuracy of our method (PSF-SEG) was compared to traditional vector—
valued ACWOE (ACWOE), and the recently proposed kinetically regularized
versions of k-Means (KM-KM) and MRF k-means (KM-MRF) [2]. Parameters
were chosen to give the best results for each method, after manual exploration
of the parameter space. Following segmentation, the DICE similarity index, a
measure of region overlap, was computed for each region to determine segmen-
tation accuracy. A DICE value of 1 indicates perfect segmentation. Recovery of
regional kinetic parameters was evaluated by computing a normalized Lo differ-
ence, denoted k—error, between the recovered and true parameters. A k—error of
0 indicates perfect kinetic recovery.

First, synthetic dPET data was created using 2D slices from 12 labeled MRI
brain scans. Realistic tissue parameters were used to generate TACs using the
COMKAT kinetic modelling tool [8] and FDG model. TACs were assigned to
specific brain structures and a Gaussian filter with a FWHM of 6mm [I] was
applied to simulate PET imaging hardware. Finally, normally distributed noise
was added. The regularization parameter p for PSF-SEG and ACWOE was
fixed for both methods, and chosen proportional to the noise in the image: y =
{5,25,75,125,125,150} for {0,1,3,5,8,10} standard deviations respectively.

Next, 12 Monte Carlo simulated Raclopride dPET volumes [9] were used
to compare the methods in 3D under realistic noise and hardware conditions.
The PSF of the PET simulator has previously been measured as approximately
Gaussian with FWHM of 6.67mm in plane and 7.06mm axially. The parameter
1t was empirically set to 1000 for PSF-SEG and ACWOE. In both datasets, the
tissues of interest are: scalp SP, gray matter GM, white matter WM, cerebellum
CB and putamen PN.

Crude ROI, at most 2 voxelized spheres per ROI, were drawn on each dataset
and used as the manual initializations for all algorithms and subjects.

Data Truth PSF-SEG ACWOE KM-KM KM-MRF
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Fig. 2. Column 1: Last time step of input data. Column 2: Ground truth labels.

Columns 3-6: Example segmentations. Top row: Data from the noise experiment
with noise at 3 std. dev. Bottom row: Slice 40 of the simulated data.



4 Results

For each region and noise level of the synthetic data, the mean DICE index and
k—Error were computed with a 95% confidence interval (Fig.|3).
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Fig. 3. DICE index (top) and k—error (bottom) for each region in the noise
experiment. Error bars denote 95% confidence interval.

The DICE index shows significant and consistent performance across all ROI
and noise levels. In general, PSF-SEG realizes an improvement in accuracy be-
tween 10 — 35%. Most noteable is the improvement in accuracy in the PN (top—
right). KM-MRF, KM-KM and ACWOE erroneously mislabel the putamen and
cerebellum as identical regions in favor of giving a unique label to transition
regions. The PSF-SEG method successfully deals with these transition regions,
and labels the regions correctly. Examining the k—Error, PSF-SEG outperforms
for the putamen, due to better segmentation results, and performs similarly to
other methods in the remaining regions.

Examining the DICE index for the realistic simulated data (Fig. , PSF-SEG
significantly outperforms the state of the art algorithms on the simulated WM,
CB and PN regions. These regions all contain thinner regions which are affected
by the PSF, and subject to misclassification by KM-MRF and KM. PSF-SEG
also exhibits low variability, indicating a more reliable, and consistent behavior.
PSF-SEG appears to perform slightly worse than the other two methods for
GM, but within the variability of these methods. ACWOE also demonstrates
improved results. ACWOE’s regularized characteristic function simulates the
PSF, and improves its performance. For smaller regions, ACWOE’s performance
decreases as the error in PSF approximation becomes more significant.

5 Discussion and Future Work

We developed a novel model for segmentation of dPET data, based on incorpo-
rating the known PSF of the imaging hardware. Improved segmentation results
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Fig. 4. Segmentation results for realistic simulated data

were demonstrated, and our method outperformed two state-of-the art tech-
niques. In addition, we argue that TAC estimates obtained via this method are
more robust under noise than the mean of region cores. The next step is vali-
dation on real dPET data, adapting the model to more general, non-piecewise
constant models and leveraging the underlying kinetic model of TAC.
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