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Surface sampling and the intrinsic Voronoi diagram
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Abstract
We develop adaptive sampling criteria which guarantee a topologically faithful mesh and demonstrate an improve-
ment and simplification over earlier results, albeit restricted to 2D surfaces. These sampling criteria are based on
functions defined by intrinsic properties of the surface: the strong convexity radius and the injectivity radius. We
establish inequalities that relate these functions to the local feature size, thus enabling a comparison between the
demands of the intrinsic sampling criteria and those based on Euclidean distances and the medial axis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid and object

representations

1. Introduction

A standard digital geometry representation of the surface of
a 3D object is a triangle mesh. The process of producing a
mesh from a known surface is called meshing. The vertices
of the mesh are sample points lying on the given surface.
Thus part of the meshing process involves sampling: plac-
ing sample points on the surface. A fundamental problem is
to determine the sampling density required for the mesh to
meet given accuracy requirements. At the most basic level
one demands topological consistency: the mesh is homeo-
morphic to the surface in question. Geometric criteria which
demand accurate positional and normal approximations usu-
ally assume that topological consistency has been met.

It is the fundamental question of topological consistency
that we address in this paper. This matter has certainly been
studied previously, mainly from two different perspectives:
the intrinsic and the extrinsic. On the one hand the surface
can be viewed as an abstract Riemannian manifold, possess-
ing an intrinsic metric. No reference is made to the ambient
embedding space. A notable work in this vein is that of Lei-
bon and Letscher [LL00], where the notions of injectivity
radius and strong convexity radius, well established in the
Riemannian geometry literature, were brought to bear on the
problem of surface sampling. However, these ideas have not
received a lot of attention in the geometry processing com-
munity. Thus the intrinsic viewpoint has not yet proven itself
to have practical utility for surfaces in 3D.
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The more common approach to surface sampling involves
measuring distances in the ambient Euclidean space. Since
the seminal work of Amenta and Bern [AB98], sampling
density on a smooth surface has typically been specified in
terms of the local feature size: the distance to the medial
axis. Their original sampling criterion is built upon the foun-
dation laid down by Edelsbrunner and Shah [ES94], who de-
fined a set of Voronoi diagram properties to characterize the
sample sets that yield a homeomorphic mesh. Amenta and
Bern then quantified a sampling density to ensure the needed
Voronoi diagram properties.

Contribution:We take the intrinsic approach, utilizing con-
cepts previously exploited by Leibon and Letscher, to define
sampling criteria that ensure the required properties in the
Voronoi diagram. Our contribution to the existing theoreti-
cal framework on surface sampling is twofold:

• We obtain a significant relaxation in the sampling re-
quirements over those obtained by Leibon and Letscher
[LL00, Lei99], and simplify the exposition.

• We establish inequalities relating local feature size to the
strong convexity radius and the injectivity radius, bridging
a gap between the extrinsic and intrinsic views on sam-
pling criteria. In particular, we are now able to say what
extrinsic criterion is needed to ensure that a sample set
satisfies a given intrinsic criterion. This opens the door
to exploiting intrinsic analysis even when extrinsic meth-
ods are employed. It is shown that the extrinsic criterion
that is needed to satisfy our intrinsic sampling condition is
weaker than existing extrinsic sampling criteria for topo-
logical consistency.
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Related work: The literature on surface sampling is vast.
We mention here only recent works and those that have di-
rectly influenced our current work. The work of Boisson-
nat and Oudot [BO05], with its graceful exploitation of the
Voronoi-Delaunay duality in surface sampling, was an inspi-
ration. A clear distinction between meshing and surface re-
construction was made in that work. Cheng et al. [CDRR04]
present a meshing algorithm with guaranteed topological
consistency which avoids explicit reference to the local fea-
ture size. The algorithm strives for a sparse sampling, but
there is no concise expression for the final sampling density.
Gao et al. [GGOW08] use an intrinsic sizing function, the
homotopy feature size (hfs), to mesh planar domains. The
hfs appears to be closely related to the injectivity radius dis-
cussed here.

Morvan and Thibert [MT04], as well as Hildebrandt et
al. [HPW06], have done a nice quantitative analysis of the
metric distortion between a smooth surface and a mesh that
approximates it. Although our work focuses more on the
qualitative local behaviour of geodesics, we did exploit these
works when it was necessary to bound geodesic lengths to
allow a comparison between intrinsic and extrinsic sampling
criteria. Dai et al. [DLYG06] have also recently produced a
geometric accuracy analysis. Their analysis is from the in-
trinsic viewpoint, using Leibon and Letscher’s work [LL00]
as the topological correctness foundation. The sampling con-
ditions required by their main theorem (Thm 3), involve a
minimum amongst terms representing Leibon and Letscher’s
criterion and (larger) scaled extrinsic sizing functions. Thus
it can be both relaxed and simplified in light of our work.

Paper organization: The main body of the paper is orga-
nized into three sections. In section 2, we define the in-
trinsic Voronoi diagram and strong convexity and conclude
with Theorem 1, a new observation on how strong convexity
can enforce desirable topological properties in the intrinsic
Voronoi diagram. Section 3 reviews some sizing functions
that are related to variable sampling density requirements.
Our new sampling density requirements and the estimates on
the intrinsic sizing functions with respect to the local feature
size are presented in Section 4, where we go on to synthe-
size these results and enable a direct comparison between
extrinsic and intrinsic sampling criteria.

Notation: Throughout this paper, S will refer to a smooth,
compact, connected surface without boundary isometrically
embedded in R

3, and P will refer to a set of sample points
on S. Given two points p and q on S, dR3(p,q) and dS(p,q)
denote respectively the Euclidean and geodesic distances be-
tween p and q. Likewise BS(x;r) = {y ∈ S|dS(x,y) < r} de-
notes the open geodesic disk centred at x, and BR3(x;r) is an
open Euclidean ball. A closed disk/ball is indicated with a
bar: B̄S(x;r). All geodesics and space curves are arc-length
parameterized. The length of a curve γ is ℓ(γ) and we abuse
the notation by identifying γ with its image. Thus for exam-
ple, z ∈ γ means z ∈ γ([0, ℓ(γ)]).

2. The intrinsic Voronoi diagram

Geodesic curves: The notion of geodesic curves on S is
essential in our exposition. We use the following defining
characteristic: A geodesic on S is a curve γ ⊂ S that, when
viewed as a space curve γ ⊂ R

3, has its curvature vector par-
allel to the normal vector on S at all corresponding points
where the curvature of γ does not vanish. In particular, the
curvature of γ at x ∈ γ is bounded by the largest magnitude
of the principle curvatures of S at x.

Compact surfaces are geodesically complete; any two
points p,q∈ S can be connected by a smooth curve γ of min-
imal length: ℓ(γ) = dS(p,q), and this curve is a geodesic (the
Hopf-Rinow theorem [dC92]). Also, for any z ∈ γ, the por-
tion of γ between p and z is also a minimal geodesic between
p and z [dC92]. However, a minimal geodesic is not neces-
sarily unique. If two points are sufficiently close together
we can be assured of a unique minimal geodesic between
them [dC92].

The intrinsic Voronoi diagram of a sample set P on S is
naturally defined without imposing restrictions on P.

Definition 1 (Voronoi diagram) The Voronoi cell of p∈P is
defined by V(p) = {x ∈ S |dS(p,x) ≤ dS(q,x),∀q ∈ P}. The
set of Voronoi cells forms a covering of S called the intrinsic
Voronoi diagram (iVd) of P on S. Replacing dS with dR3 , we
obtain the restricted Voronoi diagram (rVd) on S.

2.1. The closed ball property

Edelsbrunner and Shah. [ES94] introduced the closed ball
property to describe those restricted Voronoi diagrams on
S whose dual, the restricted Delaunay triangulation (rDt),
is a simplicial complex homeomorphic to S. For a surface
without boundary, the property expresses three conditions:

1. each Voronoi cell is a closed topological disk (2-ball);
2. the intersection of two Voronoi cells is either empty or a

closed topological 1-ball: a single Voronoi edge;
3. the intersection of three Voronoi cells is either empty or

a single point (0-ball): a single Voronoi vertex.

General position: The closed ball property implicitly im-
poses a general position condition on the sample points in
that the intersection of more than three Voronoi cells must
necessarily be empty (otherwise there would be two Voronoi
cells whose intersection was a single point). No sampling
criteria based on sample density alone can guarantee that
the general position property is satisfied, but in principle and
practice such failures can be fixed with an arbitrarily small
perturbation; we will henceforth ignore this technicality.

Generality: Edelsbrunner and Shah. [ES94] showed that
the rDt is homeomorphic to S when the rVd satisfies the
closed ball property. Their proof looks at the topological
properties of the dual complex resulting from a Voronoi di-
agram satisfying this property. An examination of that proof
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reveals that it does not rely on the specific metric employed
to generate the Voronoi diagram. In particular, we can ap-
ply the result to meshes constructed from the iVd: the iDt-
mesh is a triangle mesh whose edges connect samples that
are Voronoi neighbours (i.e., that share a Voronoi edge). To
every Voronoi vertex in the iVd, there corresponds a face in
the iDt-mesh. If the iVd satisfies the closed ball property, the
iDt-mesh is a manifold mesh homeomorphic to S.

Note the distinction between the iDt-mesh and the iDt it-
self: The intrinsic Delaunay triangulation (iDt) of P on S
is a triangulation of S formed by connecting, with minimal
geodesics, samples that are Voronoi neighbours. Although a
iVd satisfying the closed ball property guarantees a home-
omorphic manifold iDt-mesh, whose edges are straight line
segments in R

3, it does not guarantee that the iDt itself is
well defined. In particular, there may be more than one mini-
mal geodesic connecting a given pair of sample points. How-
ever, if the iVd also has the property that there is a unique
minimal geodesic between samples that are Voronoi neigh-
bours, then the iDt exists and it is combinatorially equivalent
to the iDt-mesh.

Redundancy of condition 3: We have assumed that S is a
single component. We further assume that there are at least
four distinct samples in P. In this case, the third condition
of the closed ball property becomes redundant. Indeed, sup-
pose that the first two closed ball conditions are satisfied
but the third is violated. Thus we have three Voronoi cells
V(p), V(q) and V(r) whose intersection includes two dis-
tinct points a and b. Then V(p)∩V(q) will be a Voronoi
edge, e, following condition 2, and a and b must necessarily
be its endpoints. Likewise, V(p)∩V(r) will yield another
distinct Voronoi edge, e′, also with a and b as endpoints.
Since V(p) is a topological disk (condition 1), e and e′

make up its entire boundary. It follows that p has no Voronoi
neighbours other than q and r. Arguing similarly for q and r,
we conclude that there are only three samples on S.

Definition 2 (Well formed Voronoi diagram) A (restricted
or intrinsic) Voronoi diagram is well formed if it consists of
at least four samples and satisfies the first two closed ball
conditions.

2.2. Strong convexity

We seek a sampling criterion that guarantees a well formed
Voronoi diagram and thus a valid homeomorphic iDt-mesh.
To this end it is useful to examine the notion of convexity of
sets on a surface. In the planar setting a set A is convex if a
line segment connecting any two points in A lies in A. On a
surface, lines are replaced by geodesics.

There are several ways to extend the notion of convexity
to sets on a surface. We follow Chavel [Cha06]:

Definition 3 (Strongly convex set on surface) A set A ⊂ S
is strongly convex if for every p,q ∈ A,

1. there is a unique minimal geodesic γ in S connecting p
and q;

2. γ lies entirely within A;
3. no other geodesic connecting p and q lies within A.

The set A is convex if it satisfies only the first two conditions
above, but we are interested in strong convexity. Note that
there are many non-equivalent definitions of convexity and
strong convexity in the Riemannian geometry literature, so
care must be taken when referring to other works.

Note that the intersection of strongly convex sets is
strongly convex. Such sets are also contractible [dC92],
which implies the following useful observation:

Lemma 1 A strongly convex set is simply connected.

2.3. The closed ball property via strong convexity

As the sampling density increases we expect the Voronoi
cells to more closely exhibit the characteristics of those in
a planar Voronoi diagram. One notable characteristic of a
Voronoi cell in the plane is that it is convex. Voronoi cells
on a surface cannot share this property, however, because
Voronoi edges are not necessarily geodesics. To see this, let

q

p

p, q lie on a plane, in which
case their Voronoi boundary
is a straight line (a geodesic).
Now introduce a small bump

near p, between p and q, that is far from the original Voronoi
boundary, as shown in the figure. This will distort the orig-
inally straight boundary so that it is no longer a geodesic.
For a general surface, regardless of the sampling density, we
cannot expect Voronoi edges to be geodesics.

Therefore, we cannot demand convexity from the Voronoi
cells on S. However, a sufficient sampling density will en-
sure that the Voronoi cells are contained in strongly convex
neighbourhoods, which turns out to be a useful criterion.

Theorem 1 (Strong convexity and well formed iVd) If
∀p ∈ P there exists a strongly convex set Up ⊂ S with
V(p) ⊂Up, then the iVd of P⊂ S is well formed.

The proof of Theorem 1 relies on the following lemma.

Lemma 2 Suppose that Ω⊂ S is a union of Voronoi cells that
is bounded by only two Voronoi cells, V(p),V(q) ⊂ S \Ω
with V(p)∩V(q)∩ Ω 6= ∅. Then Ω contains a geodesic γ
that cannot be contained in a strongly convex set.

Proof. Let a be a Voronoi vertex in V(p)∩V(q)∩Ω, and
let s∈P be a sample in Ω with a∈V(s). Let γas be a minimal
geodesic between a and s. Then we must have γas ⊂ V(s),
since otherwise, ∃w∈ γas and u∈ Pwith u 6= s and w∈V(u)
but w 6∈ V(s). It follows that dS(a,u)≤ dS(a,w)+dS(w,u) <
dS(a,w)+dS(w,s) = dS(a,s), contradicting a ∈ V(s).

We extend γas through s until it exits Ω at t. Let γ = γat
denote the resulting geodesic. Clearly, γ∈Ω. Without loss of
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Figure 1: Ω is a region enclosed by the boundaries of V(p)
and V(q). (a) The geodesic γ is at least as long as the green
curve and cannot be contained in any strongly convex set. (b)

The minimal geodesic α must be contained in Up. If α does
not cross γ, then either Uq or Up contains a loop of minimal
geodesics (red+green curves) that encompasses γ. Assuming
it is Up, as shown, then Up cannot be simply connected and

not contain γ. (c) If α does cross γ, then Up (or Uq) will
contain two geodesics between a and z.

generality, let t lie on the boundary of V(p); see Figure 1(a).
Note that if γ did not exit Ω, it would exceed the diameter of
S and be too long to reside in a strongly convex set.

Now note that both a and t lie on the boundary of V(p)
and, by our choice of s, dS(a, p) = dS(a,s), since a is a
Voronoi vertex. Also dS(t, p) ≤ dS(t,s). Thus γ is at least
as long as the path between a and t comprised of a minimal
geodesic between a and p and a minimal geodesic between
p and t, shown as the green curve in Figure 1(a). It follows
that γ cannot be a unique minimal geodesic between a and t
and so cannot be contained in any strongly convex set. �

Proof of Theorem 1: Suppose that V(p) is not a topological
disk. By Lemma 1, Up is simply connected. Thus a homo-
topically nontrivial loop in V(p) is homotopically trivial in
Up, and so Up must contain a region Ω that is exterior to
but bounded on all sides by V(p). By an argument identical
to the proof of Lemma 2 we see that such an Ω cannot be
contained in a strongly convex set. Therefore V(p) must be
a topological disk.

Now suppose that V(p) and V(q) meet at more than one
distinct Voronoi edge. These cells then bound a region Ω as
described in Lemma 2. Consider the strongly convex neigh-
bourhoods Up and Uq. Since V(p) ⊂ Up and V(q) ⊂ Uq,
the intersection Up ∩Uq must contain all Voronoi edges in
V(p)∩V(q). Also, sinceUp∩Uq is strongly convex the min-
imal geodesic, α, between points a and b on distinct Voronoi
edges (see Figure 1(b)) must lie inUp∩Uq.

Let γ be the geodesic in Ω that was constructed in
Lemma 2. Suppose that α does not cross γ. Then γ must
be contained in the region bounded by a loop of minimal
geodesics (a geodesic triangle in fact) involving α and ei-
ther p or q. Assume it is p; refer to Figure 1(b). Now Up
must contain α, the minimal geodesic between a and p, and
the one between p and b. However, by Lemma 2,Up cannot
contain γ. We arrive at a contradiction to Lemma 1.

Thus α must cross γ. Let z be the first such intersection
that is encountered on a traversal of γ starting at point a and
assume that this portion of γ between a and z is contained in
a region bounded by a loop of minimal geodesics involving
p (green curves) and α (red curve); see Figure 1(c). But now
there are two geodesics between a and z; Up cannot contain
this portion of γ, but it is forced to if it is to contain α and
remain simply connected. Again a contradiction. �

3. Sizing functions for surface sampling

Adaptive sampling criteria on surfaces generally impose re-
strictions on the sampling density based on local curvature
properties as well as semi-local properties relating to some
notion of the distance to “the other side” of the surface. We
refer to functions that can be used to modulate the sampling
density in this way as sizing functions. These functions take
positive values which can be thought of as having the units of
distance. Thus at each point on the surface, a sizing function
specifies a radius within which a certain proportion of repre-
sentative samples is expected. The square of such a function
can, for example, be used to define a weighted area measure
for governing stochastic sampling.

We first present a natural hierarchy of familiar sizing func-
tions that have extrinsic definitions and then discuss the
properties of some less familiar intrinsic sizing functions. In
Section 4.2 we find inequalities that bridge the gap between
representatives of these two sets of sizing functions.

3.1. A natural hierarchy of extrinsic sizing functions

We will make use of the following definition:

Definition 4 (medial ball and medial axis) Given a closed
set C ⊂ R

3, e.g., a surface, a medial ball is an open ball
B ∈ R

3 \C that is maximal with respect to inclusion (i.e., no
other open ball can contain B). If p ∈ C is contained in the
closure of B, we say B is a medial ball at p. The medial axis
ofC is the closure of the set of centres of all the medial balls.

Local feature size: The local feature size (lfs) at a point
x ∈ S, denoted by ρ f (x), is the distance from x to the medial
axis of S. It was introduced by Amenta and Bern [AB98]
and one would be hard pressed to find a subsequent paper on
surface sampling that does not mention it. For this reason we
will go to some lengths to compare our sampling criteria to
those that are expressed in terms of the lfs.

The lfs is particularly convenient to work with because it
enjoys the property of Lipschitz continuity,

∣

∣ρ f (x)−ρ f (z)
∣

∣ ≤ dR3(x,z), (1)

allowing us to bound ρ f (x) in terms of a nearby ρ f (z).
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medial axis

ρ (x)

ρ (x)

f

R

Figure 2: lfs vs. local reach.

Local reach: Each point x ∈
S is associated with two medial
balls, one on each side of the
surface; one of them may have
infinite radius. These balls are
tangent to S at x. The radius,
ρR(x), of the smaller of the two
medial balls at x is called the
local reach at x. It is the distance from x to the medial axis
along a direction normal to S at x. It was introduced by Fed-
erer [Fed59] where it was observed that it is a continuous
function on S. It is bounded below by the lfs for all x ∈ S.

More commonly encountered than the local reach is its
global lower bound. The reach of S is ρR = infp∈S ρR(p).
The reach is important because it specifies the maximal con-
stant thickness of a tubular neighbourhood of S for which
the natural (orthogonal) projection onto S is well defined.
Specifically, if UρR ⊂ R

3 is given by {m ∈ R
3|dR3(m,S) <

ρR}, then the projection ξ :UρR → S can be defined by spec-
ifying ξ(m) to be the unique point on S that is closest to m.

Maximal curvature: Themaximal curvature at x∈ S is the
maximum of the absolute values of the two principal curva-
tures: κ(p) = max{|κ1(p)| , |κ2(p)|}. The associated sizing
function, the maximal curvature radius, is given by the ra-
dius of the associated osculating sphere: ρκ(p) = 1/κ(p).

Since the smallest medial ball at x can never exceed the
size of the osculating sphere at x, we have ρR(x) ≤ ρκ(x).
Although the maximal curvature is continuous, it can van-
ish. Thus ρκ(x) is not bounded nor even well defined every-
where. However, for its principle employment as an upper
bound on the lfs, we may interpret ρκ(x) =∞ at those points
where the maximal curvature vanishes.

Gaussian curvature: The Gaussian curvature is the prod-
uct of the principle curvatures: G(x) = κ1(x)κ2(x). The
Gaussian curvature radius, defined by ρG(x) = 1/

√

G(x),
is the associated sizing function. Like the maximal curvature
radius, the Gaussian curvature radius suffers from a problem
of definition when the Gaussian curvature is non-positive.
Read ρG(x) = ∞ when G(x) ≤ 0. We have ρκ(x) ≤ ρG(x).

The hierarchy: For all x ∈ S we have the relations

ρ f (x) ≤ ρR(x) ≤ ρκ(x) ≤ ρG(x). (2)

Of the four sizing functions represented here, the latter two
are useful primarily for theoretical analysis; their definition
is too local to be used as a sizing function for a sampling
criterion. Unlike the other three, the Gaussian curvature is
truly intrinsic, but it fits comfortably into this hierarchy with
the extrinsic functions.

3.2. Intrinsic sizing functions

We now present intrinsic sizing functions which embody
standard concepts in Riemannian geometry. An introduc-

tory textbook on Riemannian geometry, e.g., [dC92], may
be consulted for further details on the statements made here.

3.2.1. Strong convexity radius

On the plane, convexity has to do with the shape of a set, but
on a surface, the strong convexity condition also limits the
size of the set. For example a geodesic disk is not strongly
convex in general. Consider a geodesic disk on a cylinder. If
the radius of the disk exceeds one quarter the circumference
of the cylinder, then there will be points on the disk whose
shortest connecting geodesic leaves the disk.

Definition 5 (Strong convexity radius) The strong convex-
ity radius (scr) at a point x ∈ S is defined as

ρsc(x) = sup{ρ | BS(x;r) is strongly convex ∀r < ρ} .

It can be shown [dC92] that for any x ∈ S, ρsc(x) > 0. The
scr is an intrinsic quantity, and in general, if x is in a region
of high curvature, ρsc(x) will be small. However, Gaussian
curvature alone is not sufficient to characterize the scr. Con-
sider again the example of a cylinder. The scr at any point
will be no greater than 1/4 the circumference of the cylin-
der, but the Gaussian curvature radius is unbounded.

There are no continuity results for the strong convex-
ity radius. However, it is worth mentioning that Klingen-
berg [Kli95][1.9.9] has a definition of strong convexity in
which a further axiom is imposed: A set A is strongly con-
vex in Klingenberg’s sense if it satisfies the axioms of Def-
inition 3 and further has the property that any geodesic disk
B contained in A is also convex. It easily follows that the re-
sulting scr is 1-Lipschitz. It is shown that the scr is always
positive even with this additional axiom.

3.2.2. Injectivity radius

An explanation of the injectivity radius requires a brief de-
scription of the exponential map. We denote by TxS the tan-
gent plane of S at x. The exponential map at x is a smooth
mapping expx : TxS −→ S that takes X ∈ TxS to the point
γX (‖X‖) ∈ S, where γX is the geodesic emanating from x
with tangent vector X/‖X‖. Restricted to a small enough
disk in TxS, expx is a diffeomorphism onto its image [dC92].

Definition 6 (Injectivity radius) The injectivity radius at
x∈ S is the supremum of the radii for which expx is injective:

ρi(x) = sup{ρ | expx is injective on BTxS(0;r) ∀r < ρ} .

The function ρi(x) is continuous on S [Cha06]. One of the
most useful properties of ρi(x) follows from the definition:
if dS(x, p) < ρi(x), then there is a unique minimal geodesic
γ between x and p and it will be the only geodesic between x
and p that is contained in BS(x;ρi(x)). By the first axiom of
Definition 3, the radius of a strongly convex disk cannot ex-
ceed the injectivity radius of the centre. Thus ρsc(x)≤ ρi(x).
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Note that the image under expx of any disk D centred
at 0 in TxS is exactly a geodesic disk, and that if the ra-
dius of D is less than ρi(x), then the image of D will
be a topological disk. However, it is incorrect to say that
ρi(x) is the largest radius for which the geodesic disk cen-
tred at x is an embedded topological disk. Indeed, as the
radius increases, there are two ways that the exponential
map can fail to be injective. One is if the disk wraps
around and merges with itself to create nontrivial topology.

z
xx

Figure 3: Two ways the expo-

nential map can fail to be injec-

tive.

But the other situation that
can occur is that the Ja-
cobian of expx may be-
come degenerate. Suppose
this happens at a point
z. The concentric geodesic
circles centred at x will be
smooth provided their ra-
dius is less than ρi(x), how-
ever the circle through zmay have a cusp. If γ is the minimal
geodesic joining x to z we say that z is a conjugate point to
x along γ (and vise versa: it is reciprocal). For all points y
on γ between x and z, the minimal geodesic between x and
y will be a portion of γ. However, for all points on the ex-
tension of γ past z, γ will not be a portion of the minimiz-
ing geodesic [Cha06]. Thus z 6∈ BS(x;ρi(x)). More gener-
ally, if an open neighbourhood V of x is the bijective image
of expx |U for some U ⊂ TxS, then V contains no conjugate
points and hence, by the inverse function theorem expx |U is
a diffeomorphism onto V .

A geodesic loop is a geodesic that starts and ends at the
same point. A closed geodesic (sometimes called a periodic
geodesic) is a geodesic loop γ whose tangent vectors agree
at its endpoints: γ′(0) = γ′(ℓ(γ)). Returning now to the case
where a change in the topology of the image of expx occurs,
it can be shown that there will be a geodesic loop starting and
ending at x. The midpoint of this loop is the closest point to
x at which expx fails to be injective [Cha06].

If we extend a geodesic γ from x, there will be a clos-
est point z ∈ γ beyond which γ is no longer a minimizing
geodesic. The set of all such points is called the cut locus
of x and it is compact [dC92]. The assertions made above
are summarized by a theorem [Cha06][III.2.4, p.118] due to
Klingenberg:

Lemma 3 (Klingenberg) If q is the point on the cut locus of
x that is closest to x, then q is either

(i) conjugate to x along a minimal geodesic connecting
them, or,

(ii) the midpoint of a geodesic loop starting and ending at x.

3.2.3. Intrinsic sampling radius

There are no sampling criteria based exclusively on the in-
jectivity radius. We give a sampling criterion, Corollary 1,
that is based on the scr alone, but by combining the two siz-
ing functions we are able to relax that criterion.

Definition 7 (Intrinsic sampling radius) The intrinsic sam-
pling radius at x ∈ S is given by

ρm(x) = min

{

ρsc(x),
1

2
ρi(x)

}

.

Clearly, ρm(x)≤ ρsc(x)≤ ρi(x). In Section 4.2, we establish
a relationship between these quantities and the lfs.

4. Relating extrinsic and intrinsic sampling criteria

In this section we examine the relationship between intrinsic
sampling criteria based on the scr or the intrinsic sampling
radius and extrinsic ones based on the lfs. We show that for
any ε > 0, there exists an ε f > 0 such that any sample set P
that satisfies the extrinsic criterion:

∀x ∈ S ∃p ∈ P such that p ∈ BR3(x;ε f ρ f (x)), (3)

will also satisfy the corresponding intrinsic criterion:

∀x ∈ S ∃p ∈ P such that p ∈ BS(x;ερm(x)). (4)

We begin by observing in Section 4.1 that the strong con-
vexity condition of Theorem 1 immediately yields a sam-
pling criterion of the form (4), employing ρsc(x) rather than
ρm(x) as the sampling radius. Subsequently we obtain a
weaker criterion using ρm(x). We then proceed to find an
explicit extrinsic criterion (3) that is sufficient to meet this.
A first step in this direction is to form an estimate on the
intrinsic sampling radius based on the lfs. In particular, we
seek a constantC such that

ρm(x) ≥Cρ f (x) for any x ∈ S. (5)

Both ρ f (x) and ρm(x) become smaller as the local maxi-
mal curvature becomes larger. However, ρ f (x) also becomes
smaller when geodesically distant points of the surface be-
come close in the ambient space —- a property that ρm(x)
does not possess. Thus although the lfs may be bounded
above by the intrinsic sampling radius, we cannot hope to
find a constant that would allow us to reverse the inequality
in Equation (5). For this same reason, without further quali-
fications, we can never guarantee that any intrinsic sampling
(4) will satisfy a given extrinsic criterion (3).

In Section 4.2, we obtain an estimate for the constant C
in Equation (5). In equation (3), distances to the sample set
P are measured in the ambient space, whereas the intrin-
sic conditions (4) are specified with respect to geodesic dis-
tances on the surface, which are larger in general. So the
next step is to put an upper bound on the geodesic distance
between a point x ∈ S and a nearby point p ∈ P⊂ S in terms
of the Euclidean distance between them. This is done in Sec-
tion 4.3. Finally, in Section 4.4 we develop an explicit rela-
tionship between the ε of Equation (4) and the ε f of Equa-
tion (3) and we use this relationship to compare the sampling
criteria derived in Section 4.1 with more familiar extrinsic
sampling criteria for meshing and surface reconstruction.
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4.1. Intrinsic sampling criteria

Theorem 1 ensures that if the Voronoi cells can be contained
in strongly convex neighbourhoods, then a valid homeomor-
phic iDt-mesh can be constructed. We can use the strong
convexity radius to define a sampling density that will guar-
antee the conditions of Theorem 1.

Corollary 1 If ∀x ∈ S there exists a p ∈ P such that p ∈
BS(x;

1
2 ρsc(x)), then the iVd of P on S is well formed.

Proof. For any V(p), choose x ∈ V(p) that is at a maxi-
mal geodesic distance from p. The triangle inequality yields
V(p) ⊂ BS(x;ρsc(x)) and Theorem 1 applies. �

Note that this sampling condition ensures more. If we
choose x to be a Voronoi vertex, then the associated samples
must all lie within BS(x;

1
2 ρsc(x)) and so there are unique

minimal geodesics between them. Thus Corollary 1 can be
strengthened to apply to intrinsic Delaunay triangulations:

Corollary 2 If ∀x ∈ S there exists a p ∈ P such that p ∈
BS(x;

1
2 ρsc(x)), then the iDt of P on S exists.

By contrast, Theorem 1 itself is not apriory sufficient to en-
sure that the iDt itself exists. Thus the above sampling con-
dition is stronger than the condition imposed by Theorem 1.
Compared to Corollary 2, the sampling criterion of [LL00]
is more complicated. Also it requires at least that there be a
p ∈ P such that p ∈ BS(x; 1

5 ρsc(x)).

4.1.1. A weaker criterion

One observation that comes up in the demonstration of
Corollary 2 is that if we have a sampling criterion that de-
mands only that a sample lies within the strong convexity
radius of any point on S, then we are guaranteed that there
will be a unique minimal geodesic between any two samples
that are Voronoi neighbours. So the question arises, in this
case where the ε has been doubled from 1

2 to 1: Is the iVd
still well formed? This would imply the existence of the iDt.

We have not obtained an affirmative answer to this ques-
tion. However, we are able to ensure that the iVd is well
formed provided no point on the surface is as far as its in-
trinsic sampling radius from the nearest sample point. To fa-
cilitate this result, we borrow some terminology from Bois-
sonnat and Oudot [BO05]:

Definition 8 (pseudo-disks) A family {Bi} of topological
disks on S are pseudo-disks if for any two distinct disks Bi
and B j, their boundaries either do not intersect, or they in-
tersect tangentially at a single point, or they intersect trans-
versely at exactly two points.

Qualitatively pseudo-disks intersect each other in the man-
ner expected of Euclidean disks:

Lemma 4 (Three circles) If B1, B2, and B3 are pseudo-disks
whose boundaries all intersect at p and q, then one of the
disks is contained in the union of the other two.

Proof. It is sufficient to show that the boundary of one of
the disks is contained in the union of the other two disks.

p

q

Let Ci = ∂Bi. Each of these circles is
composed of two arcs joining p and q.
Choose a consistent orientation on the
circles and consider the three arcs eme-
nating from p. One of these arcs must
be inside one of the two other disks, but
outside of the other. Suppose this arc belongs to C2 (blue
in figure), and that it is inside B1 and outside B3. Since the
intersections are transversal, the other arc onC2 must be out-
side B1, but inside B3. ThusC2 is contained in B1 ∪B3. �

The following lemma is an improvement and simplifica-
tion of its namesake in [Lei99]:

Lemma 5 (Small circle intersection) For x ∈ S and r <
ρm(x), the disks BS(x;r) are pseudo-disks.

Proof. LetCx= ∂BS(x;rx) andCy= ∂BS(y;ry) be geodesic
circles with rx < ρm(x) and ry < ρm(y) and x 6= y. If
Cx and Cy intersect tangentially at z, then by the Gauss
lemma [dC92][p.69], the minimal geodesics γxz and γyz con-
necting x and y with z must have parallel tangent vectors at
z. It follows that x, y and z all lie on a common geodesic γ.

If γ′xz(rx) = −γ′yz(ry), then ℓ(γ) = rx + ry < 1
2 (ρi(x) +

ρi(y)). It follows that either x ∈ BS(y;ρi(y)), or y ∈
BS(x;ρi(x)) and γ is the unique minimal geodesic connect-
ing x and y. If there were another interstection at w 6= z,
then α = γxw ∪ γyw would be a path between x and y with
ℓ(α) = rx+ ry, contradicting the minimality of γ.

If on the other hand γ′xz(rx) = γ′yz(ry), then either x ∈ γyz
or y ∈ γxz. Assume the former. Then ry = rx+dS(x,y). Now
if there is another intersection at w, this same equality must
apply and we conclude that x ∈ γyw. But a radial geodesic
of length ry from y can only meet Cy once, and assuming
dS(x,y) > 0, there is only one such geodesic that contains x.
Therefore we must have w = z. Thus if Cx and Cy intersect
tangentially at z, there can be no other points of intersection.

Now suppose that Cx and Cy intersect transversely at z.
Then D = BS(x;rx)∩ BS(y;ry) 6= ∅. Because it is strongly
convex, D must be a single connected component bounded
by an arc of Cx and an arc of Cy. It follows that Cx and Cy
must intersect transversely at another point distinct from z,
and that there can be no further transverse intersections. �

Lemmas 4 and 5 provide an obstruction to neighbouring
Voronoi cells sharing more than two Voronoi vertices. This
yields our main sampling result:

Theorem 2 The iDt of P on S exists if

∀x ∈ S ∃p ∈ P such that p ∈ BS(x;ρm(x)).

Proof. The sampling condition implies that there is a
unique minimal geodesic between samples that are Voronoi
neighbours. It remains to prove that the iVd is well formed.

Since p lies within the injectivity radius of each x ∈
V(p), there is an open neighbourhood V of V(p) that is
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the diffeomorphic image under expp of some U ⊂ TpS (see
Section 3.2.2). This implies that V(p) is contractible (use
expp ◦ t · exp−1

p , t ∈ [0,1]). Thus V(p) is a topological disk.

It remains to show that V(p) and V(q) cannot share more
than a single Voronoi edge. If this were the case, we would
have a region Ω, as in Figure 1(a), that is bounded com-
pletely by V(p) and V(q). Suppose that the Voronoi ver-
tices a and b were both on the boundary of V(s) ⊂ Ω. Con-
sider the geodesic circles centred at a and b and with radius
dS(a,s) < ρm(a) and dS(b,s) < ρm(b), respectively. Since a
and b are Voronoi vertices, these two circles would have to
intersect at p and q in addition to s, contradicting Lemma 5.

Suppose then that the Voronoi vertices a and b are on the
boundaries of V(s) ⊂ Ω and V(v) ⊂ Ω, respectively. By hy-
pothesis, V(p) and V(q) share more than a single Voronoi
edge. Therefore there are at least four Voronoi vertices in
V(p)∩V(q). Let c be such a Voronoi vertex, distinct from a
and b. Consider the three disks centred at these Voronoi ver-
tices and with radii such that their respective three closest
samples lie on the boundary. These three disks are pseudo-
disks, and their boundaries intersect at p and q. Thus by
Lemma 4 one of these disks, say Ba, is contained in the
union of the other two. However, Ba has a third sample, s, on
its boundary, contradicting the fact that all three disks must
have empty interiors. Thus the iVd must be well formed. �

Since the injectivity radius is never smaller than the scr,
we are assured that the conditions imposed by Theorem 2
are at least as weak as those demanded by Corollary 2. For
the comparison with the lfs which we develop next, the result
of Theorem 2 is twice as good.

4.2. A lfs estimate on the intrinsic sampling radius

In this section we arrive at Theorem 4, one of the main re-
sults of this paper. By producing a relationship (10) between
the intrinsic sampling radius and the lfs, it opens the door
for comparing intrinsic and extrinsic sampling criteria. We
exploit curvature bounds established in the Riemannian ge-
ometry literature. Two facts, Lemmas 6 and 7, which respec-
tively give insight into case (i) and (ii) of the Klingenberg
Lemma 3, enable us to get an estimate on the injectivity ra-
dius. With the addition of a result from Chavel, Lemma 8,
we obtain an estimate on the scr.

To tackle case (i) of Lemma 3, a theorem [Cha06][II.6.3,
p.86] attributed to Morse and Schönberg states that if q is
conjugate to p along a geodesic γ and the Gaussian curvature
along γ is bounded above by G, then ℓ(γ) ≥ π/

√
G. In other

words, ℓ(γ) ≥ π infz∈γ ρG(z), and since γ is a compact set,
there will be a point that attains the bound. Thus we can
state the theorem in a more convenient form:

Lemma 6 (Morse, Schönberg) If a geodesic γ connecting p
to q contains a point conjugate to one of its endpoints, or if

p and q are conjugate along γ, then

∃z ∈ γ such that ρG(z) ≤ ℓ(γ)

π
.

For case (ii) of Lemma 3 there is an extension to open
curves of a famous theorem by Fenchel that we can exploit.
Let γ be a smooth space curve from p to q. Let v be the vector
from p to q in R

3. Denote by α and β the angles ∠(γ′(0),v)
and ∠(γ′(ℓ(γ)),v) respectively, and let kγ(t) =

∥

∥γ′′(t)
∥

∥ be
the curvature of γ at γ(t). Then the inequality, which is re-
ferred to in [Top06][p. 56] as the Fenchel-Reshetnyak in-
equality, states that

Z

γ
kγ(t)dt ≥ α+β. (6)

The Fenchel-Reshetnyak inequality applies to non-closed
curves, however, if we have γ(0) = γ(ℓ(γ)) = p, then we can
break γ into two pieces and obtain a curvature bound by ap-
plying Equation (6) to each piece.

Choose a point q on γ and let γ1 be the portion of γ from
p to q and let γ2 be the remaining portion from q back to p.
Denote the associated initial and final angles by α1,β1 and
α2,β2 respectively. Then β1 +α2 = π and
Z

γ
kγ(t)dt =

Z

γ1

kγ1(t)dt+
Z

γ2

kγ2(t)dt ≥ α1 +β1 +α2 +β2

≥ (π−∠(γ′(0),γ′(ℓ(γ))))+π.

All we can assert about (π−∠(γ′(0),γ′(ℓ(γ)))) is that it is
positive. Thus for an arbitrary loop curve γ we have that the
total curvature is greater than π. It follows that there must be
some point on γ where the curvature is greater than π/ℓ(γ).
Applied to geodesics, this gives us the following:

Lemma 7 (Fenchel, Reshetnyak) On a geodesic loop γ,

∃z ∈ γ such that ρκ(z) <
ℓ(γ)

π
.

We obtain an estimate on the injectivity radius:

Theorem 3 (Injectivity radius estimate) For all x ∈ S

ρi(x) ≥
(

π

2+π

)

ρ f (x).

Proof. In the first case of Lemma 3, we have from
Lemma 6 and Equation (2) that there exists a point z
in B̄S(x;ρi(x)) with ρ f (z) ≤ ρG(z) ≤ ρi(x)/π. Using the
Lipschitz continuity of lfs (1), we have ρ f (x) ≤ ρ f (z) +

dS(x,z) ≤ ρi(x)
π +ρi(x), and so ρi(x) ≥ ( π

1+π )ρ f (x).

In the second case, we have by Lemma 7, a z in
B̄S(x;ρi(x)) with ρ f (z) ≤ ρκ(z) ≤ 2ρi(x)/π, and Lipschitz
continuity yields ρi(x) ≥ ( π

2+π )ρ f (x). Taking the smaller of
the two bounds gives our estimate on ρi(x). �

Our estimate on the scr is based on a theorem in
[Cha06][IX.6.1, p.404] which gives a global lower bound
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for the scr in terms of global bounds on the injectivity ra-
dius and the Gaussian curvature. The following lemma is
extracted from Chavel’s proof:

Lemma 8 (Chavel) Let xpq be a geodesic triangle consist-
ing of geodesics γ1,γ2 and γ3 connecting xp, pq and qx
respectively. Suppose there is a constant r0 > 0, such that
ρG(z) ≥ r0 on BS(x;ρi(x)). Suppose also that ∑

3
i=1 ℓ(γi) <

min{2ρi(x),2πr0}. Then

γ2 ⊂ BS(x;ρ),

where ρ = max{dS(x, p),dS(x,q)}.

This result, together with Lemmas 6 and 7, yields the main
result of this section:

Theorem 4 (scr estimate) For all x ∈ S,

ρsc(x) ≥
(

π

4+3π

)

ρ f (x).

Proof. Consider the geodesic disk of radius r centred at x.
There are three ways in which BS(x;r) can fail to be strongly
convex: There exist p,q ∈ BS(x;r) such that either

(i) the minimizer γ connecting p and q is not unique, or
(ii) in addition to γ, there is another geodesic α connecting
p and q and contained in BS(x;r), or

(iii) γ is not contained in BS(x;r).

Case (i) cannot happen if dS(p,q) < max{ρi(p),ρi(q)},
and possibility (ii) is eliminated if BS(x;r) ⊂ BS(p;ρi(p))
for any p ∈ BS(x;r). Thus we eliminate the first two cases if
we ensure that ρi(p) ≥ 2r for all p ∈ BS(x;r).

If ρi(p) < 2r, then by the Klingenberg Lemma 3 either

(a) there is a z∈ BS(p;2r)⊂ BS(x;3r) that is conjugate to p
along a minimizing geodesic, or

(b) there is a geodesic loop in BS(p;2r).

In case (a), the Morse-Schönberg Lemma 6 gives us a z ∈
BS(x;3r) with ρ f (z) ≤ 2r

π . The Lipschitz continuity of lfs

yields ρ f (x) ≤ ρ f (z)+dS(x,z) ≤ 2r
π +3r. Thus

r ≥
(

π

2+3π

)

ρ f (x). (7)

In case (b), the Fenchel-Reshetnyak Lemma 7 yields a z∈
BS(x;3r) with ρ f (z) < 4r

π . Again using Lipschitz continuity
to bring the lfs bound to x, we obtain

r >

(

π

4+3π

)

ρ f (x). (8)

Thus if we ensure that r is smaller than the bounds (7) and
(8) then cases (i) and (ii) cannot happen and we need only
consider case (iii). For this we turn to Chavel’s Lemma 8.

Consider the geodesic triangle xpq consisting of minimal
geodesics, with notation as in Lemma 8. By hypothesis we
now have ρi(x) ≥ 2r, so ∑

3
i=1 ℓ(γi) < 4r ≤ 2ρi(x). Thus the

conditions of Lemma 8 are satisfied unless there is a z ∈

BS(x;2r) with 2πρG(z) < 4r. This would imply ρ f (z) < 2r
π ,

and the Lipschitz shuffle to x yields

r >
1

2

(

π

1+π

)

ρ f (x). (9)

By (8), the smaller of the three estimates, we have that
BS(x;r) is strongly convex whenever r ≤

(

π
4+3π

)

ρ f (x), and
we obtain the theorem by the definition of the scr. �

Since the constant in the scr bound is less than half of that
of the injectivity bound, we can use it also as a bound on the
intrinsic sampling radius. Thus for all x ∈ S

ρm(x) ≥
(

π

4+3π

)

ρ f (x). (10)

4.3. Bounding geodesic lengths

Since Euclidean distances between two points never exceed
the geodesic distances, p ∈ BS(x;ρ) implies p ∈ BR3(x;ρ).
However, we need to make claims about the containment of
points within geodesic disks, given their presence within a
Euclidean ball. Estimates on dS(x, p) relative to dR3(x, p),
for x, p ∈ S sufficiently close, are provided in the works
of [MT04] and [HPW06]. We follow the terminology and
notation of the former.

We exploit the projection mapping, ξ :UρR → S discussed
in Section 3.1. The relative curvature, ω(m), at a point m ∈
UρR is defined as

ω(m) =
dR3(m,ξ(m))

ρκ(ξ(m))
.

From the definition of UρR , dR3(m,ξ(m)) ≤ ρR(ξ(m)), so
Equation (2) gives ω(m) ≤ 1.

Suppose that p ∈ BR3(x;ε f ρ f (x)) and let I =]x, p[ be the
open Euclidean line segment between x and p, and let ω =
supm∈I ω(m). Then according to [MT04]:

ℓ(ξ(I)) ≤ 1

1−ω
dR3(x, p). (11)

If γ is a minimal geodesic between x and p, then dS(x, p) =
ℓ(γ) ≤ ℓ(ξ(I)) gives us the needed bound.

Since ξ takes m to the closest point on S, we have, for
all m ∈ I, dR3(m,ξ(m)) ≤ 1

2dR3(x, p) ≤ 1
2 ε f ρ f (x). For the

denominator of ω we have ρκ(ξ(m))≥ ρ f (ξ(m)), and by the
Lipschitz continuity of lfs (1), ρ f (ξ(m)) ≥ (1 − ε f )ρ f (x).

Thus ω ≤ ε f
2(1−ε f )

. For the estimate to be usable, we need

ω ≤ 1, so we demand ε f < 2/3.

Plugging this estimate into (11) together with dR3(x, p) <
ε f ρ f (x) yields the needed bound on the geodesic length:

Lemma 9 If p ∈ S∩BR3(x;ε f ρ f (x)), with ε f < 2/3, then
p ∈ BS(x; ε̃ρ f (x)) for

ε̃ ≤ ε f (1− ε f )

1− 3
2 ε f

.
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Figure 4: The ε for intrinsic sampling (4) is on the horizon-
tal axis. The required ε f for equation (3) is on the vertical
axis. Sampling criteria from other works are compared.

4.4. Extrinsic criteria meeting intrinsic demands

Equipped with Equation (10) and Lemma 9 we determine
that if P satisfies equation (3), then it will also satisfy equa-
tion (4) provided that

ε f (1− ε f )

1− 3
2 ε f

≤ ε
π

4+3π
.

PuttingC = ε π
4+3π , we get

ε2
f − (1+

3

2
C)ε f +C ≥ 0,

an inequality that will be satisfied whenever ε f is smaller
than the smaller of the two positive roots.

For our sampling criteria of Theorem 2, ε = 1, yield-
ing C ≈ 0.234 and ε f ≤ 0.204 is required. This com-
pares well with existing lfs sampling requirements for topo-
logical consistency. For example, ε f ≤ 0.1 is required in
[AB98]. In [BO05], a loose ε-sample is required to have
ε ≤ 0.091. A loose ε-sample only requires samples to lie
within BR3(c;ερ f (c)) when c is a vertex of the rVd. Accord-
ing to Corollary 4.10 of that work, such a sampling will be
an ε f -sampling in the sense of Equation (3) for ε f ≈ 0.161.
These comparisons are summarized in Figure 4.

5. Conclusions

Through an analysis of the iVd, we improved upon the sam-
pling criteria of [LL00, Lei99]. By deriving inequalities re-
lating the injectivity radius and the strong convexity radius to
the local feature size, we have enabled comparison between
sampling criteria in the intrinsic and extrinsic domains.

The indication is that sharper bounds may result from an
intrinsic analysis even if an algorithm is based on an ex-
trinsic model. However, we have not demonstrated that the
new sampling conditions are sufficient to ensure that the
iDt-mesh is a substructure of the 3D Delaunay tetrahedral-
ization. Since good convergence properties of the iDt-mesh
have been demonstrated [DLYG06], this would put it on a
more or less equal footing with the rDt. It is known that
the rDt and the iDt-mesh are not necessarily combinatorially
equivalent, regardless of sampling density [DZM07].

The estimates on the injectivity radius and the scr in Sec-
tion 4.2 can probably be tightened. The constant in Equa-
tion (10) may be improved from π

4+3π to 1
2

(

π
1+π

)

if it can
be shown that: if distinct geodesics α and γ connect p and q,

then there is a point z ∈ α∪ γ with ρR(z) ≤ ℓ(α)+ℓ(γ)
2π . Fur-

thermore, we would no longer rely on Lemmas 6, 7, or 3.

Although the statements of Theorems 1 and 2 make sense
in higher dimensions, their proofs are not easily extended.
However, extending the proofs of Theorems 3 and 4 may
require no more than a reworking of Section 3.1.
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